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ABSTRACT 

Inconsistencies of some standard quantum mechanical models (Madelung’s, de Broglie’s models) are eliminated as- 
suming the micro particle movements on continuous, but non-differentiable curves (fractal curves). This hypothesis, 
named by us the fractal approximation of motion, will allow an unitary approach of the phenomena in quantum me-
chanics (separation of the physical motion of objects in wave and particle components depending on the scale of resolu-
tion, correlated motions of the wave and particle, i.e. wave-particle duality, the mechanisms of duality, by means of 
both phase wave-particle coherence and wave-particle incoherence, the particle as a clock, particle incorporation into 
the wave and the implications of such a process). Moreover, correspondences with standard gravitational models (Ein-
stein’s model, string theory) can be also distinguished. 
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1. Introduction 

We perform a critical analysis of some quantum mecha- 
nical models such as the hydrodynamic model (Made-
lung’s model), de Broglie’s theory of double solution etc., 
specifying both mathematical and physical inconsisten-
cies that occur in their construction.  

These inconsistencies are eliminated by means of the 
fractal approximation of motion (physical objects mov- 
ing on continuous and non-differentiable curves, i.e. frac- 
tal curves) developed in the framework of Scale Relativ-
ity (SR) [1-7]. The following original results are obtained: 
1) Separation of the physical motion of objects in wave 
and particle components depending on the scale of resolu-
tion (differentiable as waves and non-differentiable as par-
ticles)—see Sections 5-7; 2) Correlated motions of the 
wave and particle (wave-particle duality)—see Section 8; 
4) The mechanisms of duality (in phase wave-particle co-
herence, Sections 9 and 10; and 5) Wave-particle incoher-
ence, see Section 11; 6) The particle as a clock, its incor-
poration into the wave and the implications of such a proc-
ess—see Sections 12 and 13. 

The original results of this work are published in ref-
erences [8-12]. Explicitly, Eulerian’s approximation of 
motions on fractal curves is presented in [11,12], the  

hydrodynamic model in a second order approximation of 
motion in [8], wave-particle duality for “coherent” fractal 
fluids with the explanation of the potential gap in [9], the 
physical self-consistence of wave-particle duality in vari- 
ous approximations of motion and for various fractal cur- 
ves in [11,12]. A unitary treatment of both the problems 
listed above and their various mathematical and physical 
extensions are developed in [10]. 

2. Hydrodynamic Model of Quantum  
Mechanics (Madelung’s Model) 

Quantum mechanics is substantiated by the Schrődinger 
wave equation [13-16] 

2
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i

t m


   


 U           (1) 

where  is the reduced Planck’s constant, 0 the rest 
mass of the test particle, U the external scalar field 
and

 m

 the wave-function associated to the physical sys-
tem. This differential equation is linear and complex. 

Starting from this equation, Madelung [17,18] con-
structed the following model. One separates real and 
imaginary parts by choosing  of the form: 

     ,, , iS tt R t e  rr r            (2) 
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which induces the velocity field: 

0

v
m

 


S

,

                (3) 

and the density of the probability field: 

   2, t R t r r              (4) 

Using these fields one gets the hydrodynamic version 
of quantum mechanics (Madelung’s model) 

    0 0m v m vv
t


    


   U Q      (5) 

  0v
t

 
  


            (6) 

where 

2

02m


 

 


Q             (7) 

is called the quantum potential. Equation (5) corresponds 
to the momentum conservation law and Equation (6) to 
the conservation law of the probability’s density field 
(quantum hydrodynamics equations). 

We have the following: 
1) Any micro-particle is in constant interaction with an 

environment called “sub-quantum medium” through the 
quantum potential Q; 

2) The “sub-quantum medium” is identified with a 
non-relativistic quantum fluid described by the equations 
of quantum hydrodynamics. In other words, the propaga-
tion of the Ψ field from wave mechanics is replaced by a 
fictitious fluid flow having the density   and the speed 
v, the fluid being in a field of forces   U Q . More-
over, the following model of particle states [19-26], 
Madelung type fluid in “interaction” with its own “shell” 
(there is no space limitation of the fluid, though of the 
particle). 

3. De Broglie’s Theory of Double Solution. 
The Need for Introducing the Model of 
Bohm and Vigier 

One of the key observations that de Broglie left in the 
development of quantum mechanics, is the difference 
between the relativistic transformation of the frequency 
of a wave and that of a clock’s frequency [27-32]. It is 
well known that, if 0  is the frequency of a clock in its 
own framework, the frequency conferred by an observer 
who sees it passing with the speed v c  is 

2
0 1c     

This is what is called the phenomenon of “slowing 
down of horologes”. This phenomenon takes place due to 
the relative motion of horologes. On the contrary, if a 

with frequency 0

wave within a certain reference system is a stationary one, 

  and is noticed in a reference system 
animated with sp d v cee  , as compared with the first 
one, it will appear as essive wave that propagates 
in the sense of the relative motion, with frequency 

a progr

0

21








 

and with the phase speed 
2c c

v
v

   

If the corpuscle, according to relation W = hv, is given 
an internal frequency 

2
0

0

m c

h
  

and if we admit that within the appropriate system of the 
corpuscle the associated wave is a stationary one, with 
frequency 0 , all the fundamental relations of wave 
mechanics  in particular and h p  , in which p is the 
impulse of the corpuscle, are im ately obtained from 
the previous relations. 

