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ABSTRACT 

Search engine is an important tool to all the Internet users. It helps users finding useful contents in the cyberspace. 
However, searching experiences among different users are difficult to be shared and accumulated. In this paper, a con-
cept called search-trail is proposed. Based on ant colony model, search-trails are created from the searching steps to the 
target contents. The search-trails built from various users are very similar to the trails generated in an ant colony. The 
simulations of the proposed solution demonstrate that even in the case of few searching experienced users, the gener-
ated search-trails still possess 96.29% similarity to the expected ones in 60 days. It shows that the concept of 
search-trails can really help users accumulating, sharing and reusing their search experiences. 
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1. Introduction 

Recently, using the contents and services published in the 
web to help doing research work is indeed an efficient 
and useful way. In fact, today’s Internet can be consid- 
ered as the largest knowledge base that has ever existed. 
In order to identify the required contents in this huge 
knowledge base, utilizing search engines is the most 
practical way [1-4]. 

The process of using a search engine is an interactive 
process. Web users first submit their keywords and will 
obtain a set of response URLs; by following these search 
results users can retrieve the contents of these URLs. 
This search steps are repeated until either the users are 
satisfied by what have found or they become frustrated 
and finally give up. For those people knowing what they 
are searching, i.e., they know the exact keywords related 
to the searching topics, current web search solutions are 
good enough [5,6]. However if the research studies are 
still in brainstorming stage, “what keywords are the right 
ones” and “how to identify the next search from the cur-
rent search” sometimes are very difficult to be answered. 
Especially, for the users without enough knowledge about 
the research topic, search engines are still not helpful 
enough. 

From “human” point of view, one of the best ways to 
tackle the above issues is to reuse someone’s experience. 
Of course, this “someone” should be a knowledgeable 
guy or a group of knowledgeable ones in the corre-
sponding field. Experience, in fact, is a kind of implicit 

knowledge which is difficult to be expressed explicitly. 
So, this raises a new issue: “Can we provide a mecha-
nism such that it can record those knowledgeable guys” 
search experiences and let others share their experiences 
later?” 

Recording someone’s search steps is easy. The diffi-
cult part is how to keep “useful” search experiences in-
stead of all the search steps. In order to solve this issue, 
by mimicking ants’ behavior, a new solution called 
search-trail is proposed. Search-trail treats Internet world 
as an ant colony [3,7] and each web user is treated as an 
ant inside the ant colony such that it is able to follow and 
spread pheromones on the routes to the food sources. In 
this case, these routes are the search steps approaching to 
the target contents. As many ants searching the food 
sources for a while, they can collaborate with each other 
through pheromone spreading in the area. Some routes 
will finally become useful search-trails leading to the 
food sources while others may just disappear. The exist-
ing search-trails with strong pheromone can be treated as 
an associated network of the related keywords and con-
tents. Search-trail map, a visualized interface, is pro-
posed to organize search-trails in a way such that they 
can be easily reused and shared by either experienced or 
inexperienced users. Unlike traditional search technology, 
Search-trail map tries to record how the users search 
through the web.  

In order to see how search-trail map influences the 
search behaviors, a set of simulations is constructed. In 
the simulation scenarios, the expected search-trails, i.e. 
the right trails to the food sources, are assumed to be *Corresponding author. 
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known. The results of the simulations show that even in 
the worst case, with 2% experienced, 8% standard, and 
90% inexperienced users, the search-trails generated in 
two months period are 96.29% similar to the expected 
ones. For all other cases, the search-trails generated in 
less than 30 days are 100% similar to the expected ones. 
These simulations show that search-trail map can really 
help users accumulating and sharing their search experi-
ences. Furthermore, these experiences can be polished 
day after day just like what ants do in their colony. 

This paper is organized as follows. In Section 2, the 
model of search-trail is introduced. The design of the 
mechanism is given in Section 3. In order to show the 
superiority of search-trail map, a set of simulations is 
discussed in chapter 4. Section 5 is the conclusion re-
mark of this research. 

