
Int. J. Communications, Network and System Sciences, 2012, 5, 557-568 
http://dx.doi.org/10.4236/ijcns.2012.59066 Published Online September 2012 (http://www.SciRP.org/journal/ijcns) 

Majority Voting Procedure Allowing Soft Decision  
Decoding of Linear Block Codes on Binary Channels 

Saïd Nouh, Achraf El Khatabi, Mostafa Belkasmi 
SIME Lab, National School of Computer Science and Systems Analysis (ENSIAS),  

Mohammed V Souissi University, Rabat, Morocco 
Email: nouh_ensias@yahoo.fr  

 
Received July 3, 2012; revised July 30, 2012; accepted August 7, 2012 

ABSTRACT 

In this paper we present an efficient algorithm to decode linear block codes on binary channels. The main idea consists 
in using a vote procedure in order to elaborate artificial reliabilities of the binary received word and to present the ob-
tained real vector r as inputs of a SIHO decoder (Soft In/Hard Out). The goal of the latter is to try to find the closest 
codeword to r in terms of the Euclidean distance. A comparison of the proposed algorithm over the AWGN channel 
with the Majority logic decoder, Berlekamp-Massey, Bit Flipping, Hartman-Rudolf algorithms and others show that it is 
more efficient in terms of performance. The complexity of the proposed decoder depends on the weight of the error to 
decode, on the code structure and also on the used SIHO decoder. 
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1. Introduction 

The current large development and deployment of wire- 
less and digital communication encourages the research 
activities in the field of error correcting codes. Codes are 
used to improve the reliability of data transmitted over 
communication channels susceptible to noise. Coding 
techniques create codewords by adding redundant infor- 
mation to the user information. 

There are two classes of error correcting codes: con- 
volutional codes and block codes. The class of block 
codes contains two subclasses: nonlinear codes and linear 
codes. The principle of a block code C(n, k) is as follows: 
the initial message is cut out into blocks of length k. The 
length of the redundancy is n – k and thus the length of 
transmitted blocks is n. The main block codes are linear. 
If the code C is linear then the code C(n, n – k) defined 
by (1) is also linear with “.” denotes the scalar (dot) 
product. 

: 0h C c C c h                 (1) 

The code C is called the dual code of C and each 
equation of the form given by (1) is called an orthogonal 
equation or a parity check equation. 

There are two categories of decoding algorithms: Hard 
decision and Soft decision algorithms. Hard decision 
algorithms work on the binary form of the received in- 
formation and generally they use the Hamming distance 
as a metric to minimize [1]. In contrast, soft decision 
algorithms work directly on the received symbols and 

generally they use the Euclidian distance as a metric to 
minimize [1]. 

The decoding category depends on the industrial re- 
quests and the communication channel. When the chan- 
nel allows to measure the reliabilities i i n

 (float sym- 
bols) of the sequence r of length n to decode the soft de- 
cision decoders working on these reliabilities allow to 
win generally about 2 dB more than the hard decision 
decoders working on the binary form of r can do. This 
difference between soft and hard decision decoders is 
justified by the proportionality between each reliability 

r

 and the probability that the symbol rj is correct. ir
Even if the soft decision decoders are more efficient 

than the hard decision decoders these latest are still an 
interesting subject for many scientists and industries 
thanks to their advantages. Some of those latest are listed 
below: 
 When only the binary form of the received word is 

available as in the storage systems, the use of hard 
decision decoders becomes the only solution. 

 In [2] we have given an efficient method to find the 
weight enumerator of a code which requires the use 
of a hard decision decoder. 

 If a code can be efficiently decoded by a hard deci- 
sion decoder then an efficient soft decoding algorithm 
of this code can be obtained by the Chasing technique 
described in [3]. 

