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ABSTRACT

Severa algorithms based on homogeneous polynomials for multiplication of large integers are described in the paper.
The homogeneity of polynomials provides several simplifications: reduction of system of equations and elimination of
necessity to evaluate polynomials in points with larger coordinates. It is demonstrated that a two-stage implementation
of the proposed and Toom-Cook algorithms asymptotically require twice as many standard multiplications than their
direct implementation. A multistage implementation of these algorithms is also less efficient than their direct imple-
mentation. Although the proposed algorithms as well as the corresponding Toom-Cook algorithms require numerous
algebraic additions, the Generalized Horner rule for evaluation of homogeneous polynomials, provided in the paper,

decrease this number twice.

K eywor ds: Homogeneous Polynomials; Toom-Cook Algorithm; Multidigit Integers; Multi-Stage Multiplication;
Generaized Horner Rule; Large-Integer Multiplication

1. Introduction and Basic Definitions

Crypto-immunity of various protocols of secure commu-
nication over open channels is based on modular arith-
metic of large integers with hundreds of decimal digits.
Multiplications and exponentiations of large integers are
essential operations in this arithmetic. Y et, standard pro-
gramming libraries in genera-purpose computers handle
multiplication of integers A and B if the number of deci-
mal digits in each does not exceed m. Such integers we
will refer to as standard integers. For instance, if a com-
puter cannot multiply integers larger than 10%° without
a specially-written program, then in this case m = 30.

The first papers on multiplication of large integers
were published by Karatsuba-Ofman [1] and by Toom
[2]. Severdl years later Toom's scheme was improved by
Cook {see [3,4]}. Analysis of computational complexity
of Toom-Cook algorithm (TCA) is provided in [5] and
theoretical foundation for efficient multiplication of large
integers is discussed in [6]. An efficient implementation
of the TCA in cryptographic systems is described in sev-
era patents[7]. Analysis of computational complexity of
the TCA and its lower bound is provided in [8].

A special case of the TCA, where one multiplier is
significantly larger than another, is considered in [9].

Consider two nm-digit-large integers A=a,,---&,3,a,

and B=b, _,---bbh,, where every part a, and b, isa
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m-decimal-digit large standard integer {Sl, for short}.
Let usrepresent Aand B as

A= k"gl)(lom)kak ; (1.1)
and
B= :z:‘f(lom)kq . (12)

o

Therefore, the product C = AB is expressed as

2(n-1) s
C= Y (10")c; (1.3)
s=0
where ¢, ,,C,p3,C,C, are 2n-1 unknown coeffi-
cients.
In order to compute the product C, these coefficients
must be determined.
Example 1.1: Suppose we need to multiply two integers
A =385,495,374,109;
and
B = 608,348,696,284;
using a computing device that cannot multiply integers of
order higher than O(10°) . Therefore, in this example m
=3 and we split A and B into n = 4 parts, where

a, = 385; a, = 495; a, = 374; a, =109;
b, = 608, b, = 348, b, = 696; by, = 284.
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The agorithm provided in Section 2 demonstrates how
to solve this problem by using a minimal number of mul-
tiplications of m-digit Sls.

2. Multiplication C = AB Based on
Homogeneous Polynomials

Consider two n-th degree homogeneous polynomials of
two integer variables x and y:

n

A (% y)= ZO axy"; (2.1)
B,(xy)= ih Xy™. (2.2)

Let
Con(X¥)=A (% Y)B,(xy)= ki_n())ckxk YR (2.3)

Remark 2.1: All coefficients in polyno-mials A, (x,Y)
and B, (x,y) areinputs, and the coefficientsin
C,.(xy) areoutputs.

For short, the multiplication algorithm, based on ho-
mogeneous polynomials (HP), provided below is called
the AHP.

First of all, definition (2.3) implies that

Con =aphy,; and ¢, =agh, . (2.4)
Computation of the remaining 2n-1 coefficients in
(2.3) is described in the algorithm. Prior to that, let us
modify Equation (2.3) for integers | >1;|y|>1.
Consider

Mooy (xy)= |:CZn (% Y)=CuX*" —y™" ]/Xy
2n-1 (2.5)

2n-1-k

_ z 6 Xy _
k=1

Asisshown in Section 3, we can easily separate “odd”
C.GC;,+,Cypy and “even” c,,C,,:+,C,, , UNknown co-
efficients.