Since de Broglie co

medi

nsiders that the corpuscle is con-
stantly located in the wave, he notices the following 
consequence: the motion of the corpuscle has such a na-
ture that it ensures the permanent concordance between 
the phase of the surrounding wave and the internal phase 
of the corpuscle considered as a small horologe. This 
relation can be immediately verified in the simple case of 
a corpuscle in uniform motion, accompanied by a mono-
chromatic plain wave. Thus, when the wave has the gen-
eral form 

   2π
, , ,

, , ,
i

x y z t
hx y z t e


  A  

in which A and Φ are real, the phase co rdance be-nco
tween the corpuscle and its wave requires that the speed 
of the corpuscle in each point of its trajectory be given by 
the relation 

0

1
v

m
    

Nevertheless it was not enough to superpose the cor-
puscle with the wave, imposing it to be guided by the 
propagation of the wave: the corpuscle had to be repre-
sented as being incorporated in the wave, i.e. as being a 
part of the structure of the wave. De Broglie was thus 
directed to what he himself called the theory of “double 
solution”. This theory admits that the real wave is not a 
homogeneous one, that it has a very small area of high 
concentration of the field that represents the corpuscle 
and that, besides this very small area, the wave apprecia-
bly coincides with the homogeneous wave as formulated 
by the usual wave mechanics. 
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The phenomenon of guiding the particle by the sur-
ro

dance” 
up

he corpuscle, instead of uni- 
fo

unding wave field results from the fact that the equa-
tions of the field are not linear ones and that this lack of 
linearity, that almost exclusively shows itself in the cor-
puscular area, correlating the motion of the particle with 
the propagation of the surrounding wave [30-33]. 

Nevertheless there is a consequence of “gui
on which we should insist. Even if a particle is not 

submitted to any external field, if the wave that sur-
rounds it is not an appreciably plain and monochromatic 
one (therefore if this wave has to be represented through 
a superposition of monochromatic plain waves) the mo-
tion that the guidance formula imposes is not rectilinear 
and uniform. The corpuscle is subjected by the sur-
rounding wave, to a force that curves its trajectory: this 
“quantum force” equals the gradient with the changed 
sign of the quantum potential Q given by (7). Therefore, 
the uniform motion of the wave has to be superposed 
with a “Brownian” motion having random character that 
is specific to the corpuscle. 

Under the influence of Q, t
rmly following one of the trajectories that are defined 

by the guidance law, constantly jumps from one of these 
trajectories to another, thus passing in a very short period 
of time, a considerably big number of sections within 
these trajectories and, while the wave remains isolated in 
a finite area of the space, this zigzag trajectory hurries to 
explore completely all this region. In this manner, one 
can justify that the probability of the particle to be pre-
sent in a volume element d of the physical space is equal 
to 

2
d . This is what ohm and Vigier did in their 

stat therefore they showed that the probability of 
repartition in 

 B
ement: 

2
  must take place very quickly. The 

success of this onstration must be correlated with the 
characteristics if “Markov’s chains” [19,34-36]. 

dem

4. Comments 

uilt the theory of the double solution, 

reover, Madelung’s theory [17,18] brings new prob- 
le

n 
Se

5. The Motion Equation of the Physical  
 

Th ers to the move-

In his attempt to b
de Broglie admits certain assertions [27-32]: 1) The fre-
quency of the corpuscle that is assimilated to a small 
horologe must be identified with the frequency of the 
associated progressive wave; 2) The coherence of the 
inner phase of the corpuscle-horologe with the phase of 
the associated wave; 3) The corpuscle must be “incorpo-
rated” into the progressive associated wave through the 
“singularity” state. Thus, the motion of the corpuscle 
“correlates” with the propagation of the associated pro-
gressive wave. Nevertheless, once we admit these state-
ments, de Broglie’s theory does not answer a series of 
problems, such as, for example: 1) What are the mecha-
nisms through which either the wave feature or the cor-
puscular one impose, either both of them in the stationary 
case as well as in the non stationary one? 2) The limits in 
the wave-corpuscle system of the corpuscular component 

as well as the wave one and their correspondence; 3) 
How is the “solidarity” between the motion of the cor-
puscle and the one of the associated progressive wave 
naturally induced? 4) What are the consequences of this 
“solidarity”? Others discrepancies are mentioned in [27- 
32]. 

