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ABSTRACT 

Gold mineralisation is the result of physico-chemical and thermal processes of the earth’s interior. We may view a geo-
logical process of gold mineralization as a stochastic process Z(x): xD, where D may be considered as a mineral de-
posit. In the case of gold mineralization, samples drawn at regular intervals may be considered as following a discrete 
stochastic process. The point of interest is one of realistic estimation of mineral value property as computations based 
on classical methods leading to erroneous results. Modern methods based on stochastic modelling treating the process 
as an 1) Auto-regressive (AR); 2) Moving-average (MA) or a combination of these two viz.; 3) ARMA of appropriate 
order k may lead to more realistic results. Yet another class of methods which consider the geometry of samples in 
termed as theory of Regionalised Variables. This paper analyses these classes of methods and illustrates a case study of 
a gold mineralization related to Strike Reef (Footwall branch) of Hutti gold mines.  
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1. Introduction 

Mineralisation formation by geological process may be 
considered as a discrete stochastic process   :Z x x D . 
In the case of gold mineralisation process, samples drawn 
at regular interval may be considered as a discrete sto-
chastic process. It is of utmost interest to estimate the 
mineral value properties and say grade/accumulation. 
Towards this end, time series analysis/stochastic model-
ling may be of utmost importance. Sarma [1-3] discussed 
application of time series special reference to gold and 
copper mineralization. Sarma and Koch [4] discussed the 
application of statistical technique to Uranium explora-
tion problem. Sahu [5,6] carried out statistical modelling 
and time series analysis applied to mineral deposit mod-
elling and evaluation. 

This paper deals with stochastic and geo-statistical as-
pects of Strike Reef (Footwall branch) of Hutti gold 
mines emphasising auto-correlation function and semi- 
variogram as basic tools for drawing inferences and in-
terpretation. The Mines at Hutti are shallow in depth, 
usually not exceeding 1000 m. A problem here is to ob-
tain realistic estimates of gold value properties. Proper 
estimation of gold content leads to an adequate estima-
tion of grade content and ore reserves. 

2. Data 

The data for the present study constitute chip samples 

taken from the mineralised rock of Strike Reef (Footwall 
branch) of Hutti gold mines. Chip samples of mineralised 
rock weighing about 1 - 2 kg are collected on the width 
of the reef at each sampling point and assayed. The dis-
tance between one sampling point and other which is 
called sampling interval is 1 m. The analyzed gold con-
tent per tonne of ore and the width of reef at that sam-
pling point are recorded. Thus, the unit of measurement 
is g/t of ore for grade and meter-grade (mg) for accumu-
lation. Accumulation at any sampling point is the product 
of width of the reef in m or cm and the grade at that point. 
The sample sizes considered for analysis for each of the 
levels of Strike Reef are given in Table 1.  

The data comprising grade and accumulation values of 
the above mentioned lode, which extends up to a depth of 
600 m were first analyzed to understand the nature of the 
distribution. Graphical plot of the frequency distributions 
revealed a positively skewed distribution (Figures 1 and 
2). This provides a feel for lognormal approximation. 
The logarithms of grade and accumulation values follow 
normal distributions (Figures 3 and 4). 

3. Stochastic Modelling-Model Selection 

The gold assay data tZ  (or logarithmically transformed 
data) may be viewed as characterizing a discrete time 
(spatial) series, which may be regarded as a single reali-
zation containing some sign l (signal) plus sum random  a 

Copyright © 2012 SciRes.                                                                                  IJG 



T. GANESH  ET  AL. 791

 
Table 1. Details of data. 

Mean 
Level Depth in “m” below surface Number of sample points

Grade Accumulation 

10 306 526 3.5580 24.6402 

11 336 792 3.6051 26.2062 

12 367 776 4.8703 44.5956 

 

 

Figure 1. Histogram for grade (gm/tonne). 
 

 

Figure 2. Histogram for accumulation (m-gms). 
 
noise. Such time series could be broadly categorised a 
stationary or non-stationary. The stationary assumption 
implies that the probability distribution t  is the 
same for all times—t, possessing a constant mean. In 
order to test for stationarity, the assay data were tested. A 
simple but robust method followed for testing of station-
arity was as follows: Each level data was divided into 
three segments. The mean and variance were computed 
for each of the segments. Now a 10% of the first portion 
assay data were removed from the segment and to com-
pensate this, a 10% assay data of first portion of the sec-
ond segment was added to the first segment. For the 
second segment, 10% of the first portion of third segment 
was appended. The third segment is now short of 10% 
data and to compensate this, some extra data were added. 
The mean and variance were computed for this revised  

 

Figure 3. Histogram for the logarithms of grade (gm/tonne). 