2. Ant Colony Model for Search-Trail 

In this section, ant colony model for search-trail is intro-
duced first. Ant colony model is originally inspired by 
the ants’ foraging behavior. In the real world, ants com-
municate with each other by using an indirect communi-
cation called stigmergic [8]. In fact, two ants achieving 
stigmergic communication is through releasing phero-
mone. Initially, ants wander randomly until some ants 
find food. These ants release pheromone on the trails 
back to their colony. The trails may be found by other 
ants. Then, other ants may continue wandering randomly 
or follow the trails they have found. In nature, phero- 
mone evaporates over time. When the pheromone upon a 
trail evaporates, its attractive strength is reduced. If an ant 
follows a trail, it may release more pheromone to rein- 
force the pheromone density. More ants travel through 
the same trail, more pheromones are spread. Therefore, 
important trails would remain with higher pheromone 
density. On the other side, the pheromone evaporation 
mechanism leads some trails to be discarded. Finally, 
only good trails remain.  

The idea of ant colony model has been applied to 
many combinational optimization problems, such as 
traveling salesman problem, assignments and scheduling 
problems, or routing problems [9-12]. Algorithms based 
on ant colony model treat ants as separate agents [13-15]. 
These ants walk around a graph representing the problem 
to solve. The pheromones released on the edges influence 
an ant to select its next step. For this kind of algorithms, 
a mechanism acting as pheromone controller is required. 
The pheromone controller reduces the density of phero-
mone level on edges to simulate the pheromone evapora-
tion process. By decreasing the pheromone density, the 
influences from past experience are reduced and it en-
courages the exploration of new paths. 

The idea of utilizing ant colony model for search-trails 

is as follows. In a search-trail map, an Internet user is 
treated as an ant. During its search process, keywords 
and web pages being visited are recorded as the nodes of 
a trail. For instance, at beginning a user chooses keyword 
A to perform search and a set of URLs is returned by the 
search engine. The user opens a page B from the returned 
set and then follows a hyperlink available in B to another 
page C. Then, this user might decide to reformulate the 
search keyword as D and performs another search. A 
page E from the new returned set is visited again. The 
above search process can be modeled as a search-trail as 
given in Figure 1(a). Note that keywords are in rectan-
gular shapes while pages are in oval shapes. Figure 1(b) 
gives another example of search-trail. 

When multiple searches performed, more than one 
search-trail may appear and a map similar to the trails 
inside an ant colony can be generated. A web user can 
choose to follow any existing trail or to create a new one 
in the map. Pheromone is spread upon the edge of a 
search-trail when a user is moving from one node to the 
other thru the edge. If during a period of time an edge of 
a search-trail has no any access, then a fix amount of 
pheromone of the edge evaporates. 

Based on the above model, users surely will create lots 
of search-trails after a period of time. Of course, there 
exist many target contents, i.e., similarly to the food 
sources in the ant colony, such that no search-trails can 
reach them. In the map, some search-trails attract more 
users and become more concrete while others are dis-
carded finally. The detail mechanism for building search- 
trail map is illustrated in the next section. 

3. Search-Trail Map 

To develop search-trail map based on ant colony model, 
pheromone level control is the key issue. Instead of as-
signing a value to represent pheromone level at the very 
beginning, the exact time that the pheromone will be 
completely evaporated is used to represent the initial 
pheromone level. When an ant travels thru an edge, the  
 

 
(a) 

 
(b) 

Figure 1. Examples of search-trail model. 
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pheromone level of the edge is changed to the time by 
adding a fixed time interval to its previous evaporated 
time. Since pheromone is spread upon edges in a search- 
trail map, maintaining each edge’s pheromone at its right 
level is important. When the edges’ pheromone levels of 
a node are all reduced to zero, the node will be removed 
from the map.  

To calculate the remaining pheromone level, it can just 
subtract the current time from the completely evaporated 
time. However, the evaporation rate of each edge is not a 
constant value in a search-trail map. The reason why the 
evaporation rates are different is that some unpopular but 
important nodes could be removed from search-trail map 
after a period of time. Popularity means lots of users are 
interested in the topic. For example, US President Obama 
is the topic attracting many searches. Important but not 
popular is the topic attracting few users. For example, 
Kenya President Kibaki is important to some web users 
but definitely is not as popular as President Obama. The 
search-trails of the two presidents in the search-trail map 
should maintain readable as long as possible even though 
the number of the search-trails of President Obama is 
much larger than the number of President Kibaki. There-
fore, the evaporation rate in a search-trail map is adjusted 
by the popularity. If a node has few out edges to the other 
nodes, i.e., the degree of the node is small, we say the 
node is an unpopular node and its out edges’ evaporation 
rate is decreased. On the other hand, a popular node’s out 
edges’ evaporation rate is increased. We may wonder 
under this mechanism the popular nodes should be re-
moved quicker than unpopular nodes. The truth is a 
popular node’s edge usually has more ants traveling thru 
and therefore the pheromone released on the edge usually 
is large. In fact, popular nodes are not easy to be re-