Mo
ms. How can we built a pattern of a corpuscle (frame-

work + Madelung liquid) endlessly extended in space? 
Here are some of the “drawbacks” of the patterns i
ctions 2 and 3 which we shall analyze and remove by 

means of introducing the fractal approximation of the 
motion. 

Object in the Fractal Approximation of
Motion. The Eulerian Separation of  
Motion on Resolution Scales 

e fractal approximation of motion ref
ment of physical objects (wave + corpuscle) on continu-
ous and non differentiable curves (fractal curves). This 
approximation is based on the scale Relativity theory (RS) 
[1-7]. Thus, the fractal differential operator can be intro-
duced 

 2 12d̂ dˆ
d 2

FD
t

i
t t


         


 

V      (8) 

where is the complex speed field 

          (9) 
λ is the scale length, dt is the tempo

V̂  
ˆ iV = V - U     

rary resolution scale, 
  is the specific time to fractal-non fractal transition, 

d DF is the arbitrary and constant fractal dimension. 
Regarding the fractal dimension, we can use any of 
Hausdorff-Bezicovici, Minkowski-Bouligand or Kolmo-
goroff dimensions, etc. [3,5-7,36-46]. The only restric-
tion refers to the maintaining of the same type of fractal 
dimension during the dynamic analysis. The real part of 
the speed field V is differentiable and independent as 
compared with th resolution scale, while the imaginary 
scale U is non differentiable (fractal) and depends on the 
resolu on scale. 

Now we can apply the princi

an

e 

ti
ple of scale covariance by 

substituting the standard time derivate  d dt  with the 
complex operator d dt . Accordingly, uation of 
fractal space-time geodesics (the motion equation in 
second order approximation, where second order deri-
vates are used) in a covariant form: 

the eq

 
 2 12ˆ ˆd dˆ t   2ˆ ˆ 0

d 2

FD

i
t t



         
V V V   (10) 

This means that the sum of the local acceleration 

V V

ˆ t V , convection ˆ ˆV V  and “dissipation” 2 ˆ V  
cally compensa ny point of the arbit  

fractal chosen trajectory of a physical object. 
recipro te in a rarily
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Formally, (10) is a Navier-Stokes type equation, with 
an imaginary viscosity coefficient, 

2
d

D2λ t 
 1

2

F

η= i
τ τ



 
 

           (11) 

This coefficient depends on two temporary scales, as 
well as on a length scale. The existence of a pure imagi-
nary structured coefficient specifies the fact that “the 
environment” has rheological features (viscoelastic and 
hysteretic ones [47-49]. 

For 
 2 1

d
0

2

FD2λ t
×
τ τ


   
 

           (12) 

Equation (10) reduces to Euclidian form [10-12]: 

ˆV ˆ ˆ 0
t
  


V V             (13) 

and, hence, separating the real part from the imaginary 
one 

0
t


    


V

V V U U       (14a) 

0
t


    


U

U V V U       (14b) 

Equation (14a) corresponds to the law of the im
co

6. Rotational Motions and Flow Regimes of a 

Fo s, relation (10) with (9) 

pulse 
nservation at differentiable scale (the undulatory com-

ponent), while (14b) corresponds to the same law, but at 
a non differentiable scale (corpuscular component). As 
we will later show, in the case of irrotational movements 
(14) it will be assimilated to the law of mass conserva-
tion. 

Fractal Fluid 

r rotational motion ˆ 0 V
al part frothrough separating the re m the imaginary one, 

i.e. through separating the motions at a differential scale 
(undulatory characteristic) and non differential one (cor-
puscular characteristic), results [10]. 

 2 12 dλ t  V
0

2

FD

t



         
V V U U U

 
 (15a) 

 2 12 d
0

2

FD
t

t


 


           

U
U V V U V  (15b) 

According to the operator relations 

 
2 V

2
     

 
V V V V         (16a) 

 
2

2

 
      

 

U
U U U U

                U V V U U V V U U V  

(16c) 

Equations (15) take equivalent forms 

 

 
 

2 2

2 12

2 2t  

d
    0

2

FD
t



 
     

       
 

V V U
V V

U U U

 

  (17a) 

   

 
 2 12 d

    0
2

FD

t

t



    



       
 

U
V U V U

U V V

 

  (17b) 

We can now characterize the flow regimes of 
tal fluid at different scales, using some classes of Rey-
nolds numbers. At a differential scale we have 

the frac-

   differential nondifferential

                                                   

R = R D N

=

 




V V 2 2l

D D L
V

U U

(18)

   differential nondifferential

                                                   

R =

l
=

D D

 






U U U

U

R D N

  (19) 

with 

 2 12 d

2

FD
t

D

 


   
 

             (20) 

and at nondifferential scale. 

