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ABSTRACT 

Recent work has established that digital images of a human face, when collected with a fixed pose but under a variety of 
illumination conditions, possess discriminatory information that can be used in classification. In this paper we perform 
classification on Grassmannians to demonstrate that sufficient discriminatory information persists in feature patch (e.g., 
nose or eye patch) illumination spaces. We further employ the use of Karcher mean on the Grassmannians to demon-
strate that this compressed representation can accelerate computations with relatively minor sacrifice on performance. 
The combination of these two ideas introduces a novel perspective in performing face recognition. 
 
Keywords: Grassmannians; Karcher Mean; Face Recognition; Illumination Spaces; Compressions; Feature Patches; 

Principal Angles 

1. Introduction 

There has been a general philosophy in pattern recogni-
tion, arising out of practical necessity to some degree, to 
normalize away variations in imagery that appear non- 
essential to identification or classification. For example, 
in the context of human faces, recognition under uncon-
trolled illumination conditions has historically been one 
of the more difficult challenges. In an attempt to over-
come this problem, several algorithms approximately 
remove illumination variations in an effort to improve 
recognition performance. 

A number of papers have appeared recently which il-
lustrate the potential of retaining effects of illumination 
variation over an object [1-4]. As a result, more generally, 
we are led to consider manners in which the variation in 
the state of an object can be used to extract discriminatory 
information. Philosophically, this paradigm shift en-
courages the collection and processing of large amounts 
of data to represent families of patterns. In this setting, 
the challenge now becomes how to encode and compare 
large quantities of information for pattern classification.  

Because of the need for analyzing massive data sets, 
much recent effort has been devoted to developing pat-
tern recognition methods that are based on image sets 
[5-8]. Typically, a signal or picture contains much re-
dundant information that may be removed by using, e.g., 

Karhunen-Loève (KL) transform. Each class then has its 
own set of representative features extracted from KL 
transform that forms a vector subspace (so-called feature 
space) of the original pattern space. The subspace method 
is a geometrically sound approach since these class sub-
spaces can be used to classify an input sample into the 
best fitting class and they tell us something about the 
properties shared by all the items in that category. For 
this reason, subspace method works extremely well when 
samples are selected from a uniformly distributed variation 
state. Similarly, methods that are based on image sets 
give better performance than the ones based on individ-
ual images since classifiers that depend solely on a single 
input sample will be sensitive to outliers and anomalies. 

Therefore, to improve and extend the traditional sub-
space method, we consider the case where both gallery 
and query subjects have multiple images available and 
refer this classification paradigm as the set-to-set method. 
Face recognition based on image set matching enjoys a 
superior discrimination accuracy and robustness since it 
is less sensitive to poor registration and varying environ- 
mental conditions. In many applications, such as video 
sequence matching, surveillance video tracking, spatio- 
temporal modeling, and affine invariant shape analysis, a 
set-to-set method provides the most natural platform for 
performing classification tasks. While there are multitude 
of ways to carry out the actual classification task, it has 
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been shown that better performance can be attained 
through modeling image sets via linear structures, i.e., 
subspaces [5,7]. This is largely due to the positive effects 
inherited from the subspace method mentioned above. 
Next, we describe how classification on the Grassmann 
manifolds is an obvious choice for performing face rec-
ognition with linear structures. 

The collection of multiple images for a single subject 
can be mathematically represented by a matrix of size 
n-by-k, where k is the number of distinct patterns and n is 
the resolution of the patterns. The linear span of the 
columns of this matrix forms a k-dimensional vector 
subspace in , which can be realized naturally as a 
point on the Grassmannian . The detail of this 
connection is given in Section 2. Now, performing clas-
sification of sets (of patterns) in their natural setting is 
equivalent to performing classification of points on the 
Grassmannians. Distance measures on the Grassman-
nians are well-established in this context and can be ap-
plied readily to this problem. Overall, classification on 
the Grassmannians is a mathematically simple frame-
work that can be extended to any pattern classification 
problem that requires a set-to-set data comparison. While 
there are other interesting general pattern analysis prob-
lems that fit naturally on the Grassmann manifold (see 
e.g., [9,10], we focus on the ones that emphasize the use 
of principal angles, which are the fundamental building 
blocks of various unitarily invariant distance functions 
between linear subspaces [11]. 

n
 ,GR k n

As mentioned previously, it is evident that there is dis-
criminatory information associated with the manner in 
which digital images of a face change under variations in 
illumination. Factors which affect these changes include 
the texture, color and shape of the face. One of the cen-
tral themes of this paper is that the local information 
produced when illumination varies over sub-images of 
the face, e.g., facial features such as the eyes, lips or nose, 
will still allow accurate classification when placed in the 
context of set-to-set comparison via Grassmann mani-
folds. The extent to which local information is individu-
alized is rather surprising and points to two immediate 
applications. 

First, it suggests classification is possible even when a 
subject’s face is severely occluded. It confirms with a lot 
of prior studies [12-15] that distinct features such as eyes, 
lip, and nose possess interesting information that can be 
used for classification. Second, it suggests that the in-
formation gained by considering multiple local illumina-
tion spaces may be substantially greater than the infor-
mation gained from considering a single global illumina-
tion space. This second point differentiates our work 
from others. Precisely, our work is not to replicate the 
fact that local features preserve discriminatory structure; 
rather, the discriminatory structure of the whole face via 

illumination spaces persists through various ways of 
compression where the local feature patch being one of 
the many ways to select such reduced representation. 
Empirical results that validate this assertion are presented 
in Section 4. The classifier statistics was reported using a 
measure that is suitable on the Grassmann manifold and 
compared with a carefully chosen benchmark algorithm; 
both ideas are described in Section 2 as well. 

One of the unavoidable consequences of the set-to-set 
paradigm is the increased classification runtime com-
pared to single-to-single and single-to-many algorithms. 
One way to fix this is to replace the subject’s image set 
with an invariant representation that captures the dis-
criminatory variances afforded by the given set of images. 
Classification is then done on this invariant structure that 
is potentially much quicker to compute. To this end, we 
consider the notion of mean subspace on the Grassmann 
manifold. Similar to the idea of arithmetic mean in the 
Euclidean space, the mean on the Grassmann manifold 
minimizes the summed squared distance measured along 
the geodesics. Formally, this mean is called the Fréchet 
mean, or the Karcher mean if uniqueness criterion is re-
quired. 

Collectively, this paper improves the face recognition 
problem with the original Grassmann (set-to-set) method 
in two aspects—by reducing the size of k and n in 

 ,GR k n

3

. That is, by using the feature patches, we are 
essentially reducing the size of n; while by introducing 
the Karcher mean, we are essentially reducing the size of 
k. We give the details of achieving both types of com-
pression in Section 3. The paper is concluded with Sec-
tion 5 where a brief summary of the work presented will 
be given.  