moved from a search-trail map. 
It is obvious that the complexity of a search-trail map 

is highly related to the number of the edges in the map. 
In order to reduce the complexity, limiting a node’s de-
gree inside a preferred bound is reasonable since too 
many edges are not helpful for searching.  

Before introducing the solution in detail, we first 
summarize all variables in Table 1. 

In order to guarantee a newly created edge can be no-
ticed by other users initially, the initial_pheromone_ 
value usually should be given a larger value. On the other 
hand, for existing edges, if they can lead to some impor-
tant nodes, their pheromone values are accumulated by 
passing-by users and therefore the pheromone_spread_ 
value is not necessary as big as the value of initial_ 
pheromone_value. 

The data structures of Node, Edge, and Ant are given 
in Figures 2-4 respectively. 

Figure 5 is the major algorithm for search-trail solu-
tion. In this algorithm, when an ant moves from its cur-
rent node to another node named nextNode, the method 
Ant_Movement (ant, nextNode) is invoked. The algorithm 
starts by assigning the ant’s current location as firstNode, 
then it checks whether edge e = (firstNode, nextNode) 
has already existed in the search-trail map. If it does, 
then the number of ants traveling thru e during the cur-
rent time interval is increased by one. If e is not existed 
in the search-trail map, then e is created by executing the 
Edge_Creation (firstNode, nextNode) method and e is 
added into the search-trail map. 

After a short period of time pheromone_update_time_ 
interval, a search-trail map needs to update the phero-
mone level of each edge. The algorithm is listed in Fig-
ure 6. In this algorithm, each edge’s evaporation_rate is 

 
Table 1. Variable definitions. 

Variables Description 

evaporation_rate This variable is an edge variable. It indicates pheromone evaporation rate of a given edge. 

edge_count This variable is a node variable. It indicates the current number of out edges of a given node. 

preferred_edge_count 
This variable is a global variable. It indicates the maximum number of out edges of any node can exist in a 
search-trail map. 

pheromone_update_time_interval 
This variable is a global variable. It indicates the time interval to modify an edge’s pheromone in a search-trail 
map. 

completely_evaporated_time This variable is an edge variable. It indicates the time that an edge’s pheromone will be completely evaporated.

current_time This variable is a global variable. It indicates current time. 

initial_pheromone_value This variable is a global variable. It indicates the initial pheromone value spread on a new created edge. 

pheromone_spread_value 
This variable is a global variable. It indicates the amount of pheromone spread on an edge when a user travels 
thru it. 

number_of_ants 
This variable is an edge variable. It indicates the number of users that travelled through the edge during a 
pheromone_update_time_interval. 

Current This variable is an ant variable. It indicates the current position of the ant. 
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Node type 

edge_count 

Figure 2. Data structure for node. 
 

Edge type 

firstNode 

nextNode 

evaporation_rate 

number_of_ants 

completely_evaporated_time 

Figure 3. Data structure for edge. 
 

Ant type 

Current 

Figure 4. Data structure for ant. 
 

Ant_Movement (Ant ant, Node nextNode){ 
define Node firstNode = Ant.current; 
if  (firstNode, nextNode) is an existing  

edge in search-trail map { 
let e = (firstNode, nextNode); 
Ant_count (e); 

} else {  
e = Edge_Creation (firstNode, 

nextNode); 
add e to search-trail map; 

} 
ant.current  nextNode; 

} 
 
Edge_Creation (Node firstNode, Node nextNode){ 
    if nextNode doesn’t exist, create a new node 
     and assign the new node to nextNode; 
 define Edge e = (firstNode, nextNode); 
    e. completely_evaporated_time   

current_time + initial_pheromone_value; 
    e.evaporation_rate  1; 
    return e; 
} 
 
Ant_Count (Edge e){ 
      e. number_of_ants  

e. number_of_ants + 1; 
} 

Figure 5. Ant movement algorithm. 
 
updated according to its popularity. When evaporation_ 
rate is larger than one, it is said to be popular. Otherwise, 
it is unpopular. The value of completely_evaporated_ 
time is updated according to the formula given in the 
Figure 6. After updating completely_evaporated_time, it 
verifies whether the edge is already evaporated by com-
paring it with current_time. If completely_evaporated_  

ST-Map_Update (){ 
for each Edge e=(firstNode, nextNode) in ST-Map{ 

e.evaporation_rate   e.evaporation_rate   

countedgefirstNodee

countedgepreferred

_..