 

 

differential nondifferential differential transition

TDN

   R

l
R D

D D

 


   

U V


U

V

(21) 

 

 
2

differential nondifferential differential transition

TDN

   R

L
R D

D Dl

 


   



V U U

V

(22) 

In previous relations V, L, D, are the specific parame-
ters, while U, l, D are the parameters of the nondiff
tial scale. The parameters V, U are specific speeds
sp

eren-
, L, l 

ecific lengths and D is a viscosity coefficient. More-
over, the common “element” for R(D  N), R(N  N), 
R(TDN D) and R(TND D) is the “viscosity” which, 
through (20) is imposed by the resolution scale. 

Equations (15) are simplified in the case of the sta-
tionary motion for small R ynolds numbers. Thus, Equa-

 
e

      (16b) 
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tion (15) for small R(D N) becomes 

 2 12 d
0

2

FD
t


      
 


 

U U U       (23) 

and for small R(N ) N
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
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 


 

V V U       (24) 

Equation (15b) for small R(TDN D) takes the form  

 2 12 d
0

2
    

  
V U V       (2

FD
t


 

5) 

and for small R(TND D) 
 2 12 d

0
2

  


U V
FD

t


   





V       (26) 

7. Irotational Motions of a Fractal F
The Incorporation of the Associate Wave 

Fo

               (27) 

luid. 

Corpuscle through the Solidarity of 
Movements and Generation of  
Schrodinger Equation 

r irrotational motions 
ˆ 0 V  

which implies 

V 0,  0U            (28) 
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0 V    (29) 
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t

i
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
 

V

Since through (27) the complex speed fiel
pressed by means of a scalar function gradient 

ntities 




V

d is ex-
, 

ˆ  V                (30) 

Equation (29) taking into account the operator ide

,
t t 
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   

takes the form 

            (31) 
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  (32) 

or furthermore, through integration 

t
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i F t
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
  (33) 

where F(t) is an arbitrary function depending on
time. 

In particular, for  having the form 

ly on 

 2 12 FD 
d

n
t  


        (34) 

where  is a new complex scalar function, Equation  
(46), with the operator identity 

2 l
2

i    
  

 2
ln ln


     


         (35) 

takes the form: 

     4 2 2 14 2d d
0
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F FD D F tt t
i

t

     
24

       

 
 

(36) 

The Schrodinger “geodesics” can be obtained as a par-
ticular case of Equation (36), based on the following
po

 
 

 hy-
thesis (conditions of solidarity of the motion, incorpo-

rating the associated wave corpuscle): 1) The motions of 
the micro-particles take place on fractal curves with the 
fractal dimension DF = 2, i.e. the Peano curves [3,5]; 2) 

i
±d ξ are the Markov-Wiener type stochastic variables 

[3,5] that satisfy the rule 
2

ξ di l ild d t   


        (37) 


3) Space scale  and temporary one a
the Compton scale 

re specific for 

2
,

m c m c
  

 
          (38) 

0 0

 

with m0 the rest mass of the microparticle, 
light in vacuum and  the reduced

c the speed of 
 Planck constant. 

The parameters (38) should not be understood as “struc-
tures” of the standard space-time, but as standards of 
scale space-time; 4) Function F(t) from (36) is null. Un-
der these circumstances, (36) is reduced to the standard 
form of Schrodinger’s Equation [13,15] 

2

0

0
2

i
m t


  


             (39) 

In such a context, the scale potential of the com
speeds plays the role of the wave functi

Associated 

Su triction 
(2 al part with the imaginary one, 

plex 
on. 

8. Extended Hydrodynamic Model of Scale 
Relativity and Incorporation of 
Wave Corpuscle through Fractal  
Potential. The Correspondence with 
Madelung Model 

bstituting the complex speed (9) with the res
7) and separating the re

we obtain the set of differential Equations [10] 

 
2

0 0 2
m m

t

 
      

V V
Q        (40a) 

 
 2 12U d

0
2

FD
λ t

t

          
V U V    (40b) 

where Q is the fractal potential, expressed as follows: 
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 2 12 2
0 0 d

2 2 2

FD
m m λ t


      
 

U
Q

 
U     (41) 

For 
iS

ρe               

with 

  (42) 

  an amplitude and S a phase, then (34) under 
rm the fo

 

 ln
iS

ρe  
2 12 d FD

λ t
i


     

e complex speed fields of components 

  

implies th
 2 12 d

V
2

FD
λ t

S


   
  

       (43a)    

 2 12 d FD
λ t


 

ln
2

  
 

U 
 

       (43b) 

From the perspective of Equation (43), the Equation 
(40) keeps its form, and the fractal potential is given by 
the simple expression 

 2 12

0

d FD ρλ t
m

ρ



ations (43), Equation (40b) takes 
the form: 

    
 

Q
 

        (44) 

Again through Equ

ln
ln 0

ρ
ρ

t

      
V V  

ough integration with 



or, still, thr 0ρ   

  ρ
ρ T t

t


  


V              (45) 

enden unction 
Equation (40) corresponds to the impulse conservation 

law at differential scale (the classical
pulse conservation law at non differential scale is ex-

ty den- 
si

with T(t), an exclusively time dep t f

 one), while the im-

pressed through (45) with   0T t  , as a probabili
ty conservation law. 
Therefore, equations 

 0m
t

  
     

V V
V Q      (46a) 

2

2
  

  0ρ
t


 


V


           (46b) 

with Q given by (41) or (44) forms the set of equations 
of scale relativity extended hydrodynamics in fractal di-
mension DF. We mention that in ref
model has been extended only for D  = 2. The fractal 

erences [3,5-7] the 
F

potential (41) or (44) is induced by the non differenti-
ability of space-time. 

