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ABSTRACT 

By adopting a complex formulation of Ohm’s law, we arrive at combined equations connecting the conductivities of 
conductors. The horizontal resistivity is equal to the inverse of Drude’s conductivity ( 0 ), and the vertical resistivity 

( y ) is equal to the Hall’s conductivity ( H ). At high magnetic field, the horizontal conductivity becomes exceedingly 

small, whereas the vertical conductivity equals to Hall’s conductivity. The Hall’s conductivity is shown to represent the 
maximal conductivity of conductors. Drude’s and Hall’s conductivities are related by 0 H c    c, where   is the 

cyclotron frequency, and   is the relaxation time. The quantization of Hall’s conductivity is attributed to the fact that 
the magnetic flux enclosed by the conductor is carried by electrons each with h e , where  is the Planck’s constant 

and  is the electron’s charge. The Drude’s conductance is found to be equal to Hall’s conductance provided the mag-

netic flux enclosed by the conductor is a multiple of 

h

e
h

e
. 
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1. Introduction 

Drude had explained the electrical conductivity of metals 
by treating electrons in the metal as a gas performing 
diffusive motion [1]. Accordingly, he found that the dc  

conductivity of metals to be 
2

0

ne

m


, where n and     

are the number density and relaxation time of the elec-
trons, respectively. However, Drude’s model was con-
fronted with several problems. In Drude’s model elec-
trons are distributed according to Maxwell-Boltzman 
distribution. Since electrons are fermions, Sommerfeld 
adopted a Fermi-Dirac distribution for electrons, and thus 
generalized the Drude’s model [2]. Electrons in conduc-
tors move on the surface which is two dimensional. Hall 
found that when a current passes in the x-direction of a 
conductor placed in a transverse magnetic field (along 
z-direction), the magnetic force forbids the movement of 
electrons across the y-axis. Charges are accumulated on 
the lateral sides of the conductor. The lateral potential 
difference divided by the horizontal current defines a 
transverse resistance that increases linearly with the 
magnetic field. This is known as Hall’s effect [3]. Since 
the motion of electrons in a conductor is generally two- 
dimensional, a unified approach exhibiting this nature 
can be formulated using complex numbers. Such a for-

mulation is shown recently to lead to interesting proper-
ties governing a two-dimensional system [4]. While dc 
conductivity is constant, ac conductivity varies with fre-
quency. When a conductor is placed in a magnetic filed 
(B), Hall found that the conductivity along the y-direc-
tion varies with magnetic field. This magnetic conductiv-
ity is known as Hall’s conductivity, H . It is given by  

H

ne

B
   [5]. At low temperature and high magnetic  

field, the Hall’s conductivity of a two-dimensional con-
ductor is found to exhibit a plateau behavior and is inde-  

pendent of the applied magnetic field, viz., 
2

H

e

h
,   

where   is an integer [5]. Over the plateau regions the 
horizontal conductivity vanishes. 

The discovery of the quantum Hall effect (QHE) 
boosted the interest in studying the magnetic properties 
of the two-dimensional systems. Of these magnetic prop- 
erties in two-dimensions is the magnetic flux quantiza-
tion. In fact, the magnetic flux quantization was first no-
ticed by London and Onsager [6,7]. They showed that the 
flux embraced by the superconducting ring ought to be  

quantized in units of 
h

e
 [6,7]. They further inspired the  

suggestion that the quantization of the magnetic flux 

Copyright © 2012 SciRes.                                                                                 JMP 



A. I. ARBAB 1041

might be an intrinsic property of the electromagnetic 
field. 
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We express in this work the conductivity of conduc-
tors as a complex number with horizontal and vertical 
components. We further show that under low magnetic 
field, the horizontal conductivity reduces to the Drude’s 
conductivity, whereas the vertical component becomes 
vanishingly small. However, under high magnetic field 
the horizontal conductivity is less than the value sug-
gested by Drude’s, while the vertical conductivity re-
duces to the Hall’s conductivity. In addition, we recently 
hypothesize a maximum conductivity for conductors, viz.  