2. The Grassmann Method 

The geometry of the data sets affects the fundamental 
design of a classification algorithm. For example, it is 
reasonable to quantify the distance between two points 
on the xy-plane embedded in  with Euclidean dis-
tance but the same metric should not be used to measure 
the distance between two points on the sphere. In any 
case, the optimal choice of the metric is the appropriate 
geodesic on that space. In this section, we review a geo-
metric framework, so-called the Grassmann method, that 
is suitable for the set-to-set classification using linear 
subspaces for which the current research is built upon. 
The heart of our study centers around ways to improve 
the current Grassmann method by means of compression 
and will be described in Section 3. 

2.1. Matrix Representation for Points on the 
Grassmannians 

A r-by-c gray scale digital image corresponds to a r × c 
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matrix where each entry enumerates one of the 256 (on 
8-bit machines) possible gray levels of the corresponding 
pixel. After concatenation by columns, an image vector 
of length n = rc can be seen as a point in  in the 
original subspace method, this point will then be pro-
jected into a feature space of a much lower dimension for 
classification. We will, however, group k (generally in-
dependent) example images of a subject and consider the 
k-dimensional feature subspace they span in . The 
connection between this linear subspace to a point on the 
Grassmann manifold will be made precise next. 

n

n

 ,k n

 , , ,e e e

 ,k n
 kV

 k

k

Pl
V

W W

 





   1
n

V
k

 
   

 
 kV

Definition 2.1 The Grassmannian GR  or the 
Grassmann manifold is the set of k-dimensional suspaces 
in an n-dimensional vector space Kn for some field K. 

Let K be a field and V be a vector space of dimension 
n with basis 1 2 n , it can be shown that the kth 

exterior power of V over K can be determined up to iso-
morphism. Then the Grassmannian, GR , can be 
viewed as a subset of projective space, , via the 
Plücker embedding: 

 ,GR k n 


 

where . This map is injective.  dim k

The homogeneous coordinates on  are called 
the Plücker coordinates on  ,k n

 ,W GR k n

GR  [16]. 
In coordinates, we can explicitly represent a plane 

 by a unique matrix up to a change of ba-
sis transformation. Let W be a k-dimensional vector sub-
space of V with basis 

1

n

j ij ii
f b e




,  and 
let ij . Moreover, assume U is the standard affine 
open subset of  whose first k × k minor is non-
zero. Then 

1, 2,j k 
B 

 

k

n k k

I

B  

 
     

 ,R k n

b    kV

ijB b   . 

The matrix B is determined up to right multiplication 
by an invertible k × k change of basis matrix. B uniquely 
determines B', and B' uniquely determines W. Then the 
entries of B' give the bijection of U G  with 

 k n kK  , i.e.,  is covered by affine space of 
dimension . Consequently, 

 ,GR k n
k n k


   m ,GR k n


di = 

 when the Grassmannian is realized as a sub-
manifold of a projective space. 
k n k

It is now clear that points in the Grassmannian are 
equivalence classes of n × k orthonormal matrices, where 
two matrices are equivalent if their columns span the 
same k-dimensional linear subspace, i.e., 

   , : if TGR k n p p q fq Q p   for some kQ O

 ,GR k n
 

 

where p and q are n × k matrices with orthogonal col-

umns and Ok is the group of k × k orthogonal matrices. 
Therefore, the Grassmann manifold  can be 

identified as the quotient group n k n k . Despite 
this abstract mathematical representation of the 

O O O

Grassmannian, one may choose to represent a point on 
the Grassmannian by specifying an arbitrary orthonormal 
basis stored as a n × k matrix. Although this choice of the 
orthogonal matrix is not unique for points on the Grass-
mannian, it does give rise to a k-dimensional linear sub-
space that is obtained via the column space of the matrix 
and will serve as are presentative of the equivalence class 
on the computer [17]. 

2.2. Geometry of the Grassmannians 

A natural question that follows is the way in which we 
measure how far apart points are on the Grassmann 
manifold. In the context of face recognition, by realizing 
sets of images as points on a Grassmann manifold, we 
can take advantage of the geometries imposed by indi-
vidual metrics (drawn from a large class of metrics) in 
comparing the closeness of the points. For instance, the 
arc length metric and the Fubini-Study metric impose 
quite distinct geometries on the Grassmann manifold and 
lead to distinct distance measures between points. It is an 
open question how to optimally select a metric on a 
Grassmannian for the purposes of a given data classifica-
tion problem. See [17] for a list of several commonly 
used metrics. We will restrict ourselves to metrics on 

 ,GR k n  built as functions of the k-tuple of principal 
angles. For instance, in the arc length metric, the distance 
between  , ,p q GR k n  is written in terms of the prin-
cipal angles   1 2, , , , kp q    

   1/2
2

1
, .

k

g ii
d p q 


 



 as  

 

In the following paragraphs, we review the definition 
of principal angles and an algorithm for computing them. 

If  and   are two vector subspaces with  
   span X X     and  span Y Y 

X n p
  , where 

 Y n q and    are two orthonormal basis ma-
trices, then the principal angles 0 π 2k  ,  

    1 min dim ,dim ,k q X Y     an
ar

cos max max T T
k k k

u v
u v u v

 
 

 

between  d   
e defined recursively by 

 

subject to 
2 2

1u v  0Tu u  0Tv v, i  and i   for 
1,2, , 1i k  . That is, the first principal angle, 1  , is 

the smallest angle between all possible linear combina-
tions of unit vectors in  and  and the second prin-
cipal angle, 2

 
 , is the smallest angle between the spaces 

1 u
 v and  1

 , and so on. The vectors ui and 
vi are so-called the ith left and right principal vectors cor-
responding to the ith principal angle. The use of principal 
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vectors and principal angles help us in answering the 
following question: “what linear combination of images 
in one set comes closest to a linear combination of im-
ages in the second set?” If we name the sets “left” and 
“right”, we can then describe the closest pair of linear 
combinations of images as the left and right principal 
vectors.  

A numerically stable algorithm that computes the 
principal angles between subspaces  and   is given 
in [18]. This algorithm is accurate for large principal 
angles (> 10−8). A sine-based algorithm for calculating 
small principal angles is available in [19]. This algorithm, 
presented in Algorithm 1, is used in the present paper to 
ensure precision of the minimal principal angles. Given 
the nature of the data investigated in this paper, we found 
it sufficient to consider only the minimum principal an-
gle in measuring the similarity between two points on a 
Grassmannian generated by two image sets, see e.g., 
[20]. 



We note that face recognition using principal angles 
not in the context of the geometry of Grassmann mani-
folds-can be traced back to the Mutual Subspace Method- 
where the cosine of the minimal principal angle is used 
[5]. Since then, the concept of principal angles as a meas- 
ure has been widely adopted [6,21-24], though still not as 
a way of metric on the Grassmann manifold until re-
cently. Kernel methods for handling nonlinearity in data 
in the context of Grassmannian has been proposed as an 
extension of [4] and [25] and shown to be successful  
 

Algorithm 1. Small and large principal angles [19]. 