__ ; 

e.completely_evaporated_time current_time + 
 

. _ _ _

. _

e completely evaporated time current time

e evaporation rate

  + 

antsofnumberetimespreadpheromone __.__  ;

If e.completely_evaporated_time < current_time { 
remove e from ST-Map; 
e.firstNode.edge_count = 

 e. firstNode.edge_count – 1; 
      } 

If e.firstNode.edge_count <= 0{ 
remove e.firstNode from ST-Map; 

} 
} 

} 

Figure 6. Search-trail map pheromone update algorithm. 
 
time is smaller than the current_time, which means the 
edge is evaporated, the edge should be removed from the 
search-trail map. If an edge is removed from the map, its 
firstNode’s edge_count should also be reduced by one. 
When a node’s edge_count becomes zero, it is removed 
from the map. 

4. Search-Trail Simulation 

In order to see the impact on the web search when 
adopting search-trail, an experiment is proposed. The 
input to this experiment is as follows. There are 900 
nodes and 3417 edges having been visited and gone thru 
by many ants after a long enough period of time. Inside 
this colony, there are totally 83 keywords and web con-
tents considered as “good” targets. Figure 7 is the visu-
alization map of the input. The trails with dark grey color 
are the expected good search-trails to be generated after 
simulation. 

The simulation mechanism is given in Figure 8. It 
starts by generating the above input map named “Refer-
ence Map”. Then, an Ant Dispatcher creates ants in every 
dispatch_ant_time_interval time period. As many ants 
join searching, some search-trails on the map become 
strengthened. Meanwhile, according to the algorithm 
stated in the previous section, the Pheromone Controller 
is developed to control the pheromone level on the edges 
of the simulated map. In the simulation, there are three 
different categories of ants in the colony, namely, ex-
perienced users, standard users, and inexperienced users. 
Each of these ants, its search experience is decided by 
experience_level which indicates the probability of 
choosing good nodes by its own. The average time for an 
ant staying on a node is defined by sleep_time. The 
probability of following existing search-trails is stored in  
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Figure 7. Scenario for the experiments. 
 

 

Figure 8. Class diagram for simulation. 
 
follow_trail_percentage. The ant will finish its search 
either the time it spends for search is more than search_  

time or the good nodes it has found is more than satisfied_ 
node_number. Finally, the whole simulation is driven by 
Time Controller. In the Time Controller, simulation_time 
represents the duration of simulated days. Table 2 lists 
all the key attributes of the classes. 

Tables 3 and 4 contains the attribute values used in the 
simulations done in this section. In order to see how good 
the search-trails generated by the ants after 30 days in 
each simulation, a similarity formula to show the differ-
ence between the expected search-trails and the gener-
ated search-trails is given in the following: 

 
 

Similarity

edges in geneated search trails expected search trails

edges in geneated search trails expected search trails






 

In the formula, the numerator represents the generated 
search-trails that are expected and the denominator re- 
presents the expected search-trails plus the wrong ones 
generated by the ants. If all the search-trails generated by 
the ants are expected, the value of the similarity will be 
100%. 

Based on the above introduction, four simulations are 
performed. For Simulation 1, we assume 8% experienced, 
32% standard, and 60% inexperienced users appearing in 
the colony, respectively. For Simulation 2%, 6%, 24%, 
and 70% of the three different category ants are assumed. 
For Simulation 3, 4%, 16%, and 80% are assumed. For 
Simulation 4, 2%, 8%, and 90% are assumed. Figures 
9-12 are the results of the above four simulations respec-
tively. 

In the above four simulations, each time we perform a 
new simulation, the amount of inexperienced user is in-
creased while the amount of standard and experienced 
user is decreased relatively. The search-trails generated 
after day 1 are really random for all the four cases. 
However, when more and more ants join into the search, 
with the pheromone spread and evaporated, the search- 
trails generated in the four cases are all gradually con-
verged to the expected search-trails. In fact, the first two 
cases generate the exact expected search-trails in 30 days.  

