
Journal of Information Security, 2012, 3, 215-223 
http://dx.doi.org/10.4236/jis.2012.33027 Published Online July 2012 (http://www.SciRP.org/journal/jis) 

Data Stream Subspace Clustering for Anomalous  
Network Packet Detection 

Zachary Miller, Wei Hu 
Department of Computer Science, Houghton College, Houghton, USA 

Email: wei.hu@houghton.edu 
 

Received March 17, 2012; revised April 26, 2012; accepted May 5, 2012 

ABSTRACT 

As the Internet offers increased connectivity between human beings, it has fallen prey to malicious users who exploit its 
resources to gain illegal access to critical information. In an effort to protect computer networks from external attacks, 
two common types of Intrusion Detection Systems (IDSs) are often deployed. The first type is signature-based IDSs 
which can detect intrusions efficiently by scanning network packets and comparing them with human-generated signa-
tures describing previously-observed attacks. The second type is anomaly-based IDSs able to detect new attacks 
through modeling normal network traffic without the need for a human expert. Despite this advantage, anomaly-based 
IDSs are limited by a high false-alarm rate and difficulty detecting network attacks attempting to blend in with normal 
traffic. In this study, we propose a StreamPreDeCon anomaly-based IDS. StreamPreDeCon is an extension of the pref-
erence subspace clustering algorithm PreDeCon designed to resolve some of the challenges associated with anomalous 
packet detection. Using network packets extracted from the first week of the DARPA ’99 intrusion detection evaluation 
dataset combined with Generic Http, Shellcode and CLET attacks, our IDS achieved 94.4% sensitivity and 0.726% 
false positives in a best case scenario. To measure the overall effectiveness of the IDS, the average sensitivity and false 
positive rates were calculated for both the maximum sensitivity and the minimum false positive rate. With the maxi-
mum sensitivity, the IDS had 80% sensitivity and 9% false positives on average. The IDS also averaged 63% sensitivity 
with a 0.4% false positive rate when the minimal number of false positives is needed. These rates are an improvement 
on results found in a previous study as the sensitivity rate in general increased while the false positive rate decreased. 
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1. Introduction 

Since the explosion of internet usage in the early 1990s, 
people are now able to communicate over larger dis-
tances at a faster rate than previously possible. As the 
number of Internet-capable devices available to consum-
ers increases, new forms of communication are created. 
This new level of connectivity is often exploited as 
computer attackers are now able to share and distribute 
malicious programs and ideas effectively allowing inex-
perienced attackers to create sophisticated viruses and 
malware. Because of the increased need for network se-
curity, Intrusion Detection Systems (IDSs) are an integral 
part of any network [1]. 

Intrusion Detection Systems focus on preventing mod-
ern-day attacks directed towards a network through two 
techniques. The first type use signatures created by a 
human expert to represent and detect previous attacks. 
The signature-based IDSs provide a simple and effective 
security tool through signature matching, but are unable 
to detect new attacks [2]. The second type, anomaly-  

based IDSs, take a different approach by modeling nor-
mal traffic and comparing each incoming packet to this 
model [1]. Although anomaly-based IDSs can automati-
cally detect new attacks, they generally suffer from a 
high false positive rate (normal packets being classified 
as abnormal) and are vulnerable to polymorphic attacks. 
These attacks try to fool anomaly-based IDSs by making 
malicious packets appear normal. Because anomaly- 
based IDSs can detect new attacks, several anomaly- 
based IDSs have addressed the high false positive rate 
while improving detection. 

Numerous anomaly-based IDSs have been proposed 
and developed. NIDES [3], one of the first anomaly- 
based IDSs, models network behavior using source and 
destination IP addresses as well as the TCP/UDP port 
numbers to detect statistically deviant packets as abnor-
mal attacks. Another early system, NETAD [4], analyzes 
the first 48 bytes of IP packets and constructs models for 
the most common types of network protocols to detect 
anomalies specific to the packets’ protocol. Mahoney et 
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al. [5] developed a two tiered IDS formed by the parts 
PHAD and ALAD [5]. PHAD creates a model using the 
packet headers from each packet, and ALAD analyzes 