The following properties of homogeneous polynomials
imply certain limitations on choice of evaluation points:
Property 1: If n is a degree of homogeneity of H (x, y)
and g isanon-zero real number, then

H(gx,gy)=g"H(xy). (2.6)
Therefore, if g=-1, then
H(=x-y)=(-1)"H(xy). (2.7)

Property 2: If the degree of homogeneity is even, then
H (=% y)=H(x-y);

H(-xy)=—H(x-y). (2.8)
Corallary 1: Definition (2.3) implies that

otherwise
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C(-xy)=C(x,-y); (2.9)

since for every integer n C,, (x, y) has an even degree
of homogeneity.

Corollary 2: Identity (2.9) implies that it is not advanta-
geous to consider, for instance, both C( p,—q) and
C(-p, q); neither it is advantageous to consider C( p, q)
and C(gp, gq) for any non-zero integer g (2.6). There-
fore, in this paper are considered only relatively prime
pairs of integers p and g.

3. Separation of “Even” and “Odd”
Coefficientsin AHP

Step 3.1: Compute sums
Syna) (p.a)= [Mz(n-l) (p.g)+ Moy ( p,—q)]/Z pg;

(3.1
for thefirst n—1 relatively prime pairs of integers

(P, a)={(22):(2.2);(32):(1.3);(32);
(2.3):(4.2):(1.4);-+}.

Remark 3.1: Using (3.1) and (3.2), we create and solve
n-1 equationswith n-1 “even” unknowns

szc4""!cz(n71) :
Step 3.2: Compute differences

D2(n—1) ( P Q) = |:M2(n—l) ( P q) -M 2(n-1) ( P, _q)J/Z( pQ)Z
(3.3

(3.2)

for the same pairs
(. @)={(21):(12):(32):(1.3):(3.2);
(2.3);(4.:(1.4);--}.

Remark 3.2: Asaresult, in (3.3), we create n—-1 equa
tions with n unknowns ¢,,c,,--,C,,; -

Since by this time the values of all “even” coefficients
C,,Cyy*,Cyp, A€ already computed, weuse M, , (11)
(3.5) as the n-th equation for computation of n “odd”
coefficients.

The following example illustrates a dlightly different
approach to separate “even” and “odd” variables.

3.1. Separation of Unknowns: n=5

First, compute S,(p,q) {see(3.1)} for
(p.a)={(11);(21);(12)} and from three equations
find c,,c, andcs ; second, compute Dg(p,q) {see
(33)} for (p.a)={(11);(21);(12)} and derive three
equations with four “odd” unknowns ¢, c,, G, C,. As
the fourth (“missing”) equation, we consider

Mg(31):=3"c,+3°c;+--+3C,+C;; (3.4

{see (2.5)}. After al “even” coefficients are computed,
let
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Z:=Mg(31)-F (3¢, +3c,+c,). (35)
Finally we derive the fourth equation
3'c,+3Fc,+3c,+3c, =Z. (3.6)

3.2. AHP for Multiplication of Triple-Large
Integers

Let us consider a multiplication of triple-large integers;
let

A(X, Y)=a,X* +axy+a,Y*;

and
B(x y)=bx*+bxy+byy?;
therefore
C(xy)=A(xY)B(x,
(x¥)=A(xY)B(xy) a7
=, X' + XY+ XY+ gy
Step 3.1

¢, =8h,{=C(L0)=A(L0)B(LO)}; (39
Step 3.2:

Co =0, {=C(0,2)= A(0,1) B(0,1)}; (3.9
Step 3.3:

F = (4a,+23 +3)(4b, + 20 +1)

{=C(21)=A(21)B(21) (3.10)
=16¢, +8C; +4C, + 26, + Gy}
Step 3.4:
G:=(a,+a+3)(b,+b +h)
(3.12)
{=C(L1) = A(LY)B(LY) =C, +C+ - +G};
Step 3.5:
H = (a, +2a +4a,)(b, + 2b + 4hy) 312)

