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ABSTRACT 

The nonlinear propagation of waves (specially solitary waves) in an ultra-relativistic degenerate dense plasma (contain-
ing ultra-relativistic degenerate electrons and positrons, cold, mobile, inertial ions, and negatively charged static dust) 
have been investigated by the reductive perturbation method. The linear dispersion relation and Korteweg de-Vries 
equation have been derived whose numerical solutions have been analyzed to identify the basic features of electrostatic 
solitary structures that may form in such a degenerate dense plasma. The existence of solitary structures has been also 
verified by employing the pseudo-potential method. The implications of our results in astrophysical compact objects 
have been briefly discussed. 
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1. Introduction 

Now-a-days, a great deal of interest has been grown in 
understanding of the basic properties of matter under 
extreme conditions (occurred by significant compression 
of the interstellar medium) [1-6], which are found in 
some interstellar compact objects. One of these extreme 
conditions is high density of degenerate matter in these 
compact objects which have ceased burning thermonu-
clear fuel, and thereby no longer generate thermal pres-
sure. These interstellar compact objects are contracted 
significantly, and as a result, the density of their interiors 
becomes extremely high to provide non-thermal pressure 
via degenerate fermions/electron-positron pressure and 
particle-particle interaction. These compact objects sup-
port themselves against gravitational collapse by cold, 
degenerate fermions/electron-positron pressure, having 
their interiors close to a dense solid (ion lattice sur-
rounded by degenerate electron-positrons, and possibly 
other heavy particles like dust) or close to a giant atomic 
nucleus (a mixture of interacting nucleus and electron- 
positron and possibly other heavy elementary particles 
and condensate or dust). 

The degenerate fermion number density in such a 
compact object is so high that it follows the equation of 
state for degenerate fermions mathematically explained 
by Chandrasekhar [3] for two limits, namely non-rela- 
tivistic and ultra-relativistic limits. The degenerate elec-
tron equation of state of Chandrasekhar is 5 3

j j  (“j” 
stands for electron and positron) for non-relativistic limit 

and 4 3
j j  for ultra-relativistic limit, where P n jP  is 

the degenerate electron pressure and jn  is the degener-
ate fermion number density. We note that the degenerate 
pressure depends only on the number density of the spe-
cies, but not on their temperatures. The quantum effects 
on linear [7-13] and nonlinear [11,14,15] propagation of 
electrostatic and electromagnetic waves have been inves-
tigated by using the quantum hydrodynamic (QHD) 
model [13,16], which is an extension of classical fluid 
model in a plasma, and by using the quantum magneto- 
hydrodynamic (QMHD) model [7,14,15], which involve 
spin-1 2  and one-fluid MHD equations. 

Recently, a number of theoretical investigations have 
also been made of the nonlinear propagation of electro-
static waves in degenerate quantum plasma by a number 
of authors, e.g. Hass [17], Misra and Samanta [18], Mis-
tra et al. [19] etc. However, these investigations are 
based on the electron equation of state 5 3

j j  which 
is valid for the non-relativistic limit. To the best of our 
knowledge, no investigation for a dusty electron-positron 
plasma has been made of the nonlinear propagation of 
electrostatic waves based on the degenerate fermion 
equation of state (

P n

4 3
j j ) which is valid for ultra- 

relativistic limit. Therefore, in this Brief Communication, 
we consider a degenerate dense plasma containing cold 
ion fluid and ultra-relativistic degenerate electrons and 
positrons following the equation of state 

P n

4 3
j j , and 

study the basic features of the solitary waves in such an 
ultra-relativistic degenerate dense plasma. The model is 
relevant to compact interstellar objects, particularly to 

P n

P n
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white dwarfs which have almost spherical shape. 

2. Governing Equations 

We consider inertialess ultra-relativistic degenerate elec-
tron-positron, cold, mobile, inertial ion fluid, and nega-
tively charged static dust in our four component plasma 
system. Degenerate pressure of electron-positron fluid 
has been expressed in terms of density by using the ul-
tra-relativistic limit. The nonlinear dynamics of the elec-
trostatic perturbation mode in such a dusty e-p-i plasma 
system is described by the following equations. 
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t x

sn
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where sn
= , ,

 is the number density of the plasma species “s” 
( s e p i  for electrons, positrons, and ions respectively) 
normalized by its equilibrium value 0sn , su  is the fluid 
speed (of the species s) normalized by the ion-acoustic 

speed  1 22=i e iC m c m ,   is the electrostatic wave 
potential normalized by ( 2

em c e ), x is the space variable 

normalized by s   1 22 2
0= 4π in e 

  s em c , t is the 

time variable normalized by the ion plasma period 

 1 21 2
0= 4πi im n e

pi

= o

. 

The constants K   and =' '
oK   with 

 o e=K m c , 1 3= c eon  , 1 3='
c pon   ( =c ehc m ). 

