
Journal of Software Engineering and Applications, 2012, 5, 630-633
http://dx.doi.org/10.4236/jsea.2012.58072 Published Online August 2012 (http://www.SciRP.org/journal/jsea)

Time Comparing between Java and C++ Software

As’ad Mahmoud Alnaser1, Omar AlHeyasat2, Ashraf Abdel-Karim Abu-Ein2,
Hazem (Moh’d Said) Hatamleh1, Ahmed A. M. Sharadqeh2

1Computer Science Department, Ajlun University College, Al-Balqa’ Applied University, Amman, Jordan; 2Computer Engineering
Department, Faculty of Engineering Technology, Al-Balqa’ Applied University, Amman, Jordan.
Email: asad1_99@yahoo.com, omarheyasat@hotmail.com, ashraf.abuain@fet.edu.jo, hazim-hh@bau.edu.jo,

sharadqh_78@yahoo.com

Received May 11th, 2012; revised June 18th, 2012; accepted June 27th, 2012

ABSTRACT

This paper construct a comparison between two main software’s used in programming applications that are Java and
C++, the comparison operation includes the time needed to perform some algorithm i.e. speed of operation, flexibility
to adjusting some code, and efficiency. The same code is used to compare between the two software to determine which
one is better. It is found that C++ needs less time to execute the same code comparing with Java. Java needs about 10%
excess time to execute the same code segment comparing to C++.

Keywords: Java; C++; Algorithm Speed; Code Flexibility

1. Introduction

Java and C++ are the most used languages in program-
ming for most of programmers and system designers.
Java has a structure called an “Interface”. Java interface
is almost identical to a C++ class that has nothing but
pure virtual functions. Inherent in java is not efficient
from more than one base class; even if the base classes
have nothing but abstract methods or pure virtual func-
tions. The differences between Java and C++ can be
summarized as in Table 1.

The time needed to execute some code, algorithm,
program or complete system program is considered criti-
cal in any programming language, in this paper the time
needed to execute some same code in both Java and C++
is used to compare between such two languages. The
minimum time needed to execution is an advantage be-
cause it reflects how much is the language is powerful
and efficient. The minimum time of execution means
more speed of execution which is the main goal of any
designer or programmer.

Many researches and studies discussed this issue, Lutz
Prechelt, (1999), discussed the relative efficiency of Java
programs, in particular in comparison to well established
implementation languages such as C or C++. Java is of-
ten considered very slow and memory-intensive. Most
benchmarks, however compare only a single implemen-
tation of a program in, say, C++ to one implementation
in Java, neglecting the possibility that alternative imple-
mentations might compare differently. In contrast, the

current article presents a comparison of 40 different im-
plementations of the same program, written by 40 dif-
ferent programmers. The inter-personal program differ-
ences are larger than those between the languages and the
performance gap between Java and other languages is
still shrinking rapidly, [1].

Peter Sestoft, 2010, they compare the numeric per-
formance of C, C# and Java on three small cases. Man-
aged languages such as C# and Java are easier and safer
to use than traditional languages such as C or C++ when
manipulating dynamic data structures, graphical user
interfaces, and so on, [2]. Dirk E. et al. (2011), discussed
the RC++ package simplifies integrating C++ code with
R. It provides a consistent C++ class hierarchy that maps
various types of R objects (vectors, matrices, functions,
environments, ...) to dedicated C++ classes. Object in-
terchange between R and C++ is managed by simple,
flexible and extensible concepts which include broad
support for C++ Standard Template Library idioms. C++
code can be compiled, linked and loaded on the y, or
added via packages. Flexible error and exception code
handling is provided. RC++ substantially lowers the bar-
rier for programmers wanting to combine C++ code with
R. [3,6].

Michi H. et al. 2012, compared between Windows
Communication Foundation and Java: Remote Method
Invocation which are currently seen as major contenders
in the middleware space, performance is often taken as
the sole evaluation criterion, despite the fact that per-
formance is only one of many factors that influence the

Copyright © 2012 SciRes. JSEA

Time Comparing between Java and C++ Software 631

choice of middleware. They provided a performance and
scalability comparison of the three middleware platforms,
and discussed when performance and scalability matter
and when they do not, including their likely impact
alongside other factors on the overall cost of a project.
Finally, for those applications that indeed require high
performance and scalability, the article points out a few
techniques you can use to get the biggest bang for your
buck, [7].

