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ABSTRACT

We first analyze the sech-shaped soliton solutions, either spatial or temporal of the 1D-Schrodinger equation with a
cubic nonlinearity. Afterwards, these solutions are generalized to the 2D-Schrédinger equation in the same configuration
and new soliton solutions are obtained. It is shown that working with dimensionless equations makes easy this generalization.

The impact of solitons on modern technology is then stressed.
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1. Introduction

The one dimensional Schrodinger equation with a cubic
nonlinearity has been known for a long time as well as its
analytical solutions in terms of sech-shaped functions.Till
recently, the situation was different for the two dimensional
Schrodinger equation that we shall discuss here.

Using general equations, we start with the spatial
and temporal sech-shaped soliton solutions of the 1D-
Schrodinger equation with a cubic nonlinearity and it is
shown that working with dimensionless equations leads
to further types of solitons. Then, the same process with
gene-ral and dimensionless equations is applied to the
2D-nonlinear Schrodinger equation which has sech-shaped
soliton solutions generalizing 1D-solitons. Finally, because
the nonlinear Schrodinger equation is a universal model that
describes many physical non linear systems, the importance
of solitons in modern technology is stressed. Nonlinear
Schrodinger equations in (3D) and in cylindrical coordinates
are succinctly discussed in Section 4.

2. One Dimensional Sech-Shaped Solitons
2.1. General Equations

The one-dimensional, cubic, nonlinear Schrodinger Equation
[1] intervenes in different physical settings to describe
wave propagation in fluids, plasmas... nonlinear optics
[2-6] in one of the three forms (c is the light velocity, &
the wave number of propagating waves, y is a positive
dimensionless parameter characterizing the medium in
which this propagation takes place).

i@zl//(x,z)—1/2k(3x21//(x,z)—k;(|y/|2 w(x,z)=0 (la)

Copyright © 2012 SciRes.

i0.y (t,2)+ poty (t,2)+kylw[ w(t,2)=0 B>0 (Ib)

ifcoy(x,t)+ l/2k6§!//(x,t)+k;(|l//|2 y(xt)=0 (lc)

It is known to be one of the simplest partial differential
equations with complete integrability, admetting in particular
Nth order solitons as solutions and called spatial and
temporal when they are solutions of (1a) or (1b). Changing
the sign of the last term on the left hand side of Equations
(1a)-(1c) gives a second set of cubic nonlinear Schrodinger
equations with quasi periodic but no soliton sech-shaped
solutions.

It is easy to prove that the first order soliton solution of
Equation (1a) with amplitude 4 is [6]

v (x,2)— Aexp(—iAz)sech (x/x, ) @)
with
A= kyA[2, x, =kA\[x (2a)
Indeed:
0.y (x.2)~kzlw[ v (x.z) Ga)
=ky 4*[2[1-2 sech® (x/x,) |y (x.2)
while
—1/2k 3%y (x,z) b

=—1/2kx,’ [1 —2 sech” (x/x, )]l//(x,z)

=—kyA*/2 [1—2 sechz(x/xo)]l//(x,z) (3¢)

Substituting (3a) and (3c) into (1a) proves the result
and, changing z, k into ct, —k in (2) gives the first order
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soliton solution of Equation (1c) while the solution of (1b)
is [6] easy to check

v (1,2) =1ty [ Bl zexp (22 )sech (1/1,)  (4)

These solutions have the remarkable feature that their
profile does not evolve during propagation.

2.2. Dimensionless Equations

Using the dimensionless coordinates ¢ = kz, & =+/2kx ,
7 = kct the Equations (1a) and (1c) take the simple form
(5a) and (5c¢)

i,y -0 -zl w=0 (5a)
i0.9+0}¢+ x|¢] $=0 (5b)
i/aTl//+8§!//+;(|y/|zl//=O (5¢)

while the Equation (5b) is obtained with [7] ¢ =z/z,,
c=ifty, £=Brs v =40

But, there exist more general expressions of the first
order solitons for instance, for the Equation (5c) rewritten
with the coordinates x, z, ¢, we have