We can express '  in terms of   as ='   with 

 1 3
= eon n epo . Here,  , p , and d  are respec-

tively the density ratio ( eo ion n ), ( po ion n ), and 
( d do ioZ n n ). 

3. Derivation of K-dV Equation 

To examine electrostatic perturbations propagating in the 
ultra-relativistic degenerate dense plasma by analyzing 
the outgoing solutions of Equations (1)-(5), we first in-
troduce the stretched coordinates [20] 

 1 2= ,px V t            (6) 

3 2= ,t                (7) 

where pV  is the wave phase speed ( k  with    be-
ing angular frequency and  being the wave number of 
the perturbation mode), and 

k
  is a smallness parameter 

measuring the weakness of the dispersion ( 0 < < 1 ). 
We then expand , , in en pn iu, , and  , in power 
series of  : 

   1 22= 1 ,i i in n n   

   1 22= 1 ,e e en n n 

           (8) 

   

   1 22= 1 ,p p pn n n 

           (9) 

   

   1 22= ,i i iu u u 

          (10) 

  

   1 22= ,   

            (11) 

            (12)   

and develop equations in various powers of  . To the 
lowest order in  , Equations (1)-(12) give 

   1 1=i pu V    1 1 2=i pn V    1 1=en, ,   , 

   1 1= '
pn    =p e pV     , and . 

We are interested in studying the nonlinear propaga-
tion of these dispersive dust ion-acoustic type electro-
static waves in a degenerate plasma. To the next higher 
order in  , we obtain a set of equations 
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Now, combining Equations (13)-(17) we deduce a 
modified Korteweg-de Vries equation 

 
   1 1 13

1
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2

4 2 2

3 1
= ,

2 9 9
p pe

'
p

V
A

V


 

 
          (19)  

  
3

=
2
p .

V
B

u

              (20) 

For a moving frame moving with a speed 0 , the sta-
tionary solitary wave solution of Equation (18) is 
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 1 = 2sech ,m

   
  

0= u

          (21) 

where the special stretched coordinates,    , the  

potential, 0= 3m u A , and the width,  1 2

0= 4B u

 1

 . 

4. Numerical Analysis 

It is obvious from Equation (19) and Equation (21) that 
the degenerate plasma under consideration supports com-
pressive electrostatic solitary waves which are associated 
with a positive potential. It is observed from Equations 
(19)-(21) that the amplitude ( m ) of these solitary 
structures is directly proportional to square root of  , 
i.e. proportional to 1 6

eon  and their width ( ) is directly 
proportional to 


3 2 , i.e. to the square root of eo . It is 

also seen that the amplitude (width) increases (decreases) 
with the speed 0 . The electrostatic solitary profiles are 
shown in Figures 1 and 2. The compressive dust ion- 
acoustic solitary wave (DIASW), which can be treated as 
positive DIASW in a dusty e-p-i plasma system, is theo-
retically investigated. 

n

u

 

 

Figure 1. The solitary profile represented by Equation (21) 
with u0 = 0.1 showing the effect of α. 
 

 

Figure 2. Showing the effect of β on the solitary profiles 
represented by Equation (21) with u0 = 0.1. 

5. Derivation of Energy Integral 

The existence of DIASWs can be verified by using 
pseudo potential approach.To do so we first make all 
independent variables depend on a single variable   by 
the transformation x Mt  (where = M  is the Mach 
number, solitary wave speed/ iC ). This transformation 
allows the steady state condition ( = 0t 

1n  0u  0

), and the ap-
propriate boundary conditions for localized perturbation 
(viz. s , s , and    at    ) allow 
us to write Equations (1)-(5) as 

2

1
= ,

2
1
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Now, substituting Equations (22)-(24) into Equation 
(25), multiplying the resulting equation by d d ,   and 
applying the boundary condition, d d 0   at     , 
we obtain 

 
2
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 in which  2= 3 4 3 4'K M     e p  is the in-
tegration constant chosen in such a way that   = 0V 

= 0
 

at  . Equation (26) can be regarded as an “energy 
integral” [21,22] of an oscillating particle of unit mass, 
with pseudo-speed d d  , pseudo-position  , pseudo- 
time   , and pseudo-potential V  . This equation is 
valid for DIASWs in a dusty e-p-i plasma. 

6. Numerical Analysis 

 VThe expansion of   around = 0  is 

  2 3 4
2 3 4= ,V C C C      

2C 3C 4C

      (28) 

where , , and  are given by 

2 22

1
= ,C

M
                 (29)   
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We now analyze Equations (27) and (28) with the help 
of Equations (29)-(31), and investigate the basic proper-
ties of SWs in a dusty e-p-i plasma. To study the possi-
bility for the formation of the SWs, as well as their basic 
features (if they are formed), we first discuss the general 
conditions for the existence of the SWs. These conditions 
are 

1)  
=0

d
0

d

V








K

 

0 =V , which are already satisfied 

by the equilibrium charge neutrality condition, and by the 
boundary condition chosen to obtain the value of the in-
tegration constant (  ). 