 Some cryptographic systems use hard decoders to 
extract a noise added explicitly during the emission 
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phase in order to decrypt the message. 
The hard decision decoding problem is in general 

NP-Hard. The wealth of the algebraic structure of some 
codes allows simplifying this hardness as in the BCH 
codes [4,5]. The famous permutation decoding algorithm 
[6] is a generic decoder, applicable to all systematic 
codes but it requires finding a PD-Set which is also a 
NP-Hard problem [7]. Another generic decoder of linear 
block codes is the Bit Flipping decoding algorithm (BF) 
based on the verification of orthogonal equations which 
was developed firstly for LDPC codes [8] and it is gen- 
eralized thereafter for linear block codes but without en- 
suring good error correcting performances [9]. 

In [10,11], the authors have applied artificial intelli- 
gence to solve the decoding problem by genetic algo- 
rithms in [10] and by neural networks in [11]. However 
the authors of [12] have used a mathematical approach 
based on Coset Decomposition and syndrome decoding. 

On the other side the authors of [13] and [14] have 
proposed a low complexity soft-Input Soft-Output mod- 
ule to decode convolutional codes. They use classical 
Viterbi algorithm and a module for computing softoutput 
from the hard output of the Viterbi algorithm. 

The purpose of this work is to find a generic efficient 
hard decision decoding algorithm of linear block codes 
by combining a vote procedure with a soft decision de- 
coding. Majority voting procedure is done by a module 
prior a soft decision decoder. Thus the efficiency of soft 
decision decoding algorithms becomes exploitable in the 
case of binary channels by creation of artificial reliabil- 
ities with a vote using a reduced number of orthogonal 
equations. 

In the rest of this paper C(n, k, d) designate a linear 
code of length n, dimension k, minimum distance d, error 
correcting capability t, generated by a matrix G and it can 
be checked by a matrix H and we note  and 

 respectively the Hamming and the Euclidean 
distance between two vectors x and y. 

 ,dH x y
 ,dE x y

The remainder of this paper is structured as follows. In 
Section 2 we present some decoding algorithms as re-
lated works. In Section 3 we present the proposed de-
coder and we make a comparison with other decoders. 
Finally, a conclusion and a possible future direction of 
this research are outlined in Section 4. 

2. Related Works 

In this section we present some hard decision decoding 
algorithms with which we will compare our proposed 
decoding scheme in the next section. 

2.1. The Bit Flipping (BF) Decoding Algorithm 

The matrix H has n columns and n – k rows or more, let 
V be a vector of length n and h a binary word to decode. 

The BF algorithm uses the following vote algorithm: 

2
 

.1.1. The Vote Algorithm 

Inputs:  
- L a list a dual codewords (LC) 
- M the number of dual codewords to use 
- V a vector of length n. 
- h a binary word of length n. 
Outputs: V 
Begin 
for i from 1 to n do Vi0; end for; 
for i from 1 to M do 

          u  ith element of L. 
          if (u.h≠0)  then  for i from 1 to n do 

                         if (ui=1)  then VjVj+1; 
                         end for; 
end for; 
End; 

 
We have observed that when the vote is efficient, the 

noised bits hi have a big value of votes Vi. 

2.1.2. The Gallager’s Bit-Flipping Algorithm 
The Gallager’s bit flipping algorithm [8] works as fol-
ow: l

 
Inputs: 

- L: a list a dual codewords (LC)   

- iter_max: the maximum number of iterations  
- threshold: the number of failed parity check equations to  
          have for flipping.  
- h: the received word. 
Outputs: the decoded word h. 

Begin   

Continue true; 

iter0; 

For j from 1 to n do: zjhj; 

While (iter < iter_max and Continue = true)  

{iter  iter+1;  

 Continue = false;  
 Vote(h,L,V); 
    For j from 1 to n  
     If (Vj ≥ threshold) then  

         { hj 1-hj; Continue=true ;} 

    } 

If (Continue=true) then For j from 1 to n hj zj; 

End 

 
This algorithm was developed firstly for decoding 

LDPC codes [8], its generalization for linear codes requires 
the use of a big number of parity check equations [9]. 

2.2. The Permutation Decoding Algorithm 

The permutation decoding algorithm (PDA) was first 
developed by Jessie McWilliams [6]. It can be used when 
a certain number of permutations (automorphisms), leaving 
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the code invariant, is known. The PDA correct a word by 
moving errors in the redundancy part of a permuted word, 
the hardness of finding the automorphism group restricts 
the use of this algorithm to codes with known stabilizers 
like the use of the projective special linear group for ex- 
tended quadratic residue (EQR) codes. 