In an external scalar field U, the system of Equation 

(46) modifies as follows: 

 
2

m
  


V V

0 2t


   
     Q U      (47a) 

          0
ρ

ρ
t
 


V           (47b) 

Now the quantum mechanics in hydrody
mula (Madelung’s model [17]) is obtained as a particular 
case of relations (47), using the follow
The motion of the micro-particles takes place on Peano 
cu

namic for-

ing hypothesis: 1) 

rves with DF = 2; 2) i
±d ξ  are the Markov-Wiener 

variables [3,5-7]; 3) The time space scale is a Compton 
one. Then, (38) have the expressions 

0 0

, ln
2

S ρ
m m

   
 

V U        (48) 

and (41), 
2

0

2 2

m
    

U
Q  U   

anisms” of Duality through  
Coherence in Corpuscle-Wav

In the stationary case, the system of Equations (46(a) and 

 

       (49) 

9. “Mech
e Phase 

(b)) become [10] 

2

0
 

2
   

V
Q           (50a) 

 

  0ρ V               (50b

or, still, through integration 

) 

2

const.            (51a) 
2

E  
V

Q

           (51b) 

Let us choose the null power den
there is no impulse transport at differe
corpuscle and wave. Moreover, for 

      ρV const.

sity in (51b). Then 
ntial scale between 

0 . ρ

0V                    (52) 

which implies through relation (43) 

const.S                   (53) 

In other words, the fluid 
h a state is specific 

super-fluids, etc. [14,52]. Unde
ph

becomes coherent (the fluid 
particles have the same phase). Suc
for quantum fluids [50,51], such as superconductors, 

r such circumstances, the 
ase of the corpuscle considered as a small horologe 

equals the phase of the associated wave (coherence in 
corpuscle-wave phase). 

At non-differential scale, Equation (51), with restric-
tion (52) takes the form 
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2 2
0 02m D ρ m

   
U

Q 0 constm D E   U (54a) 
2ρ

 2 12 d
  

FD
t


   
 


 

D   (54b) 

or, still, by applying the gradient operator 

 ρ A                 (55) 

2
0

2

E

m D
  A A     

0

        (56) 

We distinguish the following s
1) For E > 0 and with substitution 

ituations: 

2 2
02m D

1 E
               (57) 

Equation (56) becomes 

2

1
0  


A A               (58) 

Therefore: a) The space oscillations of field A and, 
therefore the space associated with the motion of coher-
ent fluid particles is endowed with
neities (of lattice type). In other words, the field  crys-
ta

 regular non homoge-
A

llizes the space. The one dimensional space “crystal” 
has the constant of the network 

  1 22 12
02d

2

FD
mλ t

E


      

    
        (59) 

that depends both on the “viscosity” – iη given by (11) 
and on the energy of the particle; b) The one dimensional 
geodesics of the “crystallized” space giv
pression 

en by the ex-

 2 2( ) sinρ x kx  A            (60) 

implies both fractal speed 

 dln
2 tg δ

dx

ρ
D = Dkc kx+

x
U        (61) 

and fractal potential 

 

 

2
2 20

0 0

2 2
02

d
2 ctg

2 d
1

2

x x
x

m
m D m D k

x

m D k
kx

    


 

U U
Q

(62) 

with A and , the integration constants 

2 kx  

2 2
0       2

sin
m D k


1

k 


                  (

e m icles on Peano 
 2

Therefore, through (62), und

63) 

c) For th ovements of micro part
curves (DF = ) at Compton scale 

02D m   

er the form 
2

2 2
0

0

2 ,
2

x
x m D k

m
 Q          (64a) 

p

02xp m Dk              (64b) 

De Broglie “quantum” impulse is found 

xp 



       

d) The dominant of the wave characteristic is achieved 
by the “self diffraction” mechanism
on f constant Λ 
in (61) with no-
tations 

          (65) 

 of the fractal field, ρ, 
 the one dimensional space “crystal” o
duced by the same field. Indeed, relation 

,kx                (66a) 

1
k 


               (66b) 

In approximation 1  , i.e. for tg sin   and us-
ing Nottale’s relatio ] n [1-7 2 xD nλU  it takes the 
common form (Bra relation) gg’s 

sin nλ                  (67) 