0
m

m





ne

 [8]. The Hall’s conductivity is found to be 

equal to this maximum conductivity. Moreover, the quan-
tum behavior of the two-dimensional Hall’s conductivity 
is found to be a signature of the quantization of the mag-
netic flux enclosed by the conductor. In two-dimensions, 
the Drude’s and Hall’s conductances are equal. This shows 
that the relaxation time of a two-dimensional conductor is 
about two orders of magnitudes bigger than the one in 
three dimensions. 

2. Hall’s Conductivity 

For a conductor with number density, n, the current 
density of the drifting electrons can be written as  

.J v

,

                 (1) 

However, Ohm’s law states that  

J E                  (2) 

where   is the conductivity of the material. 
Write the current density, electric field and conductiv-

ity as  

, , .x y x y x yJ J iJ E E iE i   

,

        (3) 

Applying Equation (2) in (1), and equating the real and 
imaginary parts of the resulting equation, one gets  

.x x x y y y x y y xJ E E J E E           (4) 

The vanishing component of the y-component of 
Lorentz’s force yields  

.y
x

z

E
v

B


0yJ 

                   (5) 

Moreover, since there is no current flow along the 
y-direction, i.e., , Equations (1) and (4) yield  

,y
y x

x

E

E
                   (6) 

and  
.x xJ nev                  (7) 

Hence, applying Equations (5)-(7) in (4) yields 

              (8) 

where s   is the surface number density of the Hall 
surface, and  is the conductor thickness. And since d

x xV E L  and y yV E d , where  is the conductor 
length (see Figure 1), Equations (6) and (8) become  

L
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,

1

y
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x

y

x
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n e d V

Bd VL
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 
     

   

           (9) 

and  
22

22
.

1

y
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y
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d V



  
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   

          (10) 

In steady state, the velocities of an electron with mass 
 m , in magnetic and electric fields, are governed by [2] 

,

,

,

x x c y

y y c x

c

e
v E v

m
e

v E v
m

eB

m

  

  



  

  



             (11) 

where c  and   are the cyclotron frequency and 
collision time, respectively. Since no current flow in the 
y-direction, then 0yv  . Thus, Equation (11) yields  

y
c

x

E

E
.  

 

                (12) 

Now substitute Equation (12) in Equations (6) and (8) 
to obtain 

2 ,
1

c
H

c

 
            (13) x 

 
 



 
 

and  
2

2
, ,

1

c s
y H H

c

n e

Bd

 
  

 
 


         (14) 

where H  is the Hall’s conductivity. Now Equations 
(13) and (14) can be written as 

 
0

2 ,
1

x

c


 

 


             (15) 

and  
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 
   

2

1 1

c
y H

 
02 2
,c

c c

   
 


 

0 ,H c

 
      (16) 

where  

                   (17) 

and 
2

0

ne

m

   is the Drude’s conductivity. Therefore,  

as evident from Equation (15), 0  is the zero-magnetic 
field dc conductivity. One can also introduce the electron  

mobility, e

e

m

 

B

 in the above equations so that 

c e   . It is remarkable that for low magnetic field 
or when c 1,    x  reduces to the Drude’s conduc-
tivity of metals, i.e., , 0B  0x    and 

 2

y c H    . This shows that y  can be neglected 
( y x  ). It is apparent from Equations (15) and (16)  

that when 1c   , then 
 

0
2
,

c


x

 
   and  

y H  . This implies that x y  , and hence, x  
can be neglected. We conclude that at low magnetic field, 
the vertical conductivity vanishes, and the conductor has 
only horizontal conductivity that is the Drude’s conduc-
tivity, viz. 0x   . Thus, for high magnetic field the 
horizontal conductivity vanishes, so that the material 
behaves like an insulator, and the vertical conductivity 
approaches Hall’s conductivity. We see that when 1c   ,  

one has 0

1

2x    and 
1

2y H  . This in fact occurs  

when y  attains its maximum value, as evident from 
Equation (16). Hence, at this state the two conductivities 
halved their maximum values. But at low temperatures 
and at high magnetic fields, the Hall’s conductivity ex-
hibits plateaus where the conductivity becomes quantized 
in units of a multiple of 2e h