2.3. The Hartman Rudolph Algorithm 

The Hartman Rudolph (HR) decoder [15] is a symbol by 
symbol soft decision optimal decoding algorithm. It 
maximizes the probability that a bit corresponding to a 
symbol rj of the sequence r to decode is equal to 1 or 0. 
Hartman and Rudolph have showed that this probability 
depends on all the codewords of the dual code C gener- 
ated by H. This algorithm has a high complexity because 
it uses 2n–k dual codewords therefore it can be applicable 
only in the case of linear codes with height rate. More 
precisely it uses the formula (2) to decide if the mth bit of 
the decoded word c’ is equal to 1 or 0. 

2
'

1 1
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With the following notations: 

 
if   

s

i j
 ij


 


    1 0m r mP r r  r mP  

 The bit jlc  denotes the lth bit of the jth codeword of 
the code C. 

A hard version of this algorithm can be obtained by 
using as inputs the binary form hi of the received sym- 
bols ri as follow: 

 1, 2,3, , : ii n


   



1 if 0

1 otherwise
irh

 


       (3) 

3. The Proposed ARDec Decoder 

3.1. The Principle 

The proposed ARDec decoder (Artificial reliabilities 
based decoding algorithm) has the structure given in the 
Figure 1. It uses a generalized parity check matrix H* to 
compute artificial reliabilities of the binary received 
word h. 
 

Compute artificial  

reliabilities of h  

SIHO  

Decoder H* 

h 

 

Figure 1. The proposed decoding algorithm ARDec scheme. 

Let C(n, k, d) be the dual code of C. The ARDec de- 
coder uses the vote algorithm described in the Section 
2.1 to compute artificial reliabilities. In the case of BPSK 
modulation, the bit 0 is represented by –1 and the bit 1 by 
1 and ARDec works as follow: 
 

Inputs: 
- H* a generalized parity check matrix of C of M rows.  
- h the binary word to decode. 
Outputs: V 
Begin 
Vote(h, H*, V);  
Balance (H*, V); 
For i from 1 to n do: 

   if (hi=1) then  i ir =1 V +1  ; else i ir = 1 V +1 ; 

Use a SIHO decoder to find the codeword c having  
 the smallest Euclidean distance to r.  
End 

 
When the columns of the matrix H* doesn’t have the 

same weight, we propose to balance the vote vector V by 
the following Balance algorithm: 
 

Inputs: 
- H* a generalized parity check matrix of C of M rows.  
- V a vector of voting values. 
Outputs: V 
Begin 

For i from 1 to n do:  W i

      *W i +H i j

 

1 End For 

For i from 1 to n do: 
   For j from 1 to M do: 

     W i ; 

   End For 
End For 

For i from 1 to n do: 
 
 

V i
V i

W i
  End For 

End 

3.2. ARDec Based on Genetic Algorithms: 
ARDecGA 

Genetic algorithms (GA) are heuristic search algorithms 
premised on the natural selection and genetic [16,17], we 
recall here some notions: 
 Individual or chromosome: a potential solution of the 

problem, it’s a sequence of genes. 
 Population: a subset of the research space. 
 Environment: the research space. 
 Fitness function: the function to maximize/minimize. 
 Encoding of chromosomes: it depends on the treated 

problem, the famous known schemes of coding are: 
binary encoding, permutation encoding, value encod- 
ing and tree encoding. 

 Three operators of evolution: 
1) Selection: it allows selecting the best individuals to 

insert in the intermediate generation and to create chil- 
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dren. 
2) Crossover: For a pair of parents (p1, p2) it allows to 

create two children ch1 and ch2 with a crossover prob- 
ability pc. 

3) Mutation: The genes of the individual are muted 
according to the mutation probability pm. 