This result is in concordanc
pr 3-55] s impulse 

 a
6] sel

n of the space) appears 
when the energy of the system is
im

e with the recently ex-
essed opinion in [5 ; e) There i transfer 

on the fractal field between the corpuscle nd the wave; f) 
According to Taylor’s criterion [5 f-organization 
(crystallization and self diffractio

 minimal. This can be 
mediately verified using relation (51a). 
2) For E = 0, Equations (51a) and (56) have the same 

form 

=0  0ρ  A              (68) 

It follows that: a) The geodesics are expressed through 
harmonic functions and the particle finds itself in a criti-
ca

ransition; b) In the one dimensional case, the ge-
odesics have the form 

l state, i.e. the one that corresponds to the wave-cor- 
puscle t

 x kx                 (69) 

which induces the fractal speed field 

x

D

kx


 
U                (70) 

namely the null value of the fractal potential 

   

2

2
0

m mD D2
0 0

22 2x
kx kx

  
   

Q       (71) 

c) Although the energy is null,
fer between corpuscle and wave on the fractal component 

3) For E < 0 and with notations 

 there is impulse trans-

of the speed field. 
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2 2
0

1
,   

2

E
E E

m D



           (72) 

Equation (56) takes the form 

2

1
0  A A              (73) 



The following aspects result: a) Field A is expelled 
from the structure, its penetration depth being 

  1 22 12
0d

 
2

t    
 


 

FD
2m

E


 
 
 

       (74) 

b) The one-dimensional geodesics
scribed through function 

 of the space are de-

   2 2 A shρ x kx              (75) 

and lead to the fractal speed 

 2x Dkcth kx U             (76) 

the fractal potential respectively 

 

 

22 2
0

2

2        2
k

m D
22

0 02

2 cth

2
sh

x m D k kx

m D k
kx

   

 
 

Q

     (77) 

where ,A  are two integration constants 

1
k 


                  (78) 

c) The dominant of the corpuscular chara
accomplished by means of “self-expulsion” mechanism 
of the fractal field from its own structure that it generates 

 the h being 

cteristic is 

(that is corpuscle), the penetration dept  . 
The identification 

2
2 p2

02x m D k  Q            (79) 
02m

implies the purely imaginary impulse 

02p im Dk                (80) 

that suggests ultra rapid virtual states (ultra rapid motions 
in the wave field, resulting in the “singularity” of the 
field, i.e. the corpuscle). As a matter 
sider de Broglie’s original theory (motions on Peano 

le), singularity (the 
corpuscle) moves “suddenly” and c
field, the wave-corpuscle coupling

 

he 

cle in a potential well with infinite width and walls. 

of fact, if we con-

curves with DF = 2, at Compton’s sca
haotically in the wave 
 being accomplished 

through the fractal potential. The corpuscle “tunnels” the 
potential barrier imposed by the field of the associate 
progressive wave, generating particle-antiparticle type 
pairs (ghost type fields (Bittner E.R., 2000)). Neverthe-
less this model cannot specify the type of the physical 

process by means of which we reach such a situation: it 
is only the second quantification that can do this [50, 
51,54-57]; d) There is an impulse transfer between the 
corpuscle and the wave on the fractal component of the 
speed field, so that all the attributes of the differential 
speed could be transferred on the fractal speed. 

All the above results indicate that wave-particle dual-
ity is an intrinsic property of space and not of the parti-
cle. 

10. Wave-Corpuscle Duality through  
Flowing Stationary Regimes of a  
Coherent Fractal Fluid in Phase. T
Potential Well 

According to the previous paragraph, let us study the 
parti
Then the speed complex field has the form [8-12] 

ˆ 0 2 ctgx x x

n n
i iD x

a a

           
   

V V U     

 generates the frac

(81) 

and tal potential (the energy of the 
structure) under the form of the noticeable 

2
2

0

π
2n n

n
m D E

   Q         
a 

  (82) 

The last relation (82) allows the implementation of 
Reynold’s criterion 

 
1

2c na EV 2

2 π,    cR n n
D m


    


V       (83) 

For movements on Peano curves (DF = 2) at Compton 
sc

0 

ale  02m D    (83) with substitutions 

0m ,    c xP a x  V             (84) 

and n = 1 reduces to Heinsenberg’s relation of uncer-
tainty under equal form 

2xp x
h

                (85) 

while fo n  r it im
rion of evolution towards chaos [58,5

ractal fluid that is coherent in 
phase. Thus, the laminar flow (small n) induces a domi-
nant ondulatory characteristic, whil
(big n) induces a dominant corpuscular characteristic. 

plies a Ruelle-Takens’ type crite-
9]. Therefore, the 

wave-corpuscle duality is accomplished through the 
flowing regimes of a f

e the turbulent flow 

11. Wave-Corpuscle Duality through 
Non-Stationary Regimes of an  
Incoherent Fractal Fluid 

In the one dimensional case the equations of hydrody-
namics (46) take the form 
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 
2