 

 

Figure 4. Histogram for the logarithms of accumulation 
(m-gms). 

 P X  
segment. It is observed that the mean and variances re-
mained more or less the same conforming to the discrete 
process being weakly stationary. In order to analyse the 
stochastic characterization of the mineralization, three 
modeling frame works viz., Auto-regressive [AR (p)], 
Moving average [MA (q)] and Auto regressive and mov-
ing average [ARMA (p, q)]—were considered. The 
ARMA has both the AR and MA component. The “acf” 
and the “pacf” would give an indication as to the appro-
priate candidate models to be chosen. For the sake of 
completeness, brief details concerning the parameter es-
timation of these linear stochastic models and criteria 
adopted for choosing the appropriate model are given 
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below.  

3.1. Parameter Estimation 

Following Box and Jenkins (1970, p. 9) linear random 
filter model is given by 

1 1t t tx a a 2 2ta   

 20,N

           (1) 

This can also be thought of as the representation of a 
stochastic process whose input is white noise distributed 
as a   and output 1 2t , ,x     are parameters 
representing the weight coefficients. Since the process is 
found to be stationary,   is the mean of the tX  proc-
ess. If the sampled estimate tX  of the mean   is sub-
tracted from the time series, we have t tx x x  , and the 
process will therefore be considered as a zero mean 
process. Equation (1) implies that tX  can be written 
alternately as a weighted sum of past values of the tX ’s 
plus an added shock. Thus 

1 1t t t 2 2t tx a w x    w x a    

p t p

       (2) 

The special cases of this model in which only the first 
p of the weights in non-zero may be termed as Auto re-
gressive process of order “p”—[AR(p)]. It may be ex-
pressed as: 

1 1 2 2t t t tx x x x a        

, , ,

      (3) 

where 1 2 p  

2t p t q

 are used for finite set of weight 
coefficient; and where only the first “q” of the weights 
are non-zero, may be written as: 

1 1 2t t tx a a a a    

1 1 2 2 1 1

2 2

t t t p t p t t

t p t q

           (4) 

x x x x a a

a a

   

 
   

 

     

  

   


    tB B a 

1 1 (1)t t t

This is moving average process of order “q” that is 
MA (q). In practice, to obtain a parsimonious representa-
tion, it will be necessary to include both auto-regressive 
and moving average terms in the model. Thus, we have: 

   (5) 

Using the back-shift operator detailed by Box and Jen-
kins [7], this can be written as: . 

3.2. AR Process 

The parameters of an AR model can be estimated by 
solving Yule-Walker equations [8,9]. The recursive- 
scheme for estimate AR coefficients is detailed by An-
dersen [10]. 

3.3. MA (1) and ARMA (1, 1) Models 

The MA (1) and ARMA (1, 1) models that follow (4) and 
(5) above are follows: 

x a a MA   

1 1 1 1 (1,1)t t t tx x a a ARMA

             (6) 

       (7)     

The estimations of parameters of the MA and ARMA 
processes is detailed by Box and Jenkins [7]. Tables 2 
and 3 give the parameters of AR models with standard 
error for grade and accumulation respectively.  

3.4. Auto-Correlation (acf) and Partial  
Auto-Correlation (pacf) Functions 

In order to choose the appropriate candidate models by 
any of the approaches described above, the “acf” and the 
“pacf” of the process were examined as these are most 
essential in model identification. The auto-correlation 
coefficients  rk  and “pacf” for different lags (k < N/4), 
where N is the sample size, were computed employing 
the standard formula [7], In all the cases, the “acf” fol-
lowed a near damped exponential pattern while the 
“pacf” followed a cut-off pattern indicating that the 
process could be AR. The model to be selected could be 

 
Table 2. Parameters of AR models with standard error for grade. 

Level AR(1) SE AR(2) SE AR(3) SE AR(4) SE 

10 0.681 6.650 0.551 0.190 6.533 0.532 0.136 0.098 6.508 0.527 0.129 0.070 0.053 6.504 

11 0.533 6.109 0.451 0.153 6.041 0.425 0.075 0.173 5.953 0.403 0.065 0.118 0.129 5.907 

12 0.682 7.685 0.664 0.027 7.688 0.659 −0.094 0.180 7.566 0.639 −0.83 0.106 0.113 7.523 

 
Table 3. Parameters of AR models with standard error for accumulation. 