The Maini algorithm [18], uses genetic algorithms to 
decode linear codes, the first step is to sort the received 
sequence r by reliabilities and to find a matrix G' of an 
equivalent code and the permutation  which binds the 
two codes. The information part   I r  of (r) con-
tains symbols with biggest reliabilities. A genetic algo-
rithm works on   I r  to find the codeword having 
the smallest Euclidean distance from (r). 

The genetic operators of the Maini algorithm are given 
in [18] and we propose here a modification at the level of 
the initial population and the crossover operator. 

For the crossover operator we choose to cross indi- 
viduals in one point m, but this latest is randomly chosen 
between 1 and the length of the code. 

For the initial population, we proceed as follow: 
 Find h, the hard decision version of (r). 
 Fix a value of pi the probability to inverse a bit of h. 
 x ← h. 

For j from 1 to n do: 
1) Generate uniformly a random value x, 0 ≤ x ≤ 1.  
2) If (x ≤ pi) then xi  xi  1.  
The value of pi is chosen between 0.1 and 0.4. 
For decoding a binary word, the sequence r of its arti- 

ficial reliabilities can be created by the vote and balance 
procedures. After that the permutation  is obtained by 
sorting r. The ARDecGA algorithm based on the modi- 
fied Maini decoder works on (r) as follow: 
 

Inputs:  
nce (r). 

rations 

 hard version of (r). 

st individual is 

true) do 

- The seque
- Ng: Number of gene
- Ni: Population size 
- Ne: elite number  
- pc: crossover probability 
- pm: mutation probability 
Outputs: the codeword c. 
Begin 
h  the
if (hC) then c h;   
else 
 begin 
 Generate an initial population, of Ni individuals;   
 Each individual is a binary word of length k. The fir
the information part of h. 
 Ngen   1; continue true; 
While (Ngen ≤ Ng and continue=
   Compute the fitness of each individual a:    

      ,fitness a dE b r  , b is the codeword  

   
    by G'.  

 associated to the individual a in the code generated  

 h t ) then {cb    If(  ,dH b  

            continu            e false} 
   end If            
   Sort the population by increasing order of fitness.      
   Copy the best Ne individuals (of small fitness) in the  
   intermediate population. 
   For i=Ne+1 to Ni do 
     Select two individuals; p1 and p2 among the  
      best individuals.  
     Cross and mute p1 and p2 to obtain ch1 and ch2  
     according to pc and pm.    
     Among ch1 and ch2, insert the best individual in 
      the intermediate population. 
   End for. 
   Ngen  Ngen+1.  
   End while. 
  If(continue=true) then 
           c the first individual in the population. 
  End If 

   1c π c  

 end; 
end 

3.3. ARDec Based on OSD Algorithm of Order 
M: ARDecOSDm 

T hm of order m 
O r et al. 
[19 iabilities, 
a code this last in an equivalent 
c -encoding. In 
t the OSD , OSD , OSD2 and OSD3 
deco oder, they 
h  to good 
e  This algorithm requires 
o erator matrix of the code, this characteristics 
a de linear codes without restriction. 

3 eck 
rix H  

T ice of the generalized parity check matrix H* is a 
key factor in the success of the ARDec decoder. For rep-
resenting a linear code for the soft decision Belief Pro- 

show atrix should have the following 

sider- 
. 

he ordered statistic decoding algorit
SDm is a SIHO decoder developed by Fossorie

]. It starts by sorting the received word by rel
er o deft  that it passes t

ode by inversing in each time m bits and re
his paper we will use 0 1

ders as a module in our hard decision dec
eav  a polynomial complexity and they yield

rror correcting performances.
nly the gen
llows its use to deco

.4. Construction of the Generalized Ch
*Mat

he cho

pagation decoding algorithm, Yedidia et al. [20,21] have 
ed that the check m

characteristics: 
1) The number of ones in each row is small. 
2) The number of ones in each column is large. 
3) For all pairs of rows of the check matrix, the num-

ber of columns that have a one in both rows is small; 
ideally zero or one. 