Inputs: Matrices  and X n p   Y n p q p, . 

Outputs: Principal angles  k   between  and  X  Y

 X 
.

1) Find ONB and Qx for Qy  and  Y



 such that 

      , , yQ Y 

ΣT T

x yQ Q H Z
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T T

x x y y xQ Q Q Q I Q X    . 

2) Compute SVD for cosine: 

, 

where    

3) Compute matrix 
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 

, if rank

, other

T

y x x y

T

x y y x
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Y

Q Q Q Q

 

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wise.

x yQ Q 

   , svdi

 

4) Compute SVD for sine: 

,diagH u Z Y  

1,2, , :k q 

 

, 

5) Compute the principal angles, for  

 

2

2

1
, if ;

2
1

, if .
2

k k

k k

 

 





arccos

arcsin
k


 



 

[7,26-28]. Readers who are interested in how the Grass-
mann method compares against other existing set-based 
and non-set-based methods in both classifier accuracy 
and computational cost are referred to [7,28,29]. In 
summary, non-set-based methods are outperformed by 
set-based ones which are now shadowed by the rapid 
development of kernel methods in the Grassmannian 
framework. An extensive review of these methods is be-
yond the scope of this paper. 

2.3. Classification on the Grassmannians 

Suppose k distinct images of a given subject are available, 
we group them to form a data matrix X with each image 
stored as a column of X. If the column space of X, 

 X , has dimension k and if n denotes the image reso-
lution, then  X

n
 is a k-dimensional vector subspace 

of , which corresponds to a point on the Grassmann 
manifold  ,GR k n . Under this framework, each set of k 
images may be encoded as a point on the Grassmann 
manifold. There are various ways to perform classifica-
tion on the Grassmann manifold. Since the heart of this 
analysis is to illustrate the discriminatory information 
inherited in the subject feature patches when viewed un-
der varying illumination conditions, the only intrinsic 
variation presented in each image set is the variation of 
illumination. 

As illustrated in Figure 1, images from each image set 
belong to a particular subject class and capture a given 
feature patch that is pre-defined succeeding the classifi-
cation. Note that the illumination conditions do not need 
to be the same across image sets and the number of prin-
cipal angles available between each pair of image sets 
depends on the size of the sets. In this simplistic 2-class 
classification problem, the probe set (image set 3) is 
closer to image set 1 than image set 2, therefore is classi-
fied as subject 1. On the other hand, it is possible to in-
clude two or more states of variations in the image sets;  
 

 

Figure 1. Sets of images are realized as points on the Grass- 
mann manifold. The closeness of each pair of image sets 
may be measured, e.g., by the minimal principal angle, θ1, 
between the linear span of the image sets.  
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however, it will become increasingly more difficult to 
identify the source of discriminatory information, and 
this problem is not considered in the current study. 

2.4. Computational Comlexity 

Classification on the Grassmann manifold comprises two 
major computational steps: an orthogonal basis extrac-
tion and a pair wise angle calculation. The algorithm for 
computing principal angles between a pair of subspaces 
also consists of two major steps: a QR-decomposition of 
the representation matrices and SVD of the inner product 
of the orthogonal matrices. The MATLAB qr command 
is based on Householder reflections. For a general n × k 
matrix representation for a point on , QR-de- 
composition using Householder reflections costs  

 ,GR k n

2 32
2

3
k n k  flops. For the same size matrix, the MAT-

LAB svd command costs 2 1
4

3
k n k  
 

 2O k

n k

n

 2 3 22 .k O k

 , , , m

 flops to reduce  

it to a bidiagonal form using Householder reflections. If 
singular values are required, it costs  for the rest 
of the operations. 

Typically,  and since the SVD is performed on 
the k × k covariance matrix, the overall computational 
cost for calculating the angles between a pair of points on 

 is given by  ,GR k

 , 2C k n nk   

Notice that this cost function is linear in n, the image 
resolution, and cubic in k, the number of images. 

2.5. Grassmann Separability 

Since this paper is about matching one set of face images 
to another set of face images, the common terms gallery 
and probe set are altered here to describe sets of sets of 
images. Thus, we consider the gallery data to consist of a 
set of points on a Grassmann manifold where eachpoint 
in the gallery is generated by computing a basis from a 
set of images associated with a given person. Points are 
computed in a similar fashion for the probe. Further, we 
assume that we know the labels of the points in both the 
probe and gallery permitting us to evaluate classification 
accuracy. In this section, we will introduce a quantity 
that measures the classifying power of the proposed 
framework that is appropriate on the Grassmann mani-
fold. 

Given a set of image sets 1 2X X X  and 
an identify map   so that  i iX c 

N
 where  

1, 2, ,c 

 

i  is a set of class labels. Let the cardinal-
ity of a set, X, be the number of distinct images in X. The 
distances between different realizations of subspaces for 
the same class are called match distances while for dif-

ferent classes they are called non-match distances. For  

 i jX i 



simplicity of notations, define W j , the  

within-class index set of subject i and  B j i 

 
1
max max ,

i
i j

i m j W

i , the 
between-class index set of subject i. We can now define a 
quantity that measures how separable the data set is. 

Definition 2.2. For an appropriate choice of the met-
ric, d, let M be the maximum of the match distances, i.e., 

M d X X
  



 
1
min min , .

i
i k

i m k B
m d X X

  


 

and m be the minimum of the non-match distances, i.e., 

 

Define the separation gap as .sg m M   Then we 
say the set  1 2, , , mX X X 

0.g 
 is Grassmann separa-

ble if  s

There are two parameters in this definition, i.e., the 
choice of the metric and the configuration of the image 
sets. In this study, we speak of a set being Grassmann 
separable if there exists a Grassmannian distance and a 
set configuration such that the separation gap is greater 
than zero. Pictorially, if we compile all of the within- 
class and between-class distances of a Grassmann sepa-
rable set, its box-whisker plot would resemble something 
similar to Figure 2(a) while a set that is not Grassmann 
separable would produce a box-whisker plot similar to 
that of Figure 2(b). 

The Grassmann separability defined such way coin-
cides nicely with a classifier metric termed false accept 
rate (FAR) at a zero false reject rate (FRR)1 that is docu-
mented in [30]. This score is the ratio of the number of 
non-match distances that are smaller than the maximum 
of the match distances divided by the number of non- 
match distances. Essentially, the FAR score is capturing 
the separation gap described earlier and a zero FAR for a 
data set indicates that the data is Grassmann separable for 
an appropriate choice of metric and set configuration. 
Henceforth, the FAR score will be reported throughout 
the experiments as a way to tell how well proposed 
framework works. Moreover, due to the nature of the 
Grassmann separability criterion, a careful examination 
on how the cardinality of the image sets affect FAR 
scores will also be investigated in the experiments. 