2 1 21     V V
0 0 1/2 2t x x x     

2m m D       


V (86a) 

  0
t x

 
 

 
V

               (86b) 

           (87a) 

Imposing the initial conditions 

 , 0x t  V constc   

 
2

01 2

1
, 0

π

x

x t e  


  
         (87b) 

and on the frontier 

; ,x ct t V c             (88a) 

   , 0t       (88b) ,x t x     

The solutions of the system (86), using the
[60], have the expressions 

 method in 

   2

2

x ct 
(89a) 

1 22
21 2 2

1
, exp

22
π

x t
DD

t

 
 
             





t
    

2
2c t

 

2
2

2

       
2

 

D
x

D
t

 
 
   
 






V             (89b) 

The complex speed field is obtained 
2

2

2
2 2

2

ˆ 2
2

 

D
c tx

x ct
i iD

D
t

2
2D




 
 

        
     
 

V V U (90) 

and the field of fractal forces 

t  
 

 2
0

2
4

x ct
F m D




 
2

2 2D
t


   
   

         (91) 

Therefore: 1) Both differential scale speed V and non- 
differential one U are not homogeneous in x and t. Under 

he corpuscle is assimilated 
tructure, so that it joins the 

movement of the corpuscle with the pro
associated progressive wave; 2) The timing o
ments at the two scales, V = U implies the space-time 
homographic dependence 

the action of fractal force F, t
to the wave, is a part of its s

pagation of the 
f the move- 

2 2

2

2
1

22 1

D
t

c
x

DD t

 





            (92) 

in the field of forces 

0

2
2

2

2

2 2
1

m Dc
F

D D
t t




         



     (93) 

    

Considering that the type (92) chan
gravitational interaction [61,62], it fo
darity of the corpuscle movement with the movement of 

essive wave is accomplished by 
iate gravitational field of the physi-

cal object; 3) The uniform movement V = c i
for null fractal force F = 0 and fractal speed U 
condition x = ct. The fractal forces in the semi space. 

ges are implied in 
llows that the soli-

the associated progr
means of the appropr

s obtained 
= 0, using 

x x    and x x    are reciprocally compen-
sated. 

x

x
F F




  

This means that the corpuscle in “free” motion simul-
taneously polarizes the “environment” of the wave be-
hind x ≤ ct and in front of x ≥ ct, in such a manner that 
the resulting force has a symmetrical distribution as com-
pared with the plane that contains the position of the no-

ject x = time moment t. Under such 
circum
ticeable ob  ct at any 

stances, the physical object uniformly moves (the 
corpuscle is located in the field of t e associated wave). 

12

h

. The Corpuscle as a Horologe and Its  
Incorporation in the Associated Wave.  
Implications 

According to de Broglie’s theory, the corpuscle must be 
associated to a horologe having the frequency equal to 
that of the associated progressive wave. Mathematically 
we can describe such an oscillator through the differen-
tial equation 

2 0q q                 (

re ω defines the natural frequency of the oscillator as 
 dictated by the 

94) 

whe
it is environment (the wave), and the 

ory within the ensemble that structurally 
represents the environment (the i

point above the symbol refers to the differential as com-
pared with time. The most general solution of Equation 
(94) generally depends not on two arbitrary constants, as 
it is usually considered, but on three: the initial relevant 
coordinate, the initial speed and the phase of the har-
monic oscillat

solated oscillator is an 
abstraction). Such a solution gives the relevant co-or- 
dinate 

     i t i tq t he he             (95) 

where h  refers to the complex conjugate of h and   
is an initial phase specific to the individual movement of 
the oscillator. Such a notation allows us to solve a prob-

 lem that we could name “the oscillators with the same 
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frequency”, such as Planck’s resonators’ ensemble—the 
basis of the quantum theory arguments in their old shape. 
That is, given an ensemble of oscillators having the same 
frequency in a space region, which is the relation be-
tween them? 

The mathematical answer to this proble
 a

chwarts’ non linear equation [63-65] 

m can be ob-
tained if we note that what we want here is to find  
mean to pass from a triplet of numbers—the initial con-
ditions—of an oscillator towards the same triplet of an-
other oscillator with the same frequency. This process 
(passing) implies a simple transitive continuous group 
with three parameters that can be built using a certain 
definition of the frequency. We start from the idea that 
the ratio of two fundamental solutions of Equation (94) is 
a solution of S

 
2

2 20 0
0

0 0

d 1
2 ,   

d 2
i tt e

t
 

 
 

   
     

   

 
 

    (96) 

This equation proves to be a veritable definition of 
frequency as a general characteristic of an ensemble of 
oscillators that can be scanned through a continuous 
group of three parameters. Indeed Equation (96) is in-
variant to the change of the dependent variable 

   
 

0a t b
t





            