{=C(12)=A(1,2)B(L2)=c, +2¢; +--+16G, |
Step 3.6:

K=G-¢,—¢{=M(Ll)=c+c,+c}; (313
Step 3.7
L=[F-16c,-G,]/2{=M (21)=4c,+2c, +¢}; (3.14)
Step 3.8:
M:=[H —c, -16¢,]/2{=M (1, 2) =, + 2c, +4c, }; (3.15)

Remark 3.3: From the system of linear Equations
(3.13)-(3.15) we determine c;,,c, and ¢, .
Step 3.9:

N:=(L-M)/3=c,-c;

(3.16)
and P:=L-2K =2¢;-c,.
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Step 3.10:
¢=P-N;¢=¢-N;c,=K-¢-¢. (317)
The algorithm described in (3.8)-(3.17) requires 24
algebraic additions.
4. Reduction of Algebraic Additions

Let us consider a multiplication of two quatro-large inte-
gers

A-a3aa,; ad B-BBER;

where every part a, and b, isam-decimal-digit large
S [2].
Let usrepresent A and B as

A=(10") g, +(10") &, +10"a, +a,;  (4.0)

and
B=10°"b, +10*"b, +10™b, +hy,. (4.2)
Therefore, the product C = AB can be expressed as
C=10°"c, +10°"c, +-+-+10™¢ +C,; (4.3

where seven coefficients ¢, c;,-+,C,G, must be deter-
mined.

The drawback of the TCA and AHP agorithms is the
large number of required algebraic additions. The fol-
lowing algorithm shows how to decrease twice the num-
ber of these additions.

Step 4.0:
Co =8y, Coi=as;; (4.4)
Step 4.1
A=a+a;B =b+b; (4.5)
A =a,+3; Byi=Db, +1hy;
Step 4.2:
C.=(A+A)(B+B); “9
C.=(-A+A)(-B+B);
Step 4.3
A =4a,+a; A =4a,+a,, @7
B, :=4b,+b; B, =4b, +h;
Step 4.4:
Co=(2A+A)BB)
C,=(-2A+A)(-2B;+B,);
Step 4.5:
A =8a,+ Al A =8, + A 49)
B.:=80,+B; B, =80, +B,; '
Step 4.6:
IJCNS
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C, = (3A+A)(38,+ B,);
Com(-3A+ A)(-38,+ B,);

Remark 4.1: For every k the variables A, and B, are
used twice {see (4.6)-(4.10)}. In order to decrease the
amount of computation, we pre-compute them only once.
Therefore, we reduce twice the number of algebraic ad-
ditionsin (4.6)-(4.10).

(4.10)

Step 4.7:
E =(C,+C,)/2-c,;
E,=(C,+C,—2c,)/8 (4.11)
E,=(C,+C,-2¢,)/18,
Step 4.8:
F,=(E-E)/3
()8 (4.12)
Step 4.9:
G =P =36 (4.13)
E,—C—Cs
Step 4.10:
§:=(C-C )/2
e, =(C,-C,)/4 (4.14)
g:=(C;-C,)/6;
Step 4.11:
f,=(e,-q)/3
(= (e,—e)/8 (4.15)
Step 4.12:
=( /5
G = 505, (4.16)
qrq—%—%

This algorithm computes the product C = AB using
seven multiplications of Sls instead of sixteen such mul-
tiplications as required by “grammar-school” rules. For
more details on the AHP of quatro-large integers see
Sections 8 and 9.

5. Comparison of Evaluated Polynomialsin
TCA vsAHP

First of al, inthe TCA
¥ :={C(0),C(1),C(-1)}; (5.1)
are computed, and in the AHP
®:={C(1,0),C(0,1),C(11),C(1-1)} (5.2)

are computed. Additional values of evaluated polynomi-
asfor n>3 areprovidedin Table 1.
Remark 5.1: Observe the fast growth of the values of
evaluation points in the TCA in comparison with corre-
sponding pointsin the AHP.

The sets ¥ and @ of polynomia evauations in
Table 1 aredefinedin (5.1) and (5.2).