2.6. Benchmark Algorithm 

We are sensitive to the concern that similar outcomes 
might be observed using direct image set to image set 
comparisons. To explore this, we introduce a benchmark 
similarity S(X, Y) for comparing multi-still sets X and Y 
that exploits only the statistics of the image sets without 
imposing any geometric structure on the data. Since the  

1For simplicity, we will use FAR to denote FAR at zero FRR. 
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(a) 

 
(b) 

Figure 2. (a) Illustration of a data set that is Grassmann 
separable; (b) Illustration of a data set that is not Grass-
mann separable. 
 
emphasis of the current study is to examine whether the 
discriminatory nature of the points on the Grassmann 
manifold persists through various compression schemes, 
we use only this algorithm to benchmark the perform-
ance of the proposed framework. Largely due to the na-
ture of the methods and experimental protocols imple-
mented, a direct comparison of our proposed framework 
with general face recognition techniques is difficult 
without a careful paradigm design. 

Recall the familiar Pearson’s r-correlation for two 
length N column vectors x and y: 

 
1

1
,

1

N

j

,j j

x y

x x y x

 
 

 Cor x y
N    

where x  and y  are the standard deviations and x  

and y  are the means of the signals x and y, respectively. 
Now, for two image sets  

     1 2 xkX x x x   
 

 

 

and  

  1 2 yk
Y y y y  ,    



 

set 

       
1

, max ,
y

j j i

i k
s x Y Cor x y

 

 

 

jto be the similarity score between a single image x  in 
X and the image set Y. Then our benchmark similarity 
between X and Y is defined as 

        
1 1

1
, , , .

2

yx kk
i j

i j

S X Y s x Y s y X
 

   

This definition permits a symmetric measure and is 
essentially an exhaustive approach in searching for the 
best match in image sets. 

3. Compressions on the Grassmannians 

Let S be a collection of points on a Grassmann manifold 
 ,GR k n

n

 ,GR k n

 with each point corresponding to a set of k 
digital images each residing in 2. We will consider 
two types of compressions of such data that still allow 
classification. The first type of compression has the ef-
fect of reducing n while the other reduces k. Both types 
of compression yield new collections of points on 
Grassmann manifolds. A compression which reduces n 
corresponds to reducing the number of pixels represent-
ing a digital image. Reduction in the size of k corre-
sponds to reducing the dimension of the subspace repre-
senting a set of digital images. There might be other 
methods for accomplishing either of these tasks while we 
will consider reductions in n induced by projections in 
Section 3.1 and reductions in k through a Karcher mean 
computation in Section 3.2. 

3.1. Compression of n in  

As demonstrated in [2], the illumination space of a Lam-
bertian object is well approximated by a low-dimensional 
linear space. This implies that if D represents a data set 
consisting of digital images of a fixed Lambertian object 
collected under a variety of illumination conditions and 
with a fixed resolution, then a very high percentage of 
the energy of D is captured by a low-dimensional linear 
space inside the vector space generated by all possible 
digital images at the same fixed resolution. As a conse-
quence, illumination spaces are particularly well-suited 

2It is not necessary to perform a preliminary reduction of the data using 
a method such as the SVD. 
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for classification on Grassmannians. 
The approximated illumination space, as captured by a 

k-dimensional approximation of the data set D, can be 
represented by a point . Given a point 

, let q  denote the associated k-di- 
mensional subspace. In typical settings, where n, m are 
much larger than k, one expects a general linear map 

 to approximately preserve the inter-rela- 
tionships among the principal angles between most sub-
spaces of . For instance, suppose Vp, Vq, Vr are three 
k-dimensional subspaces of  (corresponding to three 
points ), suppose further that the 
minimal principal angle between Vp and Vq is small 
compared to the minimal principal angle between Vp and 
Vr. Then under the general linear map L, one expects the 
minimal principal angle between 

 ,p GR k n
q G n

:L

n


 ,R k

n 

p q

n V  

m
n

, , ,r GR k n

 pL V  and  L Vq  to 
be small compared to the minimal principal angle be-
tween  pL V and .  rL V

There are several families of linear transformations 
which are natural and useful to consider in the context of 
face recognition. In this paper we will restrict our atten-
tion to a special family of linear transformations known 
as patch projections, these should be considered as com-
plementary to patch collapsing. These terms are de-
scribed below: 

1) (Patch Collapsing) Consider a partition of the com-
ponents of a vector, V, into disjoint sets 1 2 d . 
Patch collapsing is the operation of replacing, for each i 
between 1 and d, the components in Pi with a fixed 
weighted average of these components. This operation 
can be expressed as a linear map, , 

. If L is further required to conserve energy then 
 and thus is a projection map. An example of 

this type of projection is the partitioning of a digital im-
age into regions as provided by the scaling spaces in the 
Haar wavelet decomposition. See Figure 3(a) for an il-
lustration of this type. 

P P P  

n d n   
d n
L L L

P P P  

:L

2) (Patch Projection) Given a partition of the compo-
nents of a vector, V, into disjoint sets 1 2 d . 
A family of patch projections is given by the natural pro-
jection maps | |: n

iL  ,iP P n 

: n mL  

i . An example of a 
patch projection is the restriction of a digital image to a 
region of the image. For instance, the restriction of a 
digital image of a face to the region surrounding the lips. 
See Figure 3(b) for illustrations of several patch projec-
tions. 

Patch projection is the focus of this paper, where a 
patch of an image is simply a sub-image with resolution 
much less than the original full image. Patch projections 
are linear maps and illumination spaces are well ap-
proximated by linear spaces thus it is natural to study 
patch illumination spaces through the mathematics asso-
ciated to parameter spaces of linear spaces. A few com-
ments on the relationship between projections and Grass- 

mannians are in order. 
Let K be the kernel of a linear map . Let 
   Ω ,K GR k n  denote the Schubert variety defined 

by 

      Ω , dim 1 .pK p GR k n V K    

L induces a natural map  

     : , Ω ,GL GR k n K GR k m 
nV  

  

since the image of any k-dimensional subspace  
under L remains k-dimensional precisely if the point 

 ,p GR k n  corresponding to V lies outside of  Ω K . 
Suppose dim K k n  , then  Ω K  is a proper subset 
of  ,GR k n  and the dimension of  Ω K  is strictly 
less than the dimension of . Thus, with prob-
ability one, a point chosen at random from 

 ,GR k n
 ,GR k n  

will lie in    , ΩGR k n K
 ,GR k n
. Due to the method we use 

to determine points on , the quantization of 
pixel values in digital images and the special nature of 
patch projections, we are not choosing random points. 
Thus it is possible for the corresponding linear spaces to 
have a non-trivial intersection with the kernel of the pro-
jection map. However, as one might expect, we have yet 
to observe a point accidently chosen to lie within  K . Ω

The computational saving that is accomplished by this 
type of compression is on the order of . For exam-
ple, using image patches of 30 × 30 instead of the origi-
nal 200 × 200 will enable a speedup that is roughly 44 
times faster for a single pair wise distance calculation. 

