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ABSTRACT 

If electrons (e) and holes (h) in metals or semiconductors are heated to the temperatures Te and Th greater than the lat-
tice temperature Tp, the electron-phonon interaction causes energy relaxation. In the non-uniform case a momentum 
relaxation occurs as well. In view of such an application, a new model, based on an asymptotic procedure for solving 
the generalized kinetic equations of carriers and phonons is proposed, which gives naturally the displaced Maxwellian 
at the leading order. After that, balance equations for the electron number, hole number, energy densities, and momen-
tum densities are constructed, which constitute now a system of five equations for the electron chemical potential, the 
temperatures and the drift velocities. In the drift-diffusion approximation the constitutive laws are derived and the On-
sager relations recovered. 
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1. Introduction 

In semiconductor modeling three approaches are widely 
applied, according to the Physical situation we deal with. 
The microscopic approach is based on Monte Carlo 
simulations which can account for as many aspects of 
semiconductor Physics as we want. Nevertheless it is well 
known that these simulations are time consuming and 
therefore expensive. 

The mesoscopic approach is based on the Boltzmann 
transport equation (BTE). Several numerical techniques 
are developed in order to face a numerical solution of the 
problem. The distribution function depends on seven 
variables (momentum, position, time) so that the task is 
quite formidable. 

The macroscopic approaches are based on the weak 
form of the BTE, which give rise to a hierarchy of cou-
pled equations for the moments of the distribution func-
tion. Such approach requires a truncation at some order 
based on closure assumptions for the higher order fluxes 
and for the production terms for non-conservation equa-
tions. 

Most of the semiconductor macroscopic models have 
in common the assumption, at the basis of the closure 
approximation, that some higher moments can be calcu-
lated by utilizing a displaced Maxwellian. This approach 
would be justified if one had a systematic approximation 
for solving the Boltzmann transport equations, asymp-
totic with respect to some parameters, whose leading 

terms would be displaced Maxwellians. Such an approach 
is now available and the present model can be viewed as 
an improvement of a previous paper [1] on this topic, by 
considering a two-fluid description of the electron-pho- 
non system which occurs. 

On the other hand, as pointed out in ref. [2], fractal or 
power law distribution functions are of interest in solid 
state Physics. An example, given in ref. [2], is the ther-
malization, due to the electron-phonon interactions, of a 
non-equilibrium electron-phonon system which occurs if 
electrons and holes in metals or semiconductors are 
heated to a temperature Te greater than the lattice tem-
perature Tp In the non-uniform case a momentum relaxa-
tion occurs as well. 

In view of such an application we consider a general-
ized kinetic theory of carriers and phonons (GKTCP), 
recently proposed [3], which accounts for non-Gibbsian 
statistics. 

We start from the generalized Bloch-Boltzmann- 
Peierls coupled equations for the distribution functions of 
electrons and phonons. 

After that, by means of an expansion of both the un-
knowns and the interaction kernels with respect to a small 
parameter which accounts for the umklapp processes 
(with no momentum conservation), the lowest order 
equations show that the displaced Maxwellian approxi-
mation is justified. A closed set of two-fluid equations 
for the chemical potential of electrons, the temperatures, 
and the drift velocities can be constructed, which recalls 
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the extended thermodynamics model [4]. 
In the drift-diffusion approximation the constitutive 

equations can be written and the Onsager symmetry rela-
tions are recovered. 

We stress that in the present model 
1) The displaced Maxwellian approximation is not an 

ad hoc assumption but is justified by the expansion we 
apply. 

2) The statistics of both electrons, holes and phonons 
is left general, in order to account for non-standard cases. 

3) Phonons are treated as a partecipating species, which 
brings energy and momentum. 

4) The correct phonon-phonon, electron-phonon, elec-
tron-electron, hole-phonon, and hole-hole interaction 
kernels are utilized: we avoid the use of relaxation time 
approximations. 

The most qualifying point is (3). In fact the usual as-
sumption that the phonon field can be treated as a fixed 
background is dropped here, since “any thermal gradient 
give rise to transport of heat by the phonons, whilst an 
electric current, though carried by electrons, cannot fail 
to transfer some of its momentum to the lattice vibrations, 
and drag them along with it” (Ziman). Finally we can say 
that the present model can be seen as generalization of 
previous ones like [5], by means of the treatment of 
phonons. 

2. The GKTCP Equations 

Consider three interacting populations: electrons (e), with 
charge-e, holes (h), with charge e, and phonons (p). Let 

g  be the distribution function of phonons (quasi- 
momentum k, energy 

 , ,N k x t
 g ) of type g (i.e. branch g of the 

phonon spectrum) 
k
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where  is the electric potential. Observe that, since 
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At the right hand sides of the GKTCP equations for 
phonons [3] we have 
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s 
any qu umber of phonons ab-
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where 
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The first term corresponds to to processes with emis-
sion of a phonon having quasimomentum k by an elec-
tron having a given quasimomentum P and reverse proc-
es  
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mentum P and reverse processes. 
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The equations of order –1 for both phonons and elec-
trons are solved (see appendix) by 

   
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This simplification is valid when the drift energy is 
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  sinh p p   V V k

and, in the linear non-equilibrium th

g

 

    38πe e p p p e g 

2 ,

d
         ,

NN

g
p g

N

t     

    

   
    

     

 P k P

P
V V k

 

where * stands for equilibrium, that is V  = V  = V  (= 0 

          

gp 

h e p

in the present approximation) and h e p     (see Ap-
pendix). 