6. Comparison of TCA vsAHPfor n=6
6.1. AHP Framework

Compute
C(1,0);C(0,1);C(11);C(LD;C(2.1);C(2,0); 6
C(1,2);C(1,2);C(31);C(31;C(L3); '

C(L0)-ALOB(LO)-ah -Gy

C(0.0)=A(02)B(01)=a, = ¢
Computation of C(11) and C(1L-1) has the same
complexity as C(1) in the TCA; and computation of
C(21); C(2-1); C(1,2) and C(1,-2) has the same
complexity as C(-2) in the TCA {see Table 1). For
instance,

C(21)=A(21)B(21)
:(25a5+24a4+-~+a0)(25b5+24b4+---+b0)
=2, +2°cy+---+2°C, + 20, +
(6.3)
where al coefficients are merely binary shifts. Further-
more, computation of C(31); C(3-1); and C(1,3)
has the same complexity as C(3) inTCA, {Table1}.
6.2. Toom-Cook Algorithm

Compute

Table 1. Points of polynomial evaluation in TCA and AHP.

Splitting in Toom-Cook algorithms Algorithms based on HP
3parts ,C(2).C(-2) ®,C(2)
4parts ¥,C(2)C(-2); C(3).c(-3 ©,c(21); C(2-1.C(12)
w,C(2),C(-2); C(3),C(-3); C(4),C(-4); ®,C(21); C(2-1),C(12); C(1-2),C(31);
Bparts C(5),C(-5); C(6).C(-6); C(7).C(-7) C(3-1),C(L3); C(1-3),C(32); C(3-2).C(23)

Copyright © 2012 SciRes.

IJCNS



B. VERKHOVSKY 441

C(0);C(1):C(-1);C(2); (_2);C(3);C(_3);(6.4)
C(4);C(-4);C(5) and C(-5)

C(0)= A(0)B(0)=agh, = c; (65)
C(1)=A(1)B(1)

(ag+a,+---+3y)(by+b, +---+hy) (6.6)
=C+G -+ C+ G+ Gy,
C(-1)=A(-1)B(-1)

= (-8g+8,—+)(~hy+b,—+h) (67)
=G~ GG —G+ Gy
C(5)= A(5)B(5)
=(31258;+--+58, + ;) 68)

x (31250, + 625, +---+5b + 1)
=9765625¢,, +- -+ 5C, +Cy;

where both A(p) and B(p) can be computed by
Horner Rule[10].
7.AHPforn=7
It is easy to seethat

C(L0)=ab, =c,;and C(0.1)=afy=c,, (7.1)
i.e, we need to compute thirteen remaining coefficients

C3:Cp G
Let  M(p.q)=C(p.a)-c,p"*-ca"/pa; (7.2

{modified values of C( p,q), see (2.5)}

In order to separate “odd” and “even” unknowns, com-
pute

S(11):=[M(11)+M (1-1)]/2
=Cy+Cp+CG+C+C,+Cy5

S(21)=[M((21)+M((2-1)]/8
=2, +2cy+..+C,.

(7.3)

In general, by computing
S(p.a)=[M(p.a)+M(p.-a)]/2(pa)’; (7.4)

for (p.a)={(11):(21):(12);(31);(13);(3.2)} wecre-
ate six equations with six “even” unknowns c,,c,,--,Cp,.
Anaogously, by computing

D(p.a):=[M(p,a)-M(p.-q)]/2; (75)
for (p.a)={(11):(22);(%2);(31);(13);(32)}, wecre-
ate six equations with seven “odd” unknowns c;,c,,--,Cp,.

After the values of "even” coefficients c,,c,,--+,C,
are computed, we use M (2,3) {see (7.2)} as the sev-
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enth equation for computation of all “odd” coefficients.