0
 [5]. In the plateau regions, 

x  . The variation of y  with the magnetic field is 
shown in Figure 2. Equation (15) can be seen as scaling 
the mass of the electron moving horizontally under a  

magnetic field, viz.,   2
1 .c  

    

m m  Thus, as we  

increase the magnetic field the electron mass increases 
making the horizontal conductivity exceedingly small. 
However, Equation (16) serves a scaling the mass of the  

electron moving vertically as,  2
1 .c cm m        

Thus, the vertical mass of the electron decreases with 
increasing magnetic field, and hence, the vertical con-
ductivity increases. 

We can now define the x- and y-resistivities as  

1
.x yi  


                 (18) 

Using Equation (3), we obtain the two equations 

2 2
,x

x
x y

                (19) 
 




and  

2 2
.y

y
x y


                (20) 

 
 



Using Equations (15)-(17) one gets  

0

1
,x                  (21) 


 

.

and  

                 (22) y H 

It is interesting to see that x  is independent of the 
magnetic field, while x  does. x  is equal to the in-
verse of Drude’s conductivity, whereas y  is equal to 
the Hall’s conductivity. Consequently, the horizontal 
resistivity is independent of the magnetic field (but the 
 

 

Figure 1. Hall’s bar setup shows the transverse magnetic 
field, B and longitudinal current, Jx. 
 

 

Figure 2. Variation of y  (arbitrary scale) with the mag-

netic field =c

eB
ω

m
 . The maximum value of y  is 

1 H .   2 
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corresponding conductivity does), while the vertical re-
sistivity does. 

Equations (19) and (20) reveal that 0x   and  
1

y
y




  . It seems that this quantization occurs when  

the magnetic field is so high. Equation (13) shows that if 

H  is quantized then, x  is quantized too. It is appar-
ent that x  follows a Lorentzian function of the cyclo-
tron frequency. For a perfect conductor in a magnetic 
field,   , so that 0x   and y H 

 ,l tm m im 

m m
m

. 
We have recently introduced a quaternionic mass 

where the bare mass can be expressed as a complex 
quantity, viz. [9], 

               (23) 

where l  and t  are the longitudinal and transverse 
masses, respectively. We may attribute l  and tm  to 
the mass of the electron when moving horizontally and 
vertically, respectively, across the conductor. The Drude’s  

conductivity, 
2ne

m


, is transformed into 

0

2 2
,

1 1

t

l

t t

l l

m

m
i

m m

m m



 
   

 

m

0  
 
 
 

           (24) 

where l  is the ordinary mass of the electron. Com-
paring this with Equations (15), (16) and (25) reveal that  

0y

x H

 
.t

c
l

m

m
  

m m

 
              (25) 

Therefore, in high magnetic field ( t l ) so that 
electrons move with a bigger mass in the transverse 
direction than in the horizontal direction, and vice versa. 

Using Equation (14) the relaxation time can be written 
as  

0

H

y





0, .

1

m

eB
 



0

            (26) 

We remark that   is the relaxation time when 
1c   , i.e., when y  is maximum. Moreover, when 
1

2y H  0, then   . It is evident that for a perfect 

conductor, i.e.,   , then y H 

D

. We can thus 
define a perfect conductor in a magnetic field as the one 
with vertical conductivity equals to Hall’s conductivity. 