In this work we will show that these characteristics are 
good criteria for choosing H*. We use the algorithm 
given in [2] for finding a list L of codewords from the 
dual code of C, this list respect then the first characteristic 
given above. Here we propose a genetic algorithm GA-GPC 
for extracting H* from L. This algorithm tries to improve 
the chosen generalized parity check matrix by con
ing the second and the third characteristics as fitness
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3.5. Simulation Results of ARDec and 
r Decoders 

T d the im-
p  give in this subsection its error 
correcting performances for some linear codes form many 
cl parison with other decoding algo-
rithm WGN channel (Additive White Gaus-
s n  that the AWGN channel can be 
v w nel. All simulations are obtained 
b g the parameters given in the Table 1 and the 
d G  
T

3 lati esults of ARDec Algorithm 
T ting performances  
 

ter ue 

Fo he GA-GPC algorithm we give the 

elements, 
tw

operation allows checking if a list 
sa

r explaining t
following definition. 

Definition: Let C be a linear code and C its dual, d 
the minimum distance of C, v and w two elements of C 
of weight d. The degree of cooperation between v and w 
is the difference between d and the sum of their inner 
product. The degree of cooperation of a list L'  C is the 
sum of the cooperation degrees between all its 

o by two, it is given by: 

 
, ,i j

i j
L L L i j

co L d L L

 

             (4) 

The degree of co
tisfies sufficiently the second and the third characteris-

tics recommended by Yedidia et al. [20,21]. 
In the GA-GPC algorithm the list L is indexed from 1 

to z, an individual is a subset containing exactly M ele-
ments of Jz ={1, 2, 3, ···, z}; it represent M elements of L. 
The mutation of a gene from an individual consists in 
replacing it by another element of Jz. The cross between 
two individuals in one point gives two children which 
can be repaired by mutation if they contain a multiple 
copies of the same gene. 

The GA-GPC algorithm works as follow: 
 

Inputs:  
- M, the number of rows in H*. 
- n, the length of the code 
- L a list of a minimum weight dual-codewords of size z. 

- '
gN , number of generations 

- '
iN , population size 

- '
eN , elite number  

- '
cp , crossover probability 

- '
mp , mutation probability 

Begin 

Generate an initial population, of '
iN  individuals; each individual 

is a subset of size M of zJ . 
N  1;  

While (N ≤ '
gN ) do 

 {Compute the fitness of each individual A:  
      fitness A co A  

   Sort the population by decreasing order of fitness.      

   Copy the best 'N individue als (of big fitness) in the 

  intermediate population. 

 

 

  = ' 1eN   to '
iN : 

     Select two individuals p1 and p2 among the best   

     '
eN individuals. 

ross mute p1 and p2 for obtaining ch1 and ch2  

cco to '
c

 For i

     C

     a

and 

rding 

Comparison to othe

o show the efficiency of ARDec algorithm an
act of its parameters we

asses with a com
s over the A

ia Noise). It is known
ie ed as a binary chan
y usin
efault parameters of the GA- PC algorithm given in the
able 2. 

.5.1. Simu on R
he Figure 2 presents the error correc

Table 1. Default simulation parameters. 

Simulation parame val

Channel AWGN 

Modulation BPSK 

 Minimum number of residual bit in errors 200

Minimum number of transmitted  blocks 5000 

 
. 

Parameter value 

p  and '
mp . 

     Among ch1 and ch2, insert the best individual in  
     the intermediate population. 
     N N+1 } 
End 
Outputs: the individual (matrix) having the best fitness. 

Table 2. efault A- D  G GPC parameters

GA-GPC parameter 

Crossover probability '
c  0.91 p

Mutation probability m
'p  0.07 

Number of generations '
gN  200 

Population size '
iN  200 

Elite number '
eN  ' 2iN  
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B
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ARDecGA 
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B
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R
 

       6.5       7.5     87         

 

F nces of th DecGA 
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igure 2. Error correcting performa e AR

a
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of ARDec e = 2, pc 
= for the Quadratic R R(71, 
3  to those of a bounde
d ll configurations of  of weight 
l to  (the error correctin ability of 
t de the ARDecGA al hm allows 
to ore than the 2.3 dB ranteed by 
t ecoder, therefore 3.3 dB as ng gain is 
o

In [22], authors have found a double circulant code 
, 31, 12) which is optimal in the sense that it has 

the maximum possible minimum distance for the length 
62 and the dimension 31. The Figure 3 presents the error 
correcting performances of ARDecOSD2 with M = 100 
for this code and we have verified statistically that all 
errors of weight less than or equal to 5 are corrected thus 
about 2.6 dB as coding gain is obtained. 