8. AHP for n=4in Details

Consider
C(xy)=A(XY)B(xY); (8.2)
where
A(xy)= kZi:oakx" vk (8.2)
B(x y):= Zbek Sk (8.3)
and
C(xy)= Zcx‘ o (8.4)
then
C(01)=c =ahy; C(L0)=c;=ah;; (85)
C(ll)::c6+cs+--~+q+co
(8.6)
=(a+ ot a)(bs 44 by );
C(L-1)=cs—C+-+G, ©7)
:(_as+...+a0)(_bj+...+bo);
C(2,1):=64c, +32c; +16¢, +---+2C, +C, -
=(8a3+4a2+2a1+a0)(8b3+4b2+2bl+b0);( 9
C(2,-1):=64c, —32¢,+---— 2¢, + ¢,
= (-8, +4a, —2a, + &, ) (-8, + 4b, — 20, + Iy, );
(8.9)

C(1,2):= s+ 2c; +4c, +---+ 32¢, + 64c,

=(a;+2a,+4a,+8a,)(b, + 2b, + 4b +8h)).
(8.10)

9. Solution of System of Equations
(8.6)-(8.10)

Step 9.1: V;:=C(L1)-c;—Cy;
Step 9.2 V,:=c5+¢,—C(L-1);
V,=[C(21)-¢, |/2-32;
V, =32¢,+[ ¢, -C(2,-1)]/2;
Vs =[C(1,2)-c; |/2-32c,.

Remark 9.1: Using Vi-Vs, we find five unknowns
c,-,6 fromfivelinear equations:

Step 9.3
Step 9.4:

Step 9.5

o€ +C+C+C =V, 9.1)
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GGt C =Gt G =V (9.2
16c; +8c, +4c, +2C, +C =V;; (9.9
16c, —8C, +4C,—2C, +¢, =V, ; (9.4)
G +2c, +4c, +8c, +16¢, =V . (9.9

Step 9.6:
Ve =(,-V,)/2 {=c,+c,}; (9.6)

Step 9.7:
V,=(V,-V,)/4 {=4c,+c,}; . (9.7)

Step 9.8
¢, =(V,-V,)/3; (9.8)

Step 9.9
C, =V;—¢C,. (9.9

Step 9.10:

B =V,-c,-c,; B,=V,-8c,-2c,;
B,=V,-2c,-8c,.

10. Multistage | mplementation of TCA and
AHP

10.1. Two-Stage | mplementation (T SI)

Let us consider n=6=2x3, and anayze how to multi-
ply sextuple-large integers in two stages. On the first
stage, we represent A and B as double long:

A=10""A + A;; B=10°"B, + B;; (10.1)

and compute AB applying the Karatsuba algorithm [1],
which requires three multiplications of 3m-long integers.

Then, as the second stage, we compute every product
of triple-long integers using either the TCA or AHP each
requiring five standard multiplications { SMs, for short}.
Therefore, the two-stage implementation requires fifteen
SMs rather than eleven SMs required by the TCA or by
AHP. Table 2 provides comparison for severa other
cases, where

R(n):=T9 (n)/DI (n).
General case: Let us now anayze the two-stage imple-

mentation of amultiplication algorithm if n=rs.
First, we represent Aand B as

(10.2)

Remark 9.2: Now we solve the system of three equations G e g
with three unknowns: A= Zélo A (103)
G+C+C =B (910)  and
r-1
16c, +4c, +¢ =B, ; (9.11) B=>10"B,; (10.4)
k=0
+4c,+16c, = B,. 9.12
G +46;+166, =B, (012 Such an implementation requires 2r -1 multiplica
Step 9.11: tions each of sm-long integers. Then, on the second stage,
B, =(B,—4B )/3 {=4c —c ! 9.13 we multiply sm-long integers. Every such multiplica-tion
:=(B,~4B)/3 (=45 -c (013) requires 2s—1 SMs. Therefore, we need
.12:
Step 9 (2r ~1)(2s-1)=O(4n) (105)
B,=(B;-4B)/3 {=—G+4g}. (914 _ . .
SMs in total. However, the direct (one-stage) multiplica-
Step 9.13: tion requires only
B, = (B, +B;)/3 {=c +c}; (9.15) D(n)=2n-1=0(2n) SMs (10.6)
Step 9.14: It is easy to verify that both parts in the inequality
¢ =(Bs+B;)/5 =B —¢y (9.16) (2r -1)(2s-1) > 2rs-1 (10.7)
Step 9.15: areequal if and only if eitherr = 1,0ors=1,0orr=s=1.
=B -¢-¢c. (9.17) Inall other cases
Table 2. Number of SMsin two-stage (TSI) and direct implementation (DI).
n 4 6 9 15 21 25 35 49 121
TSl 9 15 25 45 65 81 17 169 441
DI 7 1 17 29 41 49 69 97 241
R(n) 1.29 1.36 147 155 1.59 1.65 170 174 1.83

Copyright © 2012 SciRes.
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(2r-1)(2s-1) > 2rs-1. (10.8)

Thus, the TSI of either the TCA or AHP for large r
and s asymptotically requires twice as many SMs than
the DI.