w(xt)= iA/Z;(exp[in+i(A2 —Bz)t+C1] ©
xsech[Ax—ZAbt+C2]

in which 4, B, C,, C, are arbitrary real constant with in

particular [7]
y(x,t)= (201/;()]/2 exp[ivx/Z—i(v2/4—a)t] -
><sech[az'/2 (x—vt)}

Similarly, with Equation (5a) also rewritten with x, z,
we get as solution in which £ is a dimension-less parameter

v (x,z)= (20(/;()1/2 exp[iﬂx/2+i(/i’2/4—a)zJ
x sech [a'/z (x+,6’z)}

The higher order soliton solutions have more intricate
expressions [8] and their profile is no more constant, the
solutions being rather periodic than stationary. The profile
of a N = 2 soliton is pictured in [3].

The Equation (5b) has the simple solution [6]

#(<.7) :mexp(iqg)sech[ (Zq)r} q>0,

but, the comparison of (5b) and (5c¢) shows that changing
x, t, winto 7, { ¢in (6a) gives another solution of (5b)

#(7.¢) = (20(/;()[/2 exp[im’ 2—1’(772/4—01)4’]
xsech[al/z(t—né’ﬂ

where to avoid confusion 7 has ben used instead of v.

Q)

®
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3. Two Dimensional Sech-Shaped Solitons
3.1. General Equations

The situation is somewhat different for the two dimensional
cubic nonlinear Schrédinger equations (cylindrical coor-
dinates are used in (9b))

0.y (x,y:2)
~1/2k[ 8% (x,y;2)+ 8y (xv.332)]  (9a)
—kz|w[ v (x.y;z)=0

i[0, +1/rd, |y (r.6:1)

+pojy (r050)+ 2l [y (r650)=0
ifcoy (x,yit)
+1/2k [6i(//(x,y;t)+ail//(x,y;t)] (9¢)

+hylwl w(x,pit)=0

(9b)

They where devoted to some domains, mainly hydro-
dynamics and mechanics [9-11] till that recently nonli-
nearities became an important topic, specially in optics and
photonics, with as consequence to boost works on the
analysis of Equations (9).

We prove here that Equation (9a) have soliton-shaped
solutions generalizing (2)

w(x,y;z) = Aexp(idz)sech(x/x, +y/y,) (10)

with
A=kyd[2, V[x;+i/yi= KAy (10a)
We first have
a , ’ —k 2 , ’
i0.y (x,y;2)—kxlw| w(x,»:2) (1)

=k;[A2/2[1—25ech2 (x/x, +y/y0)]y/(x,y;z)

and according to (3b) together with the second relation
(10a)

1/2k[ @y (x.y:2)+ Oy (x.3:2) ]

=—1/2k(1/x5 +1/; )[ 1= 2sech® (x/x, + /¥,)] (11b)
<y (x,y;2)

= —ky 4*[2]1-2 sech® (x/x, + /3, ) [y (x,3:2) (110)

Substituting (11a) and (11c) into (9a) achieves the proof.
Changing z, k into ct, —k in (10) gives the soliton-shaped
solution  (x,y;t) of Equation (9c).

3.2. Dimensionless Equations

The two dimensional generalization of Equation (5c), that
is (9¢) with dimensionless coordinates, is
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i0,y (x,y;t)
2 2 2 (12)
+(0+0 )y (v, + 2lw[ v (x.:0) =0

We look for the solutions of this equation in the form
v (xpit) = exp[ivxx/2+ivyy/z—z’(vz/4—a)t]
><¢|:r(x—vxt)+s(y—vytﬂ

in which * = vf +v§ while ¢, r, s are real parameters
and, to symplify we write exp(.) the exponential factor.
Then, a simple calculation gives

0y = (v2/4—a)1// +exp(.)i0,¢
O’y _—v2/4t//+exp( )[ivxéx¢+5i¢] (14)
O3y =, [4y +exp()[iv,0,+07¢)

Substituting (13) into (12) gives the equation satisfied
by gwith (id, +iv,0, +iv,0,)¢=0