3.5.2. Impact of the Parameter M on ARDecGA  
Algorithm Performances 

To show the impact of the parameter M on the error cor- 
recting performances of the ARDecGA algorithm for a 
DSC (Difference-Set Cyclic Code) code, we give in the 
Figure 4 the simulation results for the DSC(73, 45, 10) code 
with Ne = 2, Ng = 10, pc = 0.95, pm = 0.03 and Ni = 50. 

The parameter M has an important effect on the effi- 
ciency of ARDecGA algorithm. At BER = 10–4 there is 

GA with M = 500, Ng = 50, Ni = 150, N
 0.95, pm = 0.03 
6, 11) compared

esidue code Q
d decoder (pseudo- 

ecoder) which correct a errors
ess than or equal 5 g cap
his code). For this co , 

 win about 1 dB m
gorit
gua

he bounded d codi
btained. 

DCC(62

a 
 difference of more than 3 dB between M = 10 and M =

300 but the difference between M = 300 and M = 500 is 
negligible. 

3.5.3. Impact of the Parameter Ng on the ARDecGA 
Performances 

To show the impact of the number of generations Ng on 
 

 

Figure 3. Error correcting performances of the ARDe- 
2

the error correcting performances of the ARDecGA algo- 

cOSD  algorithm for a DCC(62, 31, 12) code. 

rit

3.5.4. Impact of the Parameter Ni on the ARDecGA 

To sh f the population size Ni on the error 

ive in the Figure 6 the simulation for the BCH(63, 30, 
13) code with Ne = 2, M = 1000 and Ng = 100. For this 
code 150 individuals in each generation are sufficient. 
 

hm, we give in the Figure 5 the simulation for the 
BCH(63, 30, 13) code with Ne = 2, M = 1000, pc=0.95, 
pm = 0.03 and Ni = 300. For this code 20 generations are 
sufficient. 

Performances 
ow the impact o

correcting performances of the ARDecGA algorithm, we 
g

 

Figure 4. Impact of the parameter M on the ARDecGA er-
ror correcting performances for DSC(73, 45, 10) code. 
 

 

Figure 5. Impact of the parameter Ng on the ARDecGA 
error correcting performances for the BCH(63, 30, 13) code. 
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3.5.5. Impact of the Order m on the ARDecOSDm 
Performances 

To show the impact of the parameter m on the error cor- 
recting performances of the ARDecOSDm algorithm we 
give in the Figure 7 the simulation results for the QR(89, 
45, 17) code with M = 1500. At BER = 10–5 there is a 
gain of about 1.3 dB between the orders 0 and 3. 

3.5.6. Comparison between ARDecOSD3 and 
ARDecGA Algorithms 

To compare the error correcting performances of the 
ARDecOSD3 (M = 1000) and ARDecGA (Ni = 200, Ng = 50, 
Ne = 2, pc = 0.95, pm = 0.03, M = 1000) algorithms we give 
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Figure 6. Impact of the parameter Ni on the ARDecGA er- 
ror correcting performances for the BCH(63, 30, 13) code. 
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Figure 7. Impact of the order m on the ARDecOSDm error 

correcting performances for the QR(89, 45, 17) code. 
in the Figure 8 the simulation results for the BCH(63, 39, 
9) code. The ARDecGA is relatively better than the 
ARDecOSD3 and it allows to win about 0.5 dB compared 
to the Berlekamp-Massey decoder (BM) at BER = 10–5. 