When the magnetic field is so high (usually at low 
temperature) the horizontal current will vanish, and all 
electrons accumulated on the Hall sides of the conductor. 
The vertical conductivity will be equal to the Hall’s con-
ductivity. Thus, the conductor behaves like an insulator 

horizontally and a perfect conductor vertically. In this 
case, one can calculated the displacement vector ( H   

EH ) inside the conductor. Notice that the Hall’s ca- 

pacitance is given by 
A

HC
W


 W, where  is the width  

of the conductor,   is the permittivity of the space be-
tween the two Hall’s surfaces, and the charge on the Hall 
side is H Hq C V . These yield  

, ,H
H H H

V
n D n e

eW


              (27) 

where Hn  is the lateral (Hall) surface number density. 

3. Quantum Hall Effect 

Let us now consider a two-dimensional conductor. In this  

case, s
H

n e

B
  . Now if we assume that H  is quan- 

tized [5], i.e., 
2

H

e

h
, then Equations (13) and (16)   

dictate that both x  and y  are quantized too. In two- 
dimensions, the Drude and Hall conductances can be 
written as 

2

,s s
D H

n e n e

m B

   .            (28) 

Therefore, Equation (17) now reads 
2

.D

c

e

h

 
 

                  (29) 

Hence, 

1
,

h
N

e BA
    

 

B BA

                (30) 

where N is the number of electrons and A is the cross- 
sectional area of the sample (conductor). Note that the 
total flux encapsulated by the conductor,  . Now 

if 
h

e
 defines the quantum (unit) of flux, then 

h
N

e
 
 
 

 

gives the flux of N electron. Hence, Equation (30) de-
fines the ratio ( ) between the flux enclosed by the elec-
trons and the total flux enclosed by the conductor. This 
implies that the total flux in the conductor is carried ut-
terly by the electrons in the conductor. Thus, the total 
flux is quantized. Therefore,   must be an integer. 

 .h
N BA

e
    

 
              (31) 

Equation (31) can be written as  

.sn

eB h
                   (32) 

This is exactly the filling factor Klitzing et al. have 
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obtained [5], but in a different way. In the quantum me-
chanical treatment,   represents the number of fully 
occupied Landau levels [5,10]. The degeneracy of the  

lowest Landau level is defined by 
eBA

h
. Equation (31)  

states that the magnetic field that gives rise to inter 
quantum Hall effect (IQHE) is the one such that the flux 
encapsulated by the conductor (area) is divided among 
the electron in such a way each electron carries a single 
flux quantum. But, other values of magnetic field don’t 
give rise to IQHE. Consequently, the magnetic flux is  

quantized, i.e., 
h

BA
e

 , where   is an integer. Thus, 

Equation (31) implies that 
N


 . Therefore, there are  

more electrons than flux quanta. Hence, Hall’s conduc-
tivity stays constant unless the magnetic field satisfies  

the relation, 
h

B
eA


 . This latter relation defines the val-  

ues of the magnetic field that drives the Hall’s conduc-
tivity to its next value. 

We notice from Equation (29) that, in two-dimensions, 
Drude’s conductance is equal to Hall’s conductance pro-
vided the magnetic flux encircled by the conductor is a  

multiple of .
h

e
15~10n

12~10 sec 

210 - 10

.1 m - 0.01 m

 Furthermore, it is interesting to deduce  

that the relaxation time in two-dimensions, with s  
m−2, is . This is about two to three orders of 
magnitudes greater than that in three dimensions. The 
mean free path traversed by electrons in a conductor at 
room temperature, where electrons move with Fermi 
velocity, to be  times that of the three dimen-
sional conductors. In effect, one can regard the electron’s 
velocity as increased by this proportion while the relaxa-
tion time remains the same. As apparent from Equation 
(28), one can regard the electron mass to be lighter by 
this factor, i.e., . This makes electrons 
appear to be quasi-relativistic. In such a case the Dirac’s 
equation should be used to describe electrons instead of 
the Schrödinger’s equation. Such a new situation is found 
to take place in graphene as demonstrated by Novoselov 
et al. [11]. 