Level AR(1) SE AR(2) SE AR(3) SE AR(4) SE 

10 0.623 54.168 0.508 0.185 53.279 0.496 0.152 0.064 53.221 0.492 0.143 0.032 0.063 53.165

11 0.479 47.905 0.399 0.166 47.267 0.373 0.104 0.154 46.729 0.354 0.091 0.108 0.123 46.401

12 0.706 85.267 0.767 −0.087 84.998 0.790 −0.287 0.261 82.092 0.781 −0.278 0.235 0.032 82.101
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recognised by the application of statistical significant 
tests based on variance of acf: 

 
2

1 for

q

v k q



2

kVar r
N

  
 

and the variance of pacf: 1/N [7]. Figures 5 and 6 show 
the acf and pacf for levels 10, 11 and 12 in respect of 
grade while Figures 7 and 8 show the acf and pacf for 
levels 10, 11 and 12 in respect of accumulation.  

4. Structural Analysis 

The variables under consideration were weakly station-
ary; that is their mean and variances are constant. A sta-
tionary random function is homogeneous and self re-
peating in space. Strict sense stationarity requires all the 
moments to be invariant under translation but this cannot 
be verified when the experimental data are limited. Usu-  

ally the first two moments, mean and covariance are ex- 
pected to remain constant. This is called weak or second 
order stationarity. However these assumptions related to 
weak stationarity may not always be satisfied. In the case, 
where there is a marked trend, the mean value cannot be 
assumed to be constant. Further, in some cases the co-
variance need not exist. Hence, this hypothesis needs to 
be further weakened [11]. Under the intrinsic hypothesis, 
we assume that the increments of the function  Z x  are 
stationary. That is, for any vector h. The increment 
   z x h Z x 

 E Z x m  

 has a mean and a variance which are 
independent of x. That is  or 

    0E Z x h Z x      and  

     2Var Z x h Z x h    


, a finite value which is  

independent of X. This function h  is called semi- 
variogram. It is the fundamental tool for spatial structural 
interpretation of phenomenon as well as for estimation—  

 

 
(a)                                    (b)                                     (c) 

Figure 5. Acf of grade for levels 10, 11 and 12. 
 

 
(a)                                    (b)                                     (c) 

Figure 6. Pacf of grade for levels 10, 11 and 12. 
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(a)                                    (b)                                     (c) 

Figure 7. Acf of accumulation for levels 10, 11 and 12. 
 

 
(a)                                    (b)                                     (c) 

Figure 8. Pacf of accumulation for levels 10, 11 and 12. 
 
known as kriging. Notable authors in this line of ap-
proach are Matheron, Armstrong, Clark, Journel and Hu-
jibregts, Royale [11-14]. Sarma applied this approach to 
gold mineralization in respect of Zone-I, and Oakley’s 
reefs of Hutti gold mines. 

4.1. The Semi-Variogram 

In order to study the spatial structure of mineralization, 
experimental semi-Variograms were constructed for each 
of the levels 10 - 12 of the Hutti gold mine. The experi-
mental semi-Variogram was spherical in nature. There-
fore, spherical models were fitted. The spherical model 
has the following general form. 

         1.5 * 0.5 *h Co C h a h   
3

: for a h a 

  : for .h Co C h a   

nuggesteffect Co C sill

 



a range . Table 4 shows these spherical functions for 
the variables grade and accumulation. Figures 9 and 10 
show these semi-variograms for grade and accumulation 
with N as sample size together with model parameters.  

 

where :Co  , and  

The details of values for the parameters C0 = nugget 
effect, a = range and sill Co + C are given in the Table 4. 

4.2. Spectrum Analysis (Frequency Domain) 

According to Hayakin (1983), in the characterisation of a 
spectral density, spectrum analysis is often preferred to 
the auto-correlation function because of a spectral repre-
sentation may reveal such useful information as hidden 
periodicities or closed spectral peaks. The great interest 
in the computation of spectrum shown by many scientists 
is largely motivated by possible presence of sharp peaks 
of considerable physical importance. Different methods 
such as Blackman-Tukey, Fast Fourier Transform (FFT), 
Maximum Entropy Method ( EM) and Maximum Likely M 

Copyright © 2012 SciRes.                                                                                  IJG 



T. GANESH  ET  AL. 795

 
Table 4. Details of variogram parameters for levels 10, 11 and 12. 