Example 10.1: Now let m=4;

A=385,425,374,179,

and
B = 608,368, 695, 784.

Therefore, in this example we need to split A and B
into three parts, i.e.,, n = 3.

By the algorithm, described in Sections 8 and 9 we can
compute C = AB using five multiplications of four-digit
large integers. However, if the standard integers are only
two-digit long, we can pre-compute each product recur-
sively using the Karatsuba algorithm. Each of these five
products requires three SMs, i.e., overall we need fifteen
SMs to compute C = AB. On the other hand, we can
compute the same product AB splitting both A and B into
Six parts.

In this case m = 2. To compute AB, we need only ele-
ven SMs by using the direct implementation vs fifteen
SMsrequired in the recursive TSl implementation.

10.2. Multi-Stage I mplementation

Let now n=8=2%. Therefore, we multiply A and B in
either three stages using the Karatsuba algorithm [1] or
using the AHP or TCA directly. In the MSl we need
3*=27 SMs; whilein the DI we need only fifteen SMs.
Remark 10.1: Since the number of algebraic additionsin
the DI asymptotically grows as function of n, it is essen-
tial to properly select the evaluation points (p,q) to
implement symmetricity illustrated above in Section 4
{see (4.4)-4.16)} and to simplify computational com-
plexity stemming from the multiplication by constant
coefficients. These issues are addressed in Sections 11-
13.

11. Number of Algebraic Additions

Notice that computation of M (p,q) requires 2n addi-
tions of Sls. Since we need to compute M (p,q) for

2n-3 different values of (p,q), the total number of
algebraic additions is of order O(4n”). This number
can be reduced twice as demonstrated in Section 2. Since
every addition of m-digit long integers has order O(m),
therefore the total complexity of all additions is of order
O(2mn*). Hence, the overall complexity is equal

T(m,n)=O(2nm2+2mnz)=0[2nm(m+ n)]
11.1
If m>n, thenT(m,n):O(anz). (.

12. Analysisof TCA vsAHP

In large-integer multiplication we addressed two sources
of complexity: the number of standard multiplications
and the number of algebraic additions. The third source
of complexity is multiplication by constant coefficients
when the polynomials A(x,y) and B(x,y) areevalu-
ated at points (x,y)=(p.q).

The Table 3 compares the polynomial evauations in
the TCA and AHP frameworks respectively for various
values of n. It means that if n = 15, then in TCA polyno-
mials C(p) are evaluated for p={0,%1,+2,---,+14}
and in the corresponding AHP polynomials C(p,q) are
evaluated for

(p.a)={(01),(1£1),(2,21),(12), -,
(1,45),(5,+2),(2,45),(5,44),(4,45)}

Example 12.1: Compare for n = 14 the computation of
C(2,5) and C(13):

13 13
C(13) =Y 13‘a x> 13'h;
k=0 k=0

o o (12.1)
C(5,2)=>.2"x5%% g x Y 2x5"*p,.
k=0 k=0

In the next section we provide an iterative procedure
that computes C(p,q).

13. Generalized Horner Rulefor
Homogeneous Polynomial

Let Ry=a, L,=a, andfor k=1---,n

Table 3. Evaluationsrequired in Toom’svs AHP frameworks.

n 1 2 3 5 6 7 8
TCA c(0) C(+1) C(+2) C(+3) C(+4) C(+5) c(+7) c(+7)
AHP c(0.1) C(1+l)  Cc(2%1)  C(L2) C(3+l)  C(1%3) C(3+2)  Cc(213)

n 9 10 un 13 14 15 16
TCA C(28) C(29) C(+10) C(+11) C(£12) C(£13) C(£14) C(£15)
AHP C(4,+1) C(1,+4) C(5£1) C(145) C(5+2) C(2,%5) C(514) C(4,45)

Copyright © 2012 SciRes.
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R =R.0q+ap*; (13.2)
and

L.=L_p+a,q; (13.2)
then

A(p.g)=L,=R,. (13.3)

Analogously, we can compute B(p,q).