~0

Let us assume now that the thermal energy of the elec-
trons is equal to the magnetic energy, i.e., B ck T  

1c

. 
Hence, the condition when the vertical conductivity is  

maximum, i.e.,     implies that 
Bk T

  
, where  

Bk

T

 is the Boltzman’s constant and T is the absolute 
temperature. This shows clearly the relaxation constant 
increases as temperature drops down. Therefore, the 
Drude’s conductivity varies inversely with temperature 
( 1

D  ~10 3~10T K
~10 ~10

10 T

L mvr s  

). For instance,  when , 
and , when T . The latter case corre-

sponds to a magnetic field of . This indicates that 
the Drude’s conductance (equals to Hall’s conductance) 
is very low temperature effect. 

14 sec

K12 sec

If we now assume that the angular momentum of the 
cyclotron motion is quantized, then , where 
s is an integer. This implies that the radius of the cyclo- 

s
tron motion is, sr eB




, so that the flux enclosed is 

2s

h
s

e
    

 
. Hence, the minimum flux an electron can 

encapsulate is 
2

h

e
. This coincides with the flux enclosed  

by a superconducting ring obtained by London and On-
sager [6,7]. Notice that the magnetic length is defined as  

B eB


 . Therefore, the cyclotron radius is a multiple  

of the magnetic length, i.e., s Br s  . Thus, for the 
first energy level (s = 1), s Br  

A

. 

4. Maximal Conductivity of Conductors 

We have recently shown that the maximum conductivity 
of conductors ( ) is given by [8] 

0
A

m .





                 (33) 

If the Hall’s conductivity provides the maximum value 
of conductivity that any conductor can have, then equat-
ing these yields the number density  

0

.c

m
n B

e
 

  
 

28 34.3 10 mn B

              (34) 

Thus, Equation (34) gives c  

28 29 3~10 - 10 m

~1 - 10B T

. And 
since the number densities for typical conductors are in 
the range of , a magnetic field of 

 is sufficient to provide such a limit! Re-
markably, Equation (16) states the vertical resistivity has 
a limiting value which is the Hall’s conductivity. Hence, 
Hall’s conductivity represents the maximal conductivity 
of conductors. 

5. Drude’s Ac Conductivity 

In the case of finite frequency ( ), the Drude’s conduc-
tivity reads [2] 

 
2 1

1

ne

m i

  .





 

             (35) 

The real and imaginary parts of  

 

 are then  

 

2

2

1
Re ,

1

ne

m

          (36) 


   

and 
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 
 

2

2
1

ne

m

  Im .


   
        (37) 

Apart from the minus sign, Equations (36) and (37) are 
the same as Equations (15) and (16) employing Equation 
(17) when the cyclotron frequency is equal to the source 
frequency, i.e., c  . Therefore, the electrons respond 
to the external frequency only when it is in resonance 
with the internal cyclotron frequency. Hence, the appli-
cation of ac in a conductor is equivalent to the applica-
tion of a transverse magnetic field. It seems that the static 
Hall conductivity evolves into the dynamical Hall con-
ductivity. Moreover, the cyclotron frequency acts like a 
barrier (e.g., plasma frequency) below which no ac can 
influence the conductor. There could be drastic changes 
when this frequency is exceeded. 

6. Concluding Remarks 

We have used a complex number to formulate the con-
ductivities of conductors. We have shown that Drude’s 
and Hall conductivities are related by  0 c H   

310

. 
Moreover, in two-dimensions the Drude’s and Hall’s 
conductances are equal, and the relaxation time is found to 
be  times that for three dimensional conductors. The 
Hall’s conductivity for conductors is found to be equal to 
the maximal conductivity that we have recently hypnotized. 
Magnetic field changes appreciably the electric properties of 
conductors. Therefore, in the presence of magnetic field, 
the Drude, Hall and maximal conductivities are interre-
lated (unified). The Hall’s conductance is attributed to the 
flux quantization enclosed by the conductor. 
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