The equations of order 0 are the starting point of our 

0 1 d 0pt


 


n n  
  P v p         (4) 

By projecting the electron equation over p and the 
phonon ones on k we get the following balance equations 
for momentum ( ,  ,  ,  e e e e h   ): 

1 0    d dp

NN NU

n n
t

t

 

 




  



 

  Pp p v p p

 (5) 
0d d d

p

n n
e n

t


    
     

 
  P P

PE p + p p p p

1 0   d dg g g
g

NU NU

N N
t

N N


  



     

 k k u k k

       

 d ,g g

g pp p
t t 

            
  k k
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where we took advantage of 

d 0,   d 0,g

g pppp
t t

       
 P p p k k  

due to momentum -p

UN UN
Nn    

 conservation for N rocesses For the 

same reason we have 

2 d d 0,

NN NN

gNn    

g pp
t t



     P p p k k  

 

   

where 

    3d 2 , d d 8π .

NN

N
p p pe g

g g
                V V P k P k k p k  

 

m relaxation. 
Finally, by projecting the electron equation over 

g

p

N

t


 
  

k k

This term is responsible of momentu
, 

ion over h

P

the hole equat P  and the phonon ones over 

g  we get the following balance equations for energy 
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where we took advantage of 

,
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 
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  
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g pp
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 P p k  
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gn N    p

due to energy conservation for N-processes. For the same 

reason we have 

2 d d = 0,
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g
g
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 
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    
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where 
 

    2 3d 2 ,  d d 8π .
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n

t  


         
      

  p k P k P p k  

 

This term, responsible of the thermal relaxation, general-
izes the results which can be found in the literature [6], 

 introduced. 
osed set of equa-

by means of the functions “phi” and “psi” we
now a cl
,

Equations (4)-(6) constitute 
tions for the unknowns ,    V ( ,e p  ) which re-

4. Revised Drift-Diffusion Approximation 

 not vary appreciably  

over the momentum relaxation time [7]. Then the mo-
mentum balance equations read 

call the extended thermodynamical one [4]. 

 
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V V V X
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ensors BIn the drift-diffusion approximation we assume that the 
total momentum of the mixture does

e p

The t  , can be written in the following sym-
metric form 
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,
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1
, ,
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e eeB          

    
p p p p p p

 

1

and 

  3d d 8π .
g

p k  

2
2 4

5

2 2 ,

,
h h h h h

p p p

R T eR

R T

 


    

  

X E

X
 

where 

2 ,p gD
            p k p k k

 
Moreover 

2
2 12 2 ,e e e e eR T R     X E  

 1 , 1 ,e e h he e     E E + E E , and 

   d , 1,3R e h
            P p v p  
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    dR  
            P P p v p

, 2,4e h  
 

 d ,g g k u k  

where we can write 

1,3.R r I     

Since in the present approximation all the moments are 
calculated by means of drifted (generalized) FD or BE 
distribution functions, the electrical (Je) and thermal (ue, 
up) currents are given by [8] 
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ˆ

3
ˆ

4πh

e e         J v v V p p

By introducing the V  (see Appendix 2) we obtain 
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so that we get finally the following Onsager symmetry 
relations: 



K Kmm    

And, in the presence of and external applied field 

    K Kmm B B    

ew two-fluid model for electron-phonon system has 
 proposed, which is certainly related to the extended 
odynamical one [4], for the purpose of calculating 

gy and momentum relaxation rates which generalize 
e results available in the literature [6]. The treatment 
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Appendix 1 

Consider the equations at order –1: 

0,   0,    0.

NN NN NN

g

pp ee pp

N n n

t t t

       
              

p p  

By means of the usual methods of kinetic theory it can 
be shown that these conditions are equivalent to 

1 2 1 2 1  ,N N N N N N
g g g g g g       k k      (A1) 

       
1 1 1 1 1 , .           p p p p p p p p p p     (A2) 

Condition (A1) shows that  ln N N
g g   is a colli-

sional invariant for phonons. In the case of N-processes 

   ln .N N
g g p g  V k pT   

Condition (A2) shows that  ln  p p  is a colli-
sional invariant for electrons. In the case of N-processes 

N N

   ln N N   p p V k .e eT  p  

On the other rium condition for ep in-
ractions reads 

  ,N N
g g p p k  

 0g p    

hand the equilib
te

N N N N     p p p

which give 

       V V kp p 

or, since g  is even 

    0p p g p           V V k  

,   .e h p e h p     V V V  

Appendix 2 

Rewrite the equations as 

ˆ ˆ

ˆ ˆ ˆ
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pp p

so that we get finally the following Onsager symmetry 
relations: 

K K .mm    

And, in the presence of and external applied field 

   K Kmm B B    

since 
1,3.R r I     
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