 O n

 ,GR k n3.2. Compression of k in  

The notion of mean is often used as an initial estimator 
for studying variability in a distribution. We anticipate 
the use of mean subspaces, in object recognition prob-
lems that are cast on a Grassmannian, will provide us a  
 

 
(a) 

 
(b) 

Figure 3. (a) An example of patch collapsing provided by 
the scaling spaces in the Haar wavelet decomposition; (b) 
Illustration of patch projections. Patches do not have to be 
selected from a connected nor a rectangular region.  
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blueprint to embed discriminatory information through 
spaces of reduced dimensions. In this section, a quick 
overview for calculating the mean subspace on   
will be given followed by a proposed algorithm for per-
forming a robust classification at reduced computational 
cost. We emphasize that it is the machinery associated 
with the Grassmann manifold that permits this construc-
tion. 

,GR k n

 ,GR k n

Although the definition of the Karcher mean is well- 
established and it is easy to implement an algorithm for 
its effective computation (see, e.g., [31,32]), the calcula-
tion of a Karcher mean can be rather expensive. Even on 
a relatively small collection of sets, the computation can 
fail to finish in a satisfactorily short period of time.By 
incorporating low resolution feature patches in construc-
tion of the subject illumination spaces, as suggested in 
this paper, the algorithm for calculating the Karcher 
mean becomes computationally tractable. We now 
briefly review the essential notations and algorithms for 
calculating the Karcher mean for collections of points on 
the Grassmann manifold. 

Given points 1 m , the Karcher mean 
is the point q* that minimizes the sum of the geodesic 
distances between q* and the pi’s, i.e., 

, ,p p

 
 * 2

1

, ,
m

j
j

q d q p



 ,d p q

 ,p GR k n
n

,

1
argmin

2q GR k n m
  

where  is the geodesic distance between p and q 
on the Grassmannian. We adopt a SVD-based algorithm 
for computing the Karcher mean on a Grassmann mani-
fold as given in [33], which will be reviewed next. 

Recall a point  corresponds to a k-di- 
mensional subspace of  and can be represented by a 
n × k matrix with orthonormal columns. Two matrices 
with orthonormal columns, M, N determine the same 
point in  ,GR k n  if and only if M = NQ for some kO , 
where Ok is the orthogonal group of k × k matrices. The 
tangent space  to  is given by  ,R k npT G  ,R k p G n

   , ,Tp N p 

 n k ng   p

p n

, ,{pT GR k n w w p q w w p q     

where . Notice that   is the orthogonal 
compliment of p. The EXPp map that takes a point in the 
tangent space T G  to a point in  ,R k  ,GR k n

 ,GR k n

os sinU 

D Θ .Tw U V
 ,p GR k n


 ,pT GR k n

Θ Tq U V   1
ΣT T Tp p q p q U V




Θ arctanΣ,

 is 
given by 

 Exp : ,p pT GR k n  

where 

 , cpw T GR k n pV   

hasthe  The Logp map that takes a 
point in a neighborhood of  to a point in 

 is given by 

SV

 ,pT GR k n

 Log : ,p pq U GR k n   

with , where    and 
  when it is well-defined. A descent method 

that utilizes the Exp and Log maps for finding the 
Karcher mean on the Grassmann manifold is given in 
Algorithm 2. For convergence results, see [33]. Next, we 
describe an novel algorithm that utilizes Karcher mean 
on  ,GR k n

2

n 
 
 

 to construct a compressed representation 
for a given collection of images that captures the intrinsic 
variability of the subject illumination space. 

Given a set of N images for a fixed subject class and 
prescribe a Karcher representation dimension k, repeat 
the following two steps for a total of t times, where t is a  

number greater than 1 and usually much less than .  

The purpose of the repetition is to capture the set vari-
ability exhibited in data set. 

1) Randomly split the available data into two disjoint  

setsof equal size each containing 
2

N 
  

 images and the 

data into so that  mT  mQ and  are two points on 

,
2

N
GR n

  
    

, where n is the resolution of the images. 

2) Compute the first k left principal vectors of the pair 
of subspaces  T  mQ

 1m m t
l

m  and  and store the re-
sulting vectors in an n × k matrix, lm. 

The collection of t principal vectors, 
 

, corre-

sponds to t points on  ,GR k n . A k-dimensional,  

1
2

N
k

     

 1m m t
l

 

, compressed representation of the illumina-  

tion feature patch space for the subject class is then given  
by the Karcher mean of the set  via Algorithm  

2 and is denoted by 
K

l



. A detailed description of the 
algorithm is given in Algorithm 3 with a schematic il-
lustration given in Figure 4. 

Although Algorithm 3 is expensive even with the 
low-resolution patch images due to the number of singu-
lar value decomposition it requires, the actual computa-
tions are done off-line. Moreover, each subject’s k-di- 
mensional Karcher representation, with k much less than  
 

Algorithm 2. Karcher mean on ,GR k n  [33,34]. 

 Inputs: Points 1 2, , , ,mp p p GR k n ,  (machine precision). 

Outputs: Karcher mean, q, of  1 2 , ,, mp p p

1q p

. 

1) Set  . 

2) Find  
1

1
Log

m

q ii
p

m 
 A . 

3) If A  
Σ .TU V A

, return q; else, go to step 4. 

4) Find the SVD:   Update , go 

to step 2. 

cosΣ sinΣq qV U 
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Algorithm 3. Karcher representation. 

Inputs: k (Karcher dimension), t (training iteration), N images for a

fixed subject class. 

Outputs: k-dimensional subject Karcher representation, l

1:m t
K

. 

1) For each training iteration , do the following: 

a) Let Tm and Qm be two matrices such that 2,
N

n

m mT Q
   

m  mQ

 and 

T  and  do not intersect trivially. Columns of Tm and 

Qm are selected from the N input images. 

b) Find the first k left principal vectors of the pair of subspaces

 and :  mT   mQ

2 2, , ,
N N

t tI R
         T

m t t tT Q R Q Q   

2 2, , ,
N N

q qI R
         

.T

t q

T

m q q qQ Q R Q Q   

M Q Q

T

 

Compute the SVD of .M YSZ

tU QY

m



 The left principal vectors are 

given by columns of .  Let the first k left principal vectors be

.  :,1: kl U
2) Find the Karcher mean of 

1
,m m t K

l l
 

, with Algorithm 2. 

 

 

Figure 4. A schematic illustration for Algorithm 3. The 
boxed step is repeated t times to create t points on  ,GR k n



. 

The square element is then the Karcher mean of the circle 
points on ,GR k n

 3O k

 ,GR k n

. 

 
the total number of images available, captures the most 
significant discriminatory information and takes much 
less space to store on a machine. This way, we can use a 
single k-dimensional subspace to represent a subject class 
in the gallery, hence using less storage space while 
speeding up online classification runtime. 

The computational saving that is accomplished by this 
type of compression is on the order of . For ex-
ample, using a 3-dimensional Karcher representation 
instead of the original 12-dimensional subject subspace 
representation will enable a speedup that is roughly 64 
times faster for a single pair wise distance calculation.  