(22+8%)p—ap+ 24 =0 (15)
and we look for the solutions of (15) in the form
¢(x,y;t)=ﬂsech[r(x—vxt)+s<y—vyt)} (16)

in which A, r, s are real parameters to be determined.
Writing to simplify ¢ = 1/cosh(.), we get

—ag+ 3¢ = —a/i/cosh(.)[l — 1A% [acosh’ ()] (a7

and

(13)

0.¢=—Ar sinh(. / cosh? (

18
0’p= lrz/cosh [1 2/cosh2 J (152)
0% = A’ [cosh()[ 1-2/cosh’ ()] (18b)
substituting (17) and (18a,b) into (15) gives
—alfcosh(.) [1—;(/12/0( cosh’ ()J
(19)
+/1(r2 +5° )/cosh [1 2/cosh’ (. J 0
implying
a=r'+s’, 1’ =2aly (192)

so that the solution (16) becomes with o, +o, =«

¢(x,y;t)=(2a/ ) 1/Zsech[J x—v.t +,la y vt}
(20)

to be compared with (6a).
Similarly the two dimensional generalization of (5a),
that is (9a) with dimensionless coordinates, is

i0.y (x,3:2)=| O (x,332) + Oy (x,337) |

2 e
—xlwl v (x.:2)=0

Copyright © 2012 SciRes.

with the solutions in which ° = 8>+ 47 and B+, =«
v (x.9:2)
:(20{/}()1/2exp[iﬂlx/2+i/32y/2+i(ﬂ2/4—a)z] (22)
«sech[ B (x+ A2) + B, (+ .7) |

We are left with Equation (9b). Then, using the

dimensionless coordinates r=r,p, t=t,r, t =pr,
W= ¢/ \/70 in which p and ry positive. we get
i|0,+1/p0, |#(p.0;7)
[0, 41/7%] -

+02¢(p.0:7)+ x|d| #(p.0.7)=0
We look for the solution of this equation in the form
¢(p,9;1)=exp[—i¢9—if(p)]w(1) (24)
with f(p) satisfying the equation
[(6,+1/p)f]=~k k>0

Substituting (24) into (23) and taking into account
(24a) give

(24a)

Olw(r)-ka (r)+ y@’ (r)=0 (25)

with the solution [7]

w(z’):(Zk/)()l/2 sech[«/%(p—vr)} (25a)
while the solution of (24a) is
p)/2 (26)
substituting (25a) and (26) into (24) we get finally
,0:7) = (2k/ 1) exp[—i0+ (i kp)/2
#(p.0:7) = (2K )" exp[-i0+(i kp)/2] o

x sech[ﬁ(p—vr)}

in which v is an arbitrary real parameter. It does not seem
that the sech-shaped soliton (27) is known. But, substituting
the dimensionless coordinate ¢ =z/z, to 7 into (27)
gives the sech-shaped pulse

#(p.0:¢)=(2k/ 1) 1/Zexp[ i0—iexp(—kp) /,0}

xsech[f(p—v{)}

(28)

4. Two Generalizations
4.1. 3D-Schr 6dinger Equation

Using the index j=1,2,3 for the dimensionless coordi-
nates x,y,z together with the sum-mation convention on
the repeated indices and X =(x, y,z), the tridimensional
cubic nonlinear Schrédinger equation is

0,y (X,t)+ ajaj!//(x,t)+;(|l//|2 v(x)=0 (29
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We look for the solution of this equation in the form
vy = v

((//(x,t) = exp[iv"xj/Z—i(v2 —a)t}gb(ﬂjx/ —vjt))(30)

the exponential term is written exp(.) to simplify and a
simple calculation gives

oy = (v2/4 - 0!)!// +exp(.)i0, ¢
00,y =—v* /4y +exp(.)[iv/0,¢+0'0 4|

Since (8, +v/0,)$=0, substituting (31) into (30)
gives the equation satisfied by ¢

0'0.p—ag+ y¢’ =0 (32)

€3]

We look for its solutions in the form with the real
parameters A4, S’ to be determined