14. Valuesof (p,q) Simplifying
Computation of A(p,q) and B(p,q)

Case 1. if p=2° and q=2'+1 in (13.1), then a_p*
requires a binary shift on sk positions, and R _,q re-
quires merely a binary shift on t positions and one alge-
braic addition [3].

Case 2. if q=2° and p=2'+1 in (13.2), then, ana
logoudly as in the Casel, a,_, g* requires a binary shift
on sk positions, and L, ,p requires a binary shift on t
positions and one algebraic addition.

Case3:if q=2'(2'+1) and p=1 in(13.1), thenitis
necessary to use two binary shifts and one algebraic ad-
dition.

Case 4 if p=2(2+1) and gq=1 in (132), then,
analogoudly as in the Case 3, it is necessary to use two
binary shifts and one algebraic addition.

Caseb5: if gq=2" and p=1 in(13.1), thenitis neces
sary to use only one binary shift onr positions.

Case 6: if p=2" and gq=1 in (13.2), then, anao-
goudly as in the Case 5, it is necessary to use only one
binary shift.

Example 14.1: In the following set of 37 points each
(p,q) satisfies one of six special cases listed above:

(p.a)e{(11);(21);(3.2):-:(10.2);
(12,1);(14,1);--;(18,1);(20,1); (24,1);
(28.1);(30,1);(31.2);
(3.2):(5.2):(7.2)i(9,

(17,2);(31,2);
(5.4):(7.4):(9.4):(15,4):(17,4);
8);

(9,8):(15,8):(17,8); and (17,16).

Add to this set the other 111 points (p,—q), (g, p)

d (a,—p) . For each of these 148 points the number of
required algebraic additions in the AHPs is smaller than
in the corresponding TCAs.
Example 14.2: If n = 22, then for the TCA we need to
evaluate C(p) at43points C(0), C(+1),---,C(+12);
yet, for the AHP we evaluate polynomial C(p,q) at
points

2):(15,2);

Copyright © 2012 SciRes.

C(0,2);C(1,0);
C(L#£1);C(2#1);---;C(7,%1);
C(1,£2);C(1,£3);---;C(L47);
C(3,42);C(5+2);C(7,%2);
C(2,43);C(2,45);C(2,47);
and C(5,4), where, for instance, the evauation of
C(5,4) requires fewer basic operations than for C(21) in
the TCA.
15. Optimized AHP

In order to decrease twice the number of additions/sub-
tractions, we need to adjust the Generalized Horner Rule
for iterative computation of A(x,y) and B(xy).
Noticethat if nisodd {n=2s-1}, then

A1 (P.)
_ (az(s—l) pz(s—l) +eta, pzqz(sfz) 4 aoqz(s’l))
res res (15.2)
+ (e 5P* g+ + 2, pq™)
=AY, (p.a)+ A, (p.a).
Otherwise, if niseven, i.e, if n=2s, then
As(p.a)
= (@ P* By %07 - 2,007 4 2 po”
+(a2( p q+ +a2p2q25 3+a0q2s71)
=AY (p.a)+AY(p.q).
(15.2)
Therefore, for every even and odd n
A(p.q)=AY(p.g)+AY(p,q); (15.3)
A{p.-a)=A"(p,q)- A p.q). (15.4)

Let us show how to modify (13.1) for iterative com-
putation of (15.1).

Consider n=2s-1; d =a,, ; asign R”:==a,
L9 :=d,; andforevery k=12,-- compute
Ry = R;?Q,l)qz +ay,p™ (155)
LY = Ly 7 + Aoy 07 (15.6)
hence,
A1 (p.a)=Re, =Lk, (15.7)
Assign Ro =0 Lgl:: ;
and for every k=1,2,--- compute
R2k Rz 9° +a,,p*g;
o (15.8)
Lo = 2(k—1)p +0, .07 p.
IJCNS
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hence
AL1(P.) =Ryl sy = Ly
Thus,
A () =R, + R, =Ly +L5 5 (15.9)
Ao (P=0) = RYL ) - Ri?s,l)- (15.10)

Example 15.1: Let us consider n=7. Then
A (p.a)=(asp" +a,p'a” +a,p’q" +a,0°
+(asp"a-+a,p’a’ +a,po’)
~RO R

The iterative procedures (15.5)-(15.8) are simplified if
l)pisapowerof 2and q=2"+Lt>1 or
2)p=1and q=2'(2 +1);{see the corresponding Cas-
es1-6 in Section 13}.