Variogram Parameters of Grade Variogram Parameters of Accumulation 
Level 

C0 C a C0 C a 

10 28 22 5 1800 1600 5.8 

11 24 8 5 1500 500 5.8 

12 32 34 5 4000 4200 4.8 

 

 
(a)                                    (b)                                     (c) 

Figure 9. Semi-variogram of grade for levels 10, 11 and 12. 

 

 
(a)                                    (b)                                     (c) 

Figure 10. Semi-variogram of accumulation for levels 10, 11 and 12. 

 
hood Method (MLM) exist for computation of spectral 
densities. The advantage with MEM is that the window-
ing problem which is present in the other methods can be 
overcome [15]. The basic idea is to choose the spectrum 
which corresponds to the most random time series whose 
“acf” agrees with a set of known values. MEM estimates 
the spectra reasonably well, particularly when the length 

of the available time series is limited. For a linear process 
the spectral density estimate is given [16] by 

 
 2

1
1 exp 2π

M

M

N j tj

V
S f

f fj



  

      (9) 

where MV  is a constant representing the updated vari-
ance of the series, and j  are prediction coefficients 
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that are determined from the data;  is the frequency  f

and Nf  
 is the Nyquist frequency: 1

2 t
. A common  

method of obtaining estimates of is by solving Yule- 
Walker (Y-W) equations [8,9] which involve computation 
of auto-covariances. Figures 11 and 12 show the spectra 

for levels 10, 11 and 12 for grade and accumulation by 
FFT while Figures 13 and 14 show the spectra for levels 
10, 11 and 12 for grade and accumulation by MEM 
method.  

Based on the spectra the observed periodicities are as 
follows: 

 

 
(a)                                    (b)                                     (c) 

Figure 11. Spectra for grade by FFT for levels 10, 11 and 12. 
 

 
(a)                                    (b)                                     (c) 

Figure 12. Spectra for accumulation by FFT for levels 10, 11 and 12. 
 

 
(a)                                    (b)                                     (c) 

Figure 13. Spectra for grade by MEM for levels 10, 11 and 12. 
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(a)                                    (b)                                     (c) 

Figure 14. Spectra for accumulation by MEM for levels 10, 11 and 12. 

 
Grade-periodicity: FFT 

 

Level 
Significant peaks  

observed at frequency 
Periodicity (m) 

10 0.035, 0.15, 0.37 33, 7, 3 

11 0.02, 0.06, 0.12, 0.21 50, 17, 8, 5 

12 0.02, 0.04, 0.07, 0.14 50, 25, 14, 7 

 
Accumulation-periodicity: FFT 
 

Level 
Significant peaks  

observed at frequency 
Periodicity (m) 

10 0.02, 0.14, 0.37 50, 7, 3 

11 0.02, 0.05, 0.11, 0.23 50, 20, 9, 4 

12 0.03, 0.04, 0.09, 0.13 33, 20, 11, 8 

 
Grade-periodicity: MEM 
 

Level 
Significant peaks  

observed at frequency 
Periodicity (m) 

10 0.04 25 

11 0.02, 0.13 50, 8 

12 0.04, 0.08, 0.10, 0.13 25, 12, 10, 8 

 
Accumulation-periodicity: MEM 
 

Level 
Significant peaks  

observed at frequency 
Periodicity (m) 

10 0.04 25 

11 0.03,0.05,0.14 33,20,7 

12 0.04 25 

Table below shows common periodicities observed by 
FFT and MEM methods in respect of grade and accumu-
lation. 

 

Grade Accumulation 
Level

Frequency Periodicity (m) Frequency Periodicity (m)

10 - - - - 

11 0.02 50 0.05 20 

12 0.04 25 0.04 25 

5. Conclusion 

The distribution of grade and accumulation in respect of 
gold mineralization in the Strike Reef (Footwall branch) 
of Hutti gold mines follow approximately a lognormal 
distribution. This inference is significant as the mines are 
shallow in depth, usually not exceeding 600 m. Based on 
acf and pacf, the process is identified as AR. The AR 
parameters were worked for the grade and accumulation 
in respect of levels 10, 11 and 12. Based on standard er-
ror, a fourth order AR is was found to be appropriate. 
Structural analysis revealed that the semi-variograms are 
spherical in nature, both in respect of grade and accumu-
lation. Spectrum analysis by FFT and MEM showed 
common periodicities for grade and accumulation for 
every 50 m for level 11 and for every 25 m for level 12. 
Similarly the periodicities are 25 m for level 11 and 12 
both in respect of grade and accumulation. 
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