2) 
2d V

2

=0

< 0
d






, which will be satisfied if 

2

. .  i e M

c

2

< 0

1
> c

C

M


            (35) 

where M  is the critical Mach number. 
3) , which will be satisfied if  0 = 0mV  
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where   is the amplitude of SWs. 

4) 
 

= m 
SWs we mean compressive SWs, i.e. SWs with positive 
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Conditions 1)-3) must be satisfied for SWs. However, 
in addition of these three, the first (second) of 4) is re-
quired only for positive (negative) SWs. Therefore, the 
minimum (critical) value of M for existence of SWs is 
determined by Equation (35). Hence the final condition 
reduces to 

   (39)

 

Now, using Equations (36) and (38), one can finally 
obtain 

2

3

2
= ,m

C

C
 

< 0C

C = 0C

30= 2.95 10n 
30= 0.25 10Z n 

= 4.3

                (40) 

It is obvious from condition 2) that 2 . Therefore, 
polarity of the nonlinear potential structures (SWs) de-
pend on the polarity of 3 . Thus, 3  will give the 
boundaries separating the parametric regimes for the 
positive and negative SWs. 

The solutions of Equation (39) for low speed DIA 
waves is plotted for io  and 

d do  (in Figure 3). It is observed that 
when   and M exceeds cM  (from  
to ), the existence of DIASWs can be verified. 
It can be said that conditions 1)-3) has been satisfied for 
DIASWs. However, in addition of these three, the first 
(second) of 4) is satisfied for positive (negative) SWs. In 
other words, any point above the solid curve ( 2 = 0C ) 
co onds to the existence of DIASWs; and any point 
above (below) the dashed ( 3 = 0C ) cu rresponds to 
the existence of the negative (positive) SWs. The number 
densities have been chosen randomly to obtain SWs from 
the standard value [23]. It has been observed from Fig-
ure 4 that both positive and negative solitary waves co-
exist. Figure 4 also shows the formation of solitary 
waves everywhere except the boundary condition, 

= 0.636M
= 1.528M

rresp
rve co

 V   
around = 0 . 
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7. Discussion 

The solitary profile from the solution of K-dV equation 
includes compressive SWs, i.e. SWs with positive poten-
tial (shown in Figure 1). It is the exact solitary profile 
created due to the balance between the nonlinearity and 
dispersion. But negative SWs (by negative SWs we mean 
rarefactive SWs, i.e. SWs with negative potential) can 
occur in seldom. So it is obvious that we need a method 
which supports the propagation of both positive and 
negative SWs. Hence the pseudo-potential method is 
introduced. The small amplitude limit of the pseudo- 
potential (obtained from the derivation of the energy in-
tegral) shows the coexistence of both positive and nega-
tive DIASWs (shown in Figure 4). For both positive and 
negative DIASWs, the number density of plasma parti-
cles has an important role. The potential of the waves 
depends on α, as well as β, which implies that an ex-
tremely large number density of plasma particles sup-
ports the non-linear wave profiles like solitary waves. 
 

 

Figure 3. Showing how M varies with α as well as β for 
different conditions. The solid line represents the C2 = 0 
curve, the dotted line represents the solutions of Equation 
(39) for low speed DIA waves, and the dashed line re- 
presents the C3 = 0 curve (for nio = 3.95 × 1030). 
 

 

Figure 4. Showing the existence of SWs when α = 4.3 and M 
exceeds Mc (specifically, M = 0.636, M = 1.104, and M = 
1.528), and the dashed line shows V() curve around  = 0. 

To summarize, we have investigated electrostatic soli-
tary waves in an ultra-relativistic degenerate dense plasma, 
which is relevant to interstellar spherical compact objects 
like white dwarfs. The degenerate dense plasma is found 
to support both positive and negative solitary structures 
whose basic features (amplitude, width, speed, etc.) de-
pend only on the plasma number density. It has been 
shown here that the amplitude, width, and speed increase 
with the increase of the plasma number density, but the 
electrostatic potential is negative. We finally hope that 
our present investigation will be useful for understanding 
the basic features of the localized electrostatic distur-
bances in an ultra-relativistic ultra-cold degenerate dense 
dusty plasma which is found in some astrophysical ob-
jects, (e.g. white dwarf stars, neutron stars, etc.) Thus the 
model we have considered in our present investigation (a 
dusty e-p-i plasma) supports the nonlinear propagation of 
dust-ion-acoustic solitary waves in extreme conditions 
for ultra-relativistic limit of density of plasma particles, 
which are found in many interstellar compact objects. 
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