3.5.7. Comparison between ARDecGA and Hard  
Decision Decoding Algorithm of OSMLD Codes 

The vote technique is often used to decode linear code 
with a particular structure like the class of the OSMLD 
(One Step Logic Majority Decodable) codes which con-
tains the DSC(73, 45), DSC(273, 191) and BCH(15, 7) 
codes. The famous known decoder of OSMLD code is 
the majority logic decoder [23]. The Figure 9 presents a 
comparison between error correcting performances of 
 

 

Figure 8. Comparison between ARDecOSD3 and ARDecGA 
performances for the BCH(63, 39, 9) code. 
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Figure 9. Comparison between ARDecGA and OSMLD de- 
coder performances for DSC(273, 191, 18) code. 
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ARDecGA (M = 273, Ng = 50, Ni = 300, pc = 0.95, pm = 
0.03, Ne = 2) and the majority logic decoder, it shows 
that ARDecGA allows to win about 0.7 dB at BER = 
10–5 than this classic decoder. 

At BER = 10–5 the ARDecGA decoder allows to win 
about 0.6 dB for the BCH(15, 7) code (Figure 10) and 
0.9 dB for the DSC(73, 45) code (Figure 4). 

3.5.8. Comparison between ARDecGA and Gallager 
Bit Flipping Algorithms 

The Figure 11 presents a comparison between the error 
correcting performances of ARDecGA (Ng = 6, Ni = 20, 
pc = 0.95, pm = 0.03, Ne = 2) and the Bit Flipping Algo- 
rithm (BF) applied to the BCH(63, 39, 9) code with the 
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Figure 10. Comparison between the performances of AR- 
DecGA and HR decoders for the BCH(15, 7, 5) code. 
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xed at 100 and the value of the threshold is optimized. 
At BER = 10–5 the ARDecGA decoder allows to win 
about 0.6 dB. 

3.5.9. Comparison between ARDecGA and the Hard 
Decision Hartman-Rudolf Algorithm 

The Figure 10 presents a comparison between the error 
correcting performances of ARDecGA algorithm (M = 
10, Ng = 3, Ni = 8, pc = 0.95, pm = 0.03, Ne = 2) and the 
Hartman Rudolf decoder (hard decision version) applied 
to the BCH(15, 7, 5) code with the value of M as pa-
rameter. This figure shows that the ARDecGA decoder 
with 10 vectors from C and 26 individuals in the genetic 
algorithm allows to win more than 1 dB at BER = 10–4 
compared to the HR decoder with 64, 128 and 192 vec-
tors from C. The ARDecGA decoder has the same per-
formances of the HR decoder when it uses all the 256 
vectors. 

e BCH(63, 39, 9) code there are 16777216 codewords 
in its dual code BCH(63, 24, 14). Here, we propose to 
use only the 450 codewords of the BCH(63, 24, 14) 
code having the minimum weight 14 in the decoding by 
the HR algorithm. The Figure 12 presents a comparison 
between the performances of ARDecGA decoder (M = 
450, Ng = 6, Ni = 20, Ne = 2, pc = 0.95, pm = 0.03) and the 
Hartman Rudolf decoder (M = 450) applied to the 
BCH(63, 39, 9) code. This figure shows that the 
ARDecGA allows to win about 1 dB compared to the HR 
decoder at BER = 10–5. 
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Figure 11. Comparison between ARDecGA and BF error 
correcting performances for the BCH(63, 39, 9) code. 

same number of parity check equations M = 450. The 
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Figure 12. Comparison between ARDecGA and HR perfor- 
mances for the BCH(63, 39, 9) code. 
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3.5.10. Comparison between ARDecGA,  
Berlekamp-Massey (BM) and Chase-2  
Algorithms 

The Figure 13 presents a comparison between the error 
correcting performances on the BCH(63, 30, 13) code of 
the following three algorithms: 

1) Chase-2 algorithm [3] working on the channel reli-
abilities measurements of the received sequences. 

2) Berlekamp-Massey decoder (BM) [4,5] working on 
th

e e code EQR(48, 24, 12); the 
error correcting performances are the same. 