0 dc t 
 (97) 

which can be verified through direct calculati

ange and 
cillator, by means of associating to each oscillator a 
nal  through equation 

on. Thus, 
 t

an os
perso

characterizes another oscillator with the same fre-
quency which allows us to say that, starting from a stan-
dard oscillator we can scan the whole ensemble of oscil-
lators of the same frequency when we let loose the three 
ratios a:b:c:d in Equation (97). We can make a more pre-
cise correspondence between a homographic ch

 t

   
 

0 2
1

0

          
1

ih hk t
t k e

k t





 

 


     (98) 

Let us notice that 0 1,  can be freely used one instead 
the other, which leads to the next group of changes for 
the initial conditions 

d

ah b
h

ch

 


               (99a) 

 
d

ah b
h

ch

 


              (99b) 

d

d
k k

ch



             (99c) 

, , ,  a b c d R

ch  

              (99d) 

This is a simple transitive group: one and only one 
change of the group (the Barbilian group [63,64]) corre-

sponds to a given set of values (a/
This group admits the 1-diffe

invariant through the group [63] 

c, b/c, d/c). 
rential forms, absolutely 

 0 1 2

d d d dh
,

k h h
i

k h h k h h

 
      

       (100) 

and the 2-differential form 

 

2
2

2
0 1 22 2

d d d
4 4

d d d
,

const.

s k 


    

 a parallelism of direc-
tions in Levi-Civita manner [63] 

h h h h
k h h h h



  



 

 (101) 
respectively. 

If we restrict the definition of

d
d  

u

v
                (102) 

with 

, ,  e ih u iv h u iv k              (103) 

Barbilian’s group invariates the metrics of Lobace- 
vski’s plane [63], 

2 2

2 2

d d d 2s u v

v
Metrics (104) coincides with t


            (104) 

he differential invariant 
that is built with the complex scalar field of the speed, 

  

 


2
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2
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d
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d
      4 d
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D s D
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
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(105) 

dentities 

 

which admits the i

,D                (106a) 

d
2d d   = ,s

v
             (106b) 

d ln d ln  v

u

            (106c) 

Now, through a Matzner-Misner type principle one 
can obtain Ernst’s principle of generating the sym
cal axial metrics [61,62] 

metri-

 
1 2 3d 0

h h
x

 
            (106d) 

where  = det  with  the metrics of the “environ-
ment”. 

Therefore, the incorporation of the corpuscle in the 
wave, considering that it functions as 
same frequency as that of the associated progressive
w

2

h h
 




a horologe with the 
 

ave, implies gravitation through Einstein’s vacuum 
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equations (equivalent to Ernst’s principle (106d)). On the 
contrary, when the frequencies do not coincide, there is 
an induction of Stoler’s group from the theory of coher-
ent states (the parameter of the chang
frequencies when creation and annihilation operators 
refer to a harmonic oscillator [63] 

 result (92). Moreover, if then the 
Er

d; 
es of a rotational fractal fluid 

corporation of the particle into the associated 
w

studied the wave-particle duality by stationary
flo

n-stationary flow regimes of an incoherent frac-
ta

ciated 
re

knowledgements 
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emiei Publishing 
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ynamic Interpretation of Quan-

993. 

e is the very ratio of 

Let us note that the homographic changes (99) gener-
alize the , , ,  є a b c d 

nst type equations describe super-gravitation N = 1 
[65]. 

13. Conclusions 

Finally we can display the conclusions of this chapter as 
follows: 

- A critical analysis of the hydrodynamic model of 
Madelung and of the double solution theory of de 
Broglie’s theory of double solution was performed—de- 
parting from here, we built a fractal approximation of 
motion; 

- We got the equation of motion of the physical object 
in the fractal approximation and the Eulerian case was 
studie

- The flowing regim
studied; 

were stitute of Iasi, Vol. LV, No. 3-4, 2005, pp. 77-82.  

[9] A. Harabagiu, O. Niculescu, M. Colotin, T. D. Bibere, I. 
Gottlieb and M. Agop, “Particle in a Box by Means of 
Fractal Hydrodynamic Model,” Romanian Reports in Phy- 
sics, Vol. 61, No. 3

- We studied the irrotational regime of a fractal fluid 
and the in

ave by generating a Schrödinger equation; 
- The extended hydrodynamic model of scale relativity 

was built and the role of the fractal potential in the proc-
ess of incorporation of the particle into the wave, speci-
fied; 

- We indicated the mechanisms of wave-particle dual-
ity by their in phase coherences; 

- We  

Jou

w regimes of a fractal fluid which is coherent in phase, 
and by no

l fluid by means of a “polarization” type mechanism; 
- Considering the particle as a singularity in the wave, 

we showed that its incorporation into the asso wave 
House, Bucureşti, 1984. 

[14] B. Felsager, “Geometry, Particles and Fields,” Odense 
Univer

sulted in Einstein’s equations in vacuum—contrary, its 
non-incorporation led to the second quantification; 
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