4. Experiments and Results 

In this section, some proof-of-concepts experiments are 
designed to demonstrate that the idiosyncratic nature of 
subject illumination subspaces persist through two types 
of compression on the Grassmannians, . In the 

first set of experiments, the value of k is fixed to ten 
while n is given by the resolution of the corresponding 
feature patch which translates to compression in n. In the 
second set of experiments, we explore how the perform-
ance of the classifier changes as we vary values of k, 
hence corresponding to compression in k. Since the 
Grassmann method does not require a training phase, we 
use the common terms “gallery” and “probe” to simply 
mean two sets of images used in the classification proc-
ess. 

4.1. Data Sets 

The first data set we use to empirically test the perform-
ance of feature patches in a face recognition problem are 
the “illum” and “lights” subsets of the CMU-PIE Data-
base [35], see Figure 5 for an illustration of the illumina-
tion variations on the selected nose patch for a fixed per-
son3. The images are normalized according to known eye 
coordinates. The viewpoint is fixed to be frontal and sub-
sets of 21 distinct illumination conditions are used to 
form the probe and gallery. 

The second data set we consider is a private face data-
base, CSU-PAL, collected in the Pattern Analysis Lab 
(PAL) at Colorado State University (CSU). The purpose 
of introducing this database is to demonstrate the practi-
cality of the proposed framework given a reliable eye 
detector is in place. 

The current database (continuously expanding) con-
tains face images of 100 subjects under three different 
lighting conditions (illumination variation with ambient 
lights on, illumination variation with ambient lights off, 
and no illumination variation with ambient lights on) and 
ten distinct protocols (still neutral expression, smile, 
frown, angry, puzzled, count to ten twice, recite alphabet 
twice, say mother and father’s first name twice, little 
head movement, lengthy head movement). All video im-
ages are progressively scanned and saved under RAW 
format as TIFF files which are then organized under the 
naming structure PALI_SSSS_T_C_PP, where SSSS 
corresponds to the subject number running from 1 to 100, 
T corresponds to the trial number, C stands for the light-
ing conditions, and PP stands for the protocol number. 
All files follow this taxonomy with each TIFF images 
having an additional 6 digits for the frame number. See 
Figure 6 for a set of ten sample images. 

Eye coordinates for the entire database were generated 
using the Average of Synthetic Exact Filters (ASEF) 
algorithm [36] trained on the “illum” subset of the CMU- 
PIE Database. In particular, the face images were first 
resizedto a 16:9 aspect ratio in order to correct the aspect  

3We note that results achieved on the “illum” subset are comparable to 
those achieved on the “lights” subset. In the interest of space, they are 
not reported here. 
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(a) 

 
(b) 

Figure 5. An illustration of the illumination variations for a 
fixed subject under the frontal pose in CMU-PIE Database. 
Left: “illum” subset; Right: “lights” subset. 
 

 

Figure 6. Sample images of CSU-PAL Database. 
 
ratio of the images. The Open CV Cascade face detector 
[37] was used to detect faces and ASEF was used to lo-
cate the eyes. See Figure 7 for an illustrative example of 
the eye detector. 

4.2. Compressions of n 

For each of the 67 people in the CMU-PIE data set, we 
randomly select two sets of images of equal cardinality 
with disjoint illumination conditions. Since illumination 
spaces can be well-approximated by a 10-dimensional- 
linear subspaces [2,38], we randomly select two disjoint 
sets of size ten for the points in the probe and gallery. 
This process is repeated ten times producing a total of 
670 probe points. Now, instead of the whole face image, 
selected feature patches are used. Note that the size of n 
for each feature was chosen to include the maximum 
amount of the feature in the patch across all subjects in 
this set of experiments and the compression ratio is 
roughly 1/9. The result of this experiment is given in 
Figure 8 along with the patch resolutions and the com-
putational time required to calculate the distance between 
a single pair of probe and gallery points. Results for the 
baseline algorithm are also shown for comparison. No-
tice that while the proposed algorithm performs without  

 

Figure 7. An illustration of the eye detector with ASEF al-
gorithm [36].  
 
error on this task, the baseline algorithm performs poorly 
and is computationally more expensive than classifica-
tion on Grassmannians. 

It is apparent from the results of the first experiment 
that when the cardinality of points in the gallery and 
probe is ten, the algorithm is able to separate all people 
in the data set using each of the selected patches without 
error. To further speed up the classification time and to 
see how sensitive the proposed algorithm is to the loca-
tion of the feature patches, we repeat the experiment 
while reducing the patch resolution until the perfect rec-
ognition rates cease to exist. Figure 9 gives several ex-
treme conditions where perfect recognition results con-
tinue to hold right before breaking. Notice that the base-
line algorithm is extremely sensitive to patch resolutions 
and less efficient. For example, while using 87-pixel lip 
patches, the baseline algorithm attains an error rate of 
6.82% and it takes 58 times longer to compute. The re-
sults here suggest that locally correlated feature patches 
consisting of an extremely small number of pixels pro-
vide sufficient information for recognition. 

It is rather curious just how many pixels obtained 
through patch collapsing are necessary to retain sufficient 
information for recognition. To this end, we employ fea-
ture patches consisting of a random (but the same for 
each image) selection of 36 pixels. A set of ten different 
illuminations is used for both the gallery and probe. 
Hence, the data is represented as points on GR (10, 36). 
We find that the idiosyncratic nature of the patches per-
sist in this extreme case. We performed the first experi-
ment again, but now using randomly projected low-di- 
mensional patches and still observed error-free identifi-
cation for all people in the CMU-PIE Database. Perhaps 
surprisingly, a similar result is observed when we use a 
thin horizontal strip of just 33 pixels across the left eye. 

The number “36” and “33” used here are more or less 
a result of the geometry on the Grassmannians,  . 
The number of principal angles equaling zero is bounded 
below by 

,GR k n

2 0k n 
3

. For example, two 2-dimensional 
subspaces in  will necessarily intersect nontrivially 
generating at least one (2 × 2 – 3 = 1) principal angle 
equaling 0 and the extreme case scenario is that the two 
subspaces intersect completely generating two principal 
angles equaling 0. On the other hand, two 2-dimensional  
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  lip nose left eye right eye left cheek right cheek 

  

  

 Resolution 41 × 59 59 × 39 21 × 41 21 × 41 31 × 37 31 × 37 

CPU time 0.0037 0.0034 0.0011 0.0011 0.0014 0.0014 
Grassmann Methed 

FAR 0 0 0 0 0 0 

CPU time 0.0254 0.0249 0.0187 0.0187 0.0198 0.0198 
Baseline 

FAR 0.3008 1.2234 2.5690 4.8937 2.2388 4.8937 

Figure 8. FAR (in %) for individual feature patches where 10 imagesare used to compute each point in the probe and gallery. 
On a 2.8 GHz AMD Opteron processor, the CPU time is how long it takes to calculate the distance/similarity between a probe 
and a gallery point in seconds. 
 