§=Asech| B/ (x,-v,1)] (33)
and writing 1/cosh(.) for sech [ B (x, - vjt)] , we get
—ag+ x4’ =—-al/cosh ()[1 — 7% [ cosh? ()J (34a)
and 0,¢=-Apsinh(.)/cosh’ (.)implying

00,4 = 4P’ [cosh ()| 1-2/cosh’ (/)] (34b)
Substituting (34) into (32) gives
—al/cosh ()[1 — 7% [ cosh? ()J
(3%5)
+ lﬂz/cosh ()[1 — 2/cosh2 ()J =0
implying
a=p°, 1 =2aly (36)

which achieves to determine (33) and consequently the
solution (30) of the three dimensional cubic nonlinear
Schrodinger equation

4.2. Schradinger Equation in Cylindrical
Coordinates

Using the dimensionless coordinates , 8, ¢, the Schrodinger
equation with a cubic non linelarity is

(v =y (r.0.41)}
by +Ay+xlwl w=0 37)
A =0 +2/rd, +1/rsind, (sin60,)+1/r" sin” 60, (37a)

For fields that do not depend on 6, ¢, this equation
reduces to

i@tl//(r,t)+(63 +2/r6r)y/(r,t)+;(|t//|2 w(r,t)=0 (38)
and assuming y (r,1)=1/ré(r,t), we get
o,y =1/ro,¢=1/r’¢, 0%y =1/rd}¢—2/rd}¢+2/r'¢ (39)

Copyright © 2012 SciRes.

so that
(02 +2/r, )y =1/rol¢ (40)
and Equation (38) becomes
i0,9+02+ x/r' o $=0 (41)

We look for the solutions of this equation in the form
$(r,1) = exp[ivr/Z—i(v2/4—a)t}u(r—vt) (42)

and a simple calculation gives, exp(.) representing the
exponential term.

i0,4 = (v2/4—a)¢+exp(.)i8,w
0,6 =iv/24+exp()0,4 (43)
¢ =~ [4¢+exp()(ivo,m +0}m)
Substituting (42) into (41) and taking into account (43),
we get since (0, +v0, )@ =0
Do —aw+y/r*a’ =0 (44)

We look for the solutions of this equation in the form
with the real parameters S, A to be de-termined

@ = Afcosh| B(r—vt)] (45)

Writing cosh(.), sinh(.) for hyperbolic functions, a
simple calculation gives

8, =—Apsinh(.)/cosh’ (),

46

Owm=-1p [l/cosh (.)-2sinh?(.)/cosh’ ()] (*6)
Substituting (45) and (46) into (44) gives

Ap*[1/ cosh(.)—2/cosh® ()] w

—Aafcosh(.)+ x4’ [r* cosh® () =0
that is
B a [1 —2/cosh’ ()J ~1+ A [ar? cosh® () =0 (48)

We consider an asymptotic approximation of this
equation for r>r, ~with r=r7+p so that to the
order 0(2p/r,) Equation (48) becomes

B la [1 —2/cosh’ ()J ~1+ xA? Jar] cosh® () =0 (48a)

with the solution B’ =a, A=r, \/205/;(+0(2p/r0)
which achieves to determine the spherical solution of the
cubic nonlinear Schrédinger equation.

5. Conclusions

The nonlinear Schrodinger equation describes physical
processes in which nonlinearity and dispersion cancel
giving birth to solitons. This equation [9-11] can be applied
to hydrodynamics (rogue waves), nonlinear optics (optical
solitons in Kerr media), nonlinear aoustics (blood circu-
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lation), quantum condensates (Bose-Einstein), heath
waves... All these processes lead to the generation of
solitons along pulse propagation: An example is supplied
by the optical solitons that travel without distortion
justifying their importance [12-15] for laser pulse pro-
pagation in optical fibers.

Two dimensional solitons present a great interest since
they propagate in lattices [16,17] as well as surface waves
[18-21]. Some works were recently devoted to the 2D-
optical solitons [22,23] and the sech-shaped solutions
(20), (21) of Equations (9a) and (9c) are a particular case
of the spatial temporal solutions discussed in [23].

No doubt that some of the 2D sech-shaped solitons
discussed here will find practical applications in a near
future.
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