The Equations (13.2), (15.5) and (15.6) can be analo-
gously modified for iterative computation of

A?(p,q); AY(p,q);

Z&l(p Q) 2&1(p Q)
and

B (p,q);BY (p.q).

16. Conclusion

It has been demonstrated that the overhead in the Toom-
Cook agorithm is higher than in the proposed approach
based on homogeneous polynomias A(x,y) and
B(x,y). Integrality of all coefficients in the TCA and
AHP isdemonstrated by the first author in [11].

17. Acknowledgements

| deeply appreciate comments of |. V. Semushin and sty-
listic suggestions of Yu. Polyakov and R. Rubino that
improved the quality of this paper. | wish to express my
gratitude to typesetters for their patience.

Copyright © 2012 SciRes.

(1]

(2]

(3]

(4]

(9]

6]

(8]

(9]

[10]

[11]

REFERENCES

A. Karatsuba and Yu. Ofman, “Multiplication of Multi-
digit Numbers on Automata,” Soviet Physics-Doklady,
Vol. 7, 1963, pp. 595-596.

A. Toom, “The Complexity of a Scheme of Functional
Elements Realizing the Multiplication of Integers,” Soviet
Mathematics-Doklady, Val. 7, 1963, pp. 714-716.

S. A. Cook, “On the Minimum Computation Time of
Functions,” Chapter 3, Ph.D. Thesis, Harvard University,
Cambridge, 1966, pp. 51-77.

D. Knuth, “Art of Computer Programming: Seminumeri-
cal Algorithms” 2nd Edition, Vol. 2, Addison-Wesley,
New York, 1981.

R. Crandall and C. Pomerance, “Prime Numbers: A Com-
putational Perspective,” Springer, New Y ork, 2001.
doi:10.1007/978-1-4684-9316-0

D. Bernstein, “Multidigit Modular Multiplication with
Explicit Chinese Remainder Theorem,” 1997.
ftp://koobera. math.uic.edu/pub/papers/m3.dvi

R. Crandall, “Method and Apparatus for Public Key Ex-
change in a Cryptographic Systems,” US Patents 5159632,
1992; 5271061, 1993; 5463690, 1994.

F. Ablayev and M. Karpinski, “A Lower Bound for Inte-
ger Multiplication on Randomized Ordered Read-Once
Branching Programs,” Information and Computation, Vol.
186, No. 1, 2003, pp. 78-89.
doi:10.1016/S0890-5401(03)00118-4

A. Zanoni, “Iterative Toom-Cook Methods for Very Un-
balanced Long Integer Multiplication,” Proceedings of
the 2010th International Symposium on Symbolic and
Algebraic Computation, Munich, 25 July 2010, pp. 319-
323. doi:10.1145/1837934.1837995

W. G. Horner, “A New Method of Solving Numerical
Equations of All Orders, by Continuous Approximation,”
Philosophical Transactions of Royal Society of London,
Vol. 109, 1819, pp. 308-335. doi:10.1098/rstl.1819.0023

B. Verkhovsky and R. Rubino, “Corporate Intranet Secu-
rity: Packet-Level Protocols for Preventing Leakage of
Sensitive Information and Assuring Authorized Network
Traffic,” International Journal of Communications, Net-
work and System Sciences, Val. 5, No. 5, 2012, pp. 517-
524.

IJCNS


http://dx.doi.org/10.1016/S0890-5401(03)00118-4
http://dx.doi.org/10.1016/S0890-5401(03)00118-4
http://dx.doi.org/10.1016/S0890-5401(03)00118-4
http://dx.doi.org/10.1016/S0890-5401(03)00118-4
http://dx.doi.org/10.1016/S0890-5401(03)00118-4