  lip nose left eye right eye left cheek right cheek 

  

  

 Resolution 3 × 29 35 × 13 21 × 41 21 × 41 31 × 37 31 × 37 

Grassmann Methed CPU time 2.7 × 10−4 6.3 × 10−4 0.0011 0.0011 0.0014 0.0014 

FAR 6.8204 1.2121 3.1592 6.5762 4.1995 0.5812 
Baseline 

CPU time 0.0158 0.0171 0.0187 0.0186 0.0199 0.0196 

Figure 9. Conditions for achieving zero FAR using proposed algorithm forindividual feature patches where ten images are 
used to compute each point in the probe and the gallery. FAR scores for baseline algorithm are also listed for comparison. 
 
subspaces in  might not share a direction at all hence 
generating zero principal angle equaling 0. Thus, if we 
restrict the subspace dimension to ten, i.e., k = 10, then 
the ambient resolution dimension needs to be at least 21 
in order to allow some wiggle room for non-intersecting  

4

21

10

 
 
 

21

least sensitive to the particular perturbation of registra-
tion we utilized. The results imply that if a human op-
erator registers the gallery patches in their own particular 
manner, then another human operator has about two pix-
els of freedom in registering the probe patches if spurious 
errors are to be avoided. Of course, expanding the data 
sets to include data that is poorly registered will likely 
improve this tolerance. 

behaviors. In this case, there are  = 21 × 19 × 17 ×  

13 × 11 × 4 ways to form a 10-dimensional subspace in 
. This specification potentially allows a database of 

3,879,876 distinct subject to be uniquely represented as a 
point on GR (10, 21). 

Thus far, we have illustrated a successful model for 
performing set-to-set classification of low resolution face 
images on a data set that is already “nice”, i.e., images 
are registered and cropped. To introduce practicality, we 
consider a much noisier database, the CSU-PAL Data-
base that is introduced in Section 4.1. In the interest of 
space, we consider only the left eye patches of size 181- 
by-71 selected from the high-resolution video frames that 
are originally sized 1080-by-1440 in this set of experi-
ments. Similar results can be found on all other feature 
patches. Original images were first registered according 
to a procedure described in Section 4.1 and then cropped 
to the selected feature as shown in Figure 10. Since this 
paper concerns with only lighting variations, we consider 
the images under file structure PALI_SSSS_1_1_01. 

On the numerical side, it is helpful to know whether 
human error incurred during image registration has nega-
tive effects on the classification accuracy. To this end, 
we repeat the first experiment with varying registration 
and examine the classification error rates as a function of 
this variation. In the first experiment, feature patch im-
ages were captured by convolving with a fixed-position 
mask of 1’s with size equaling the patch resolution. To 
generate images of varying registration, this mask is 
randomly shifted either horizontally or vertically one 
pixel at a time. Classification is repeated for every pixel 
shift up to 10 pixels using the new registered images to 
obtain error statistics. The lip and nose patches were the  For each of the 100 subjects in the CSU-PAL data set,  
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Figure 10. Sample images of left eye patches from the CSU- 
PAL Database. 
 
we randomly select two disjoint sets of size p and g for 
each subject in the probe and gallery, respectively, for 
comparison. In particular, we let the ordered pair, (g, p), 
be (10, 10), (20, 20), (50, 50), and (20, 1). For all four 
experiments, this process of random selection is repeated 
ten times producing a total of 1000 probe points in each 
case. The error rate for each experiment is given in Table 
1. 

The results here show that perfect Grassmann separa-
bility is achieved with a 50-dimensional subject subspace 
representation. The fact that it requires many more im-
ages than the empirical dimension of illumination spaces 
is possibly due to the fact that the images are acquired 
under fewer constraints such as the appearance of eye 
glasses. While a near perfect separation result can be 
accomplished with a balanced 10-dimensional subspace 
representation, the proposed algorithm suffers from hav-
ing an extremely small k value. This result illuminates 
the next set of experiments in Section 4.3 where effects 
of compression of k are examined. 

4.3. Compressions of k 

In this experiment, we examine the effect of varying the 
number of images used in constructing the probe and 
gallery hence corresponding to compression in k. Often 
times, it is unrealistic to collect equal numbers of images 
at enrollment and during operation. Therefore, it is hard 
to avoid comparisons of sets of images of asymmetric 
sizes. In such cases, we would like to know the minimal 
number of images needed to represent a person while still 
achieving perfect separation. Figure 11 shows the classi-
fication error rates for each selected patch. The cardinal-
ity of the probe points increase from 1 to 20 while the 
cardinality of the gallery points simultaneously decrease 
from 20 to 1. The illumination conditions for the probe 
are always disjoint from the conditions in the gallery. 
The plot suggests the performance of the algorithm is 
optimal when the cardinality of the probe and gallery 
points approach each other, i.e., a balanced comparison. 
For instance when considering the nose patch, using only 
one image per person in the probe and 20 images per 
person in the gallery yields an error rate of about 2.2%, 
while the error rate diminishes to zero when using three 
images per person in the probe and 18 images per person  

Table 1. FAR and standard deviation (in %) for the left eye 
patches in CSU-PAL database. Cardinalities of the gallery 
and probe sets are given in the first row, respectively. 

 (10, 10) (20, 20) (50, 50) (20, 1) 

FAR 0.9 ± 1.35 0.1 ± 0.03 0 10 ± 88.18

 
in the gallery. 

In the worse case scenario, if it is only possible to col-
lect a single image for each probe, then we would like to 
know the minimum number of images required for each 
person in the gallery in order to obtain perfect separation. 
For this set of experiments, we use a single image for 
each probe and let the cardinality of the gallery vary 
from 1 to 20. The classification error rates for each of the 
selected patches are given in Figure 12. For example, 
when using the lip feature, the algorithm performs per-
fectly using 16 images per person. However, when the 
cheek feature is selected, even the use of 20 images per 
person in the gallery could not force perfect recognition 
rates. Suggestively, certain features (e.g., nose, lip) pro-
vide more discriminatory information than others (e.g., 
cheeks) when classification is carried out via Grassman-
nians. This is perhaps not surprising seeing how human 
beings recognize novel faces. We often learn someone’s 
face from facial features that are more geometrically 
curved. The curvature (in the general geometric sense) of 
the eye, nose, and lip regions are generally larger than 
that compared to the cheek. Therefore, these features are 
more pronounced in a 2-dimensional representation of 
the face, i.e., a digital image. Moreover, the Grassmann 
method is by nature a set-to-set method and one would 
expect decreased performance when the number of im-
ages per subject class is scarce. The subspace representa-
tion improves as the number of images approaches the 
intrinsic rank (or dimension) of the subject illumination 
spaces. This justifies the choice of k = 10 in the experi-
ments conducted in the previous subsection. 