2. Results and Discussion

From last comparing between Java and C++, the main
thing that may reveal which software is better is the time
to execute the same algorithm. So as an example con-
sider the following Java code:

public class RealTime
{

public void Do()//must complete in 500 μs
{

Clock c = new Clock; //might collect!
// diddle with clock for 100 μs

}
}

If this code is executed using both Java and C++, Java
takes 500 μs to be complete such algorithm. This is a
typical constraint in a hard real time system. Those func-
tions that call {Real Time. Do()}depend on the fact that it
will take no longer than 500 μs to execute. While the
same function takes just 450 micro seconds to be exe-
cuted using C++. The goal of the experiment is to meas-
ure the time needed to execute the same code on both
Java and C++.

Figure 1 shows a time of execution comparison be-
tween Java and C++. It is clear that C++ is faster than
Java which can be represented as:

Java CT 1.10*T (1)

where
TJava: time needed to execute some given code using

Table 1. Differences between Java and C++, [1,2,4,5].

Item JAVA C++

1 Java interface is not a class. While C++ interface is a class.

2
Functions declared within Java interface cannot be implemented
using that interface and have no member variables.

In C++ the functions can be implemented using inheritance and
there is many options of such implementation using regular
inheritance between two variables A and B if we need two copies
or one copy then the virtual inheritance can be used.

3 The Clock in Java is an interface.
Where as in C++ it was a class with nothing but pure virtual
functions. However the Subject class is quite different.

4
Java uses garbage collection. Garbage collection is a scheme of
memory management that automatically frees blocks of memory
sometime after all references to that memory have been redirected.

The new object is referred to by the variable “c”. Note that “c” is
rather like a reference variable in C++, also C++ is often criticized
for its lack of GC. However, many people have added garbage
collectors to C++.

5

Java does not have templates, which is of some concern to any
programmer. In Java, one cannot create a type-safe container. All
containers in Java can hold any kind of object. This can lead to
some ugly problems.

Templates are a wonderful feature of C++.

Figure 1. Comparing the execution time of Java and C++.

Copyright © 2012 SciRes. JSEA

Time Comparing between Java and C++ Software 632

Figure 2. Java runtime vs C++ [http://blog.cfelde.com/2010/06/c-vs-java-performance/].

Figure 3. Java vs C++ and .NET, [7].

Java SW.

TC++: time needed to execute some given code using
C++ SW.

To compare the current study with previous studies,
Figure 2 comparing Java runtime for different algo-
rithms with that of C++, it is clear that the Java runtime
is more in almost algorithms than that of C++.

Figure 3 comparing between Java requests/sec and
that for C++ and .NET, it is clear that the C++ requests
per unit of time is more. Which told us that C++ is more
efficient.

3. Conclusion

Java is a powerful language. While C++ has a relatively
easy time to be learned, and will find that the program-
mers enjoy using it. It is noted that a few problems with

the language in the above discussion. Language design
always involves some disadvantages or shortcomings
that displease someone. C++ is an interesting language
that enable us to write codes easily with more flexibility
and with little time needed to execute some code com-
paring to Java.

REFERENCES

[1] P. Lutz, “Comparing Java vs C/C++ Efficiency Differ-
ences to Inter-Personal Differences,” Communications of
the ACM, Fakult at fur Informatik University, Karlsruhe,
1999.

[2] S. Peter, “Numeric Performance in C, C# and Java Peter
Sestoft,” IT University of Copenhagen, Copenhagen,
2010.

[3] E. Dirk and F. Romain, “Rcpp: Seamless R and C++ In-

Copyright © 2012 SciRes. JSEA

Time Comparing between Java and C++ Software 633

tegration,” 2010. http://dirk.eddelbuettel.com/

[4] W. Peng, M. Sam, M. J. Moreira and G. Manish, “Effi-
cient Support for Complex Numbers in Java,” ACM 1999
Java Grande Conference, San Francisco, 12-14 June
1999, pp. 109-118.

[5] J. E. Moreira, S. P. Midkiff, M. Gupta, P. V. Artigas, M.
Snir and R. D. Lawrence, “Java Programming for High
Performance Numerical Computing,” IBM Systems Jour-
nal, Vol. 39, No. 1, 2000, pp. 21-56.

doi.org/10.1147/sj.391.0021

[6] J. Glenn, C. M. Clement, S. Q. Snell and G. Vladimir,
“Design Issues for Efficient Implementation of MPI in
Java,” ACM 1999 Java Grande Conference, San Fran-
cisco, 12-14 June 1999, pp. 58-65.

[7] H. Michi and S. Mark, “Choosing Middleware: Why
Performance and Scalability Do (and Do Not) Matter,”
ZeroC, Inc., Palm Beach Gardens, 2011.

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1147/sj.391.0021