3.5.12. Comparison between ARDecGA and the Hard 
Decision Maximum Likelihood Decoder 

The hard decision maximum likelihood decoder (MLD 
hard) is the most efficient decoder, it decides by the 
closest codeword. The Figure 15 presents a comparison 
between the error correcting performances of ARDecGA 
(M = 20, Ni =15, Ng = 8, pc = 0.95, pm = 0.03, Ne = 2) and 
this decoder for the QR(17, 9, 5) code. 

The ARDecGA, which search only in 101 codewords, 
 

e binary form of the received sequences. 
3) ARDecGA (M = 1000, Ni = 300, Ng = 50, Ne = 2, pc = 

0.95, pm = 0.03) working on the computed artificial reli-
abilities. 

The Figure 13 shows that the error correcting perfor- 
mances of ARDecGA are between those of the Chase-2 
and the Berlekamp-Massey decoders. 

3.5.11. Comparison between ARDecOSD3 and the 
Permutation Decoding Algorithm 

The Figure 14 presents a comparison between the error 
correcting performances of ARDecOSD3 (M = 50) and 
the permutation decoding algorithm (PDA) [6,7] for the 
xtended quadratic r sidue
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Figure 13. Comparison between ARDecGA, Chase-2 and BM 
performances for the BCH(63, 30, 13) code. 
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Figure 14. Comparison between ARDecOSD3 and PDA per- 
formances for the EQR(48, 24, 12) code. 
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Figure 15. Comparison between ARDecGA and the hard 
decision MLD performances for the QR(17, 9, 5) code. 
 
reach the error correcting performances of the MLD de

3.5.13. Comparison between ARDecGA and the 
HDGA Decoder 

The hard HDGA decoder [10] is one of the most recent 
and efficient new decoding algorithms, it uses genetic 
algorithms and information sets to decode linear block 
codes. The Figure 16 presents a comparison between the 
error correcting performances of ARDecGA (M = 300, Ni 
= 100, Ng = 20, pc = 0.95, pm = 0.03, Ne = 2) and this de-
coder. It shows that ARDecGA and HDGA have the 
same performances. 

-
coder which uses all the 29 = 512 codewords. 
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3.6. Complexity of ARDec 

The complexity of ARDec is variable and it depends on 
the following parameters: 
 The parameter M. 
 The code length n. 
 The code dimension k. 
 The weight of the error to decode. 
 The complexity of the auxiliary SIHO decoder. 

The Table 3 presents an upper bound of the complex- 
ity of ARDecGA and ARDecOSDm and it gives those of 
BM and HDGA algorithms. This table shows that the 
complexity of ARDecGA is polynomial in n however the 
one of ARDecOSDm is polynomial in nm. Both the com-
plexity of HDGA and the one of the BM algorithms are 
polynomial in n2. 

The Figure 17 shows a basic property of error cor-

ne codeword c in 
e sphere of radius t (error correcting capability t of the 

code) centered on h. 
 

recting code in the ambient space. If h is a binary re-
ceived word then there exists at most o
th
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Figure 16. Comparison between ARDecGA and the hard 
decision HDGA performances for the BCH(63, 45, 7) code. 
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Table 3. Complexity of BM, HDGA and ARDec algorithms. 
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Figure 17. Basic property of error correcting codes. 
 

In the decoding steps of h, the algorithm stops when 
e codeword c at Hamming distance less than or equal 

to t is found. This stop criterion allows reducing consid-
erably the complexity of ARDec. The Figure 18 shows 
the average number of generations required to decode 
errors of weight between 0 and 9 for the BCH(63, 30, 13) 
code of error correcting capability t = 6 by the ARDec- 
GA algorithm. It shows that the errors of weight less than 
or equal to t – 1 are decoded in the first generation; the 
errors of weight t requires about 2.86 generations at av-
erage and the errors of weight greater than t requires the 
use of 100 generations because generally the stop crite-
rion isn’t verified in this case. 

The Figure 18 shows that the use of only three gen-
erations allows to correct errors of weight less than or 
equal to t (correctable errors) and justifies that ARDecGA 
has in practice a small complexity comparing to the up-
per bound given in the Table 3. 

When the number of generations N  and the population
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