However, ideally we would like the dimensionality of 
the subject subspace representation to be the upper bound 
on the number of images needed to perform classification 
for two reasons—reduction in storage and computational 
cost. This is especially true for high-resolution video 
sequences. For example, if it costs 1 Megabyte (MB) to 
store an image, then a database of 103 people each having 
103 images would take up 1 Terabyte (TB) of hard drive 
space. Although the disk space has become much 
cheaper to acquire, cost on the order of this magnitude is 
still undesirable. One way to reduce the cost for real-time 
storage space and number of comparisons is to exploit 
the explicit information afforded by an implicit repre-
sentation; that is, a compact representation that captures 
the discriminatory characteristics exhibited in the image 
sets. To accomplish this task, we propose the use of   
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Figure 11. Classification error rates for each selected feature patch. The cardinality of points in the probe increases from 1 to 
20 while the cardinality of points in the gallery simultaneously decreases from 20 to 1. 
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Figure 12. Classification error rates for each selected feature patch. The cardinality of the probe points is one while the car-
inality of the gallery points ranges from 1 to 20. d   
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 ,GR N n

 ,GR k n
1 k N 

 iR
1 i P 

 
Karcher representation, as described in Algorithm 3, for 
image sets on the Grassmannians and illustrate its poten-
tial use for data compression with the following experi-
ment on the CUM-PIE “lights” data set. 

The way we validate whether this reduced representa-
tion can be used to replace the original image sets in the 
face recognition tasks is to compare the respective classi-
fication error rates. If an error-free classification result 
can be achieved on the original , then for a 
Karcher representation to successfully compress the 
same discriminatory information, the same error-free 
result will need to be observed on  for 

. The optimal result will be an error-free classi-
fication when the compression is at its maximum, i.e., 
when k = 1. We will now describe the specific parame-
ters implemented in this validating experiment. 

Let  be an n × N matrix that stores all N gallery 
images of each subject class for . Denote 1 ≤ k ≤ 

2N  

 iT
1 i P 

 

 the dimensionality of the Karcher representation 
which will be explored throughout the experiment. Fur-
ther let the cardinality of the probe sets be three for all 
subjects and store the images in n × 3 matrices, , 

. For a fixed k, Algorithm 3 is used to obtain a  

Karcher representation for each subject class, 
1

Pi

i
l


,  

where P is the total number of subjects in the gallery. 
That is, each  il  ,GR k n

 i
 resides in  and can be 

represented by a n × k matrix, K . If we cast the clas-
sification architecture in a distance matrix with the mini-
mal principal angle metric  ,D  

1min j     ,i jd D K T

min    

, then Karcher com-
pression provides useful compact representation if  

ii

ii

P ijd d 
 

ij 

P ijd d 

, where , given that 

 with 1 j  ,i jR T

59 4919  

ijd D . 

Let N = 16, the k-dimensional Karcher representation 
resulted in an error-free classification for k ≥ 4 on the lip 
patch of the “lights” data set ( ). In 
comparison, using four raw images per subject in the 
gallery resulted an average FAR of 30%. In the extreme 
case, when only a single raw image is used, the classifier 
returns an error rate of nearly 90%; while a 1-dimen- 
sional Karcher representation returns a 1% error rate. 
Figure 13 tabulates the error rate as a function of the 
dimensionality of the Karcher representation as well as 
the cardinality of the gallery image set. 

41n

The fact that the compression of a raw point on 
 16, 41 59
 4,41 59

GR
GR

 to a Karcher representation on  
, without diminishing performance, indi-

cates the promise of Karcher compression in the context 
of classification of image sets via Grassmannians. On the 
contrary, when using k raw images for each gallery point, 
the error rate never reaches zero for any 1 ≤ k ≤ 8. The 
fact that using a 4-dimensional Karcher representation 
achieves a perfect recognition result while using four raw 

images in the gallery does not indicates that Karcher 
representations are able to pack useful discriminatory 
information in a more efficient manner. This technique 
can potentially be used to enable compact representations 
computed from video sequences or data sets where a 
large number of images is available for the gallery. 

5. Summary and Discussions 

In this paper, a geometric framework for the general 
classification problem with image sets is reviewed. The 
power of the method is due, in part, to the fact that the 
geometry and statistics of the Grassmann manifold are 
well-understood and provide useful tools for quantifying 
the relationships between patterns. We made precise how 
this geometric framework is translated in practical set-
tings. We show by ways of experiments that the pro-
posed Grassmann method is robust against resolution and 
dimensionality reduction which corresponds to compres-
sion in both k and n in  ,GR k n . 

Although there might be other ways to accomplish ei-
ther of these two compressions, we consider compression 
in n induced by mathematical projections and compres-
sion in k through the proposed Karcher representation. 
Empirical results collected on a public database, CMU- 
PIE, and a private database, CSU-PAL, verify claimed 
success in employing a compressed representation 
through the use of Karcher mean and mathematical pro-
jections on the Grassmannian in set-to-set classification. 
These results are reported through an appropriate meas-
ure on the Grassmann manifold that coincides with a 
classifier metric termed false accept rate at a zero false 
reject rate, FAR for short. 

The work presented here originated from our goal to 
push the Grassmann method to a breaking point. While  
 

 

Figure 13. Error rate comparisons with k-dimensional 
Karcher representation and k raw images for points in the 
gallery corresponding to lip patches. Three images are used 
to compute points in the probe.  
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one may have many images in the gallery, often a very 
small portion of that set or the images is utilized. We are 
making identifications using illumination variations on a 
portion of the face. The results shown here provide an 
implementation blueprint in practice. Imagine a labeled 
gallery point where each image is of a person whose face 
is 95% occluded so that all you can see of the face is a 
fixed portion of the cheek. Now build a collection of 
such cheek image gallery sets for different people. The 
results in the paper suggest that you can determine from 
a probe cheek image set (if you again allow variation in 
illumination conditions) whether the probe cheek image 
matches another cheek image set in the gallery and which 
gallery set it matches. For this paper, we are imagining 
the scenario where a gallery has been built from the en-
tire face. Now a probe person’s images are collected 
within which “almost” their entire face is obscured. Our 
method requires we know which portion of the face is 
not obscured. Then we build a gallery of people’s illu-
mination spaces at this known portion of the face and 
make our comparisons to the probe on the Grassmannian. 

An emphasis should be drawn to the fact that feature 
patches typically have a sufficiently small resolution, e.g., 
50 - 100 pixels, such that the machinery of the Karcher 
mean is computationally tractable. A major contribution 
of the paper is that the Karcher mean computed on the 
Grassmannians can be used to compute a reduced repre-
sentation of the gallery while still maintaining error-free 
recognition on the illumination patches. We speculate 
that this approach will pay increased dividends with lar-
ger data sets. We further remark that other parameter 
spaces such as Stiefel manifolds and flag manifolds also 
present opportunities for extensions of these ideas. Addi-
tionally, although we focus on illumination as the source 
of state variation, we remark that other variations in state, 
such as those obtained by multi-spectral cameras, also fit 
within this framework. 
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