 
Table 2. Component attributes. 

Component Parameter Description 

Time Controller Simulation_time It indicates the period of simulated time. 

Ant Dispatcher dispatch_ant_time_interval It indicates the frequency of an ant’s creation. 

Experience_level It indicates the experience level of the ant. 

sleep_time It indicates the time for the ant staying in a node. 

satisfied_ node_value It indicates the number of the nodes the ant visited and then it will finish the search. 

follow_trail_percentage It indicates the probability of the ant choosing existing search-trails. 

Ant 

search_time It indicates the time period the ant stay in searching. It is a random variable in normal distribution.
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Table 3. Key component parameters. 

Component Parameter Value 

Time Controller simulation_time 30 days 

initial_pheromone_value 3 days 

pheromone_spread_value 1 hour 

pheromone_update_time_interval 3 hours 
Pheromone Controller 

preferred_edge_count 3 

Ant Dispatcher dispatch_ant_time_interval 3 min. 

 
Simulation 1 

Ant Type Experienced Users: 8% Standard User: 32% Inexperienced User: 60% 

Search-trail 
evolution 

 
Day 1. 8.39% 

 
Day 20. 92.59% 

 
Day 10. 67.9% 

 
Day 30. 100% 

Day 1 Day 10 Day 20 Day 30 
Similarity 

8.39% 67.9% 92.59% 100% 

Figure 9. Simulation 1. 
 

Simulation 2 

Ant Type Experienced Users: 6% Standard User: 24% Inexperienced User: 70% 

Search-trail 
evolution 

 
Day 1. 7.89% 

 
Day 20. 76.54% 

 
Day 10. 41.97% 

 
Day 30. 100% 

Day 1 Day 10 Day 20 Day 30 
Similarity 

7.89% 41.97% 76.54% 100% 

Figure 10. Simulation 2. 
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Table 4. Ants parameters. 

Parameter Experienced Users Standard Users Inexperienced Users 

experience_level 75% 50% 25% 

sleep_time μ = 30 sec σ2 = 5 μ = 30 sec σ2 = 5 μ = 30 sec σ2 = 5 

Satisified_node_value μ = 20 σ2 = 10 μ = 20 σ2 = 10 μ = 20 σ2 = 10 

follow_trail_percentage 50% 50% 50% 

search_time μ = 25 min σ2 = 5 μ = 25 min σ2 = 5 μ = 25 min σ2 = 5 

 
Simulation 3 

Ant Type Experienced Users: 4% Standard User: 16% Inexperienced User: 80% 

search-trail 
evolution 

 
Day 1. 7.119% 

 
Day 20. 66.66% 

 
Day 10. 38.27% 

 
Day 30. 91.35% 

Day 1 Day 10 Day 20 Day 30 
Similarity 

7.11% 38.27% 66.66% 91.35% 

Figure 11. Simulation 3. 
 

Simulation 4 

Ant Type Experienced Users: 2% Standard User: 8% Inexperienced User: 90% 

search-trail 
evolution 

 
Day 1.9.63% 

 
Day 20. 51.85% 

 
Day 10. 29.62% 

 
Day 30. 72.83% 

Day 1 Day 10 Day 20 Day 30 
Similarity 

9.63% 29.62% 51.85% 72.83% 

Figure 12. Simulation 4.    
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For the forth simulation, if the simulation period is ex-
tended to 60 days, the generated search-trail similarity 
can reach 96.29%. 

5. Conclusions 

In this research a concept called search-trail is proposed. 
Instead of the search targets, search-trail focuses more on 
the search process. Based on ant colony model, search- 
trails are created from the searching steps to the target 
contents. The search-trails built from various users are 
very similar to the trails generated in an ant colony. In 
order to see the impact when adopting the proposed solu-
tion in a search community, four different simulations are 
performed. The results show that search-trails really can 
help users accumulating and sharing search experiences. 
Even in the case of very few experienced users, the gen-
erated search-trails still possess 96.29% similarity to the 
expected ones in 60 days. 

The future work of this research is to integrate search- 
trail into the current available search engines. In order to 
achieve this goal, the complexity of the solution is re-
quired to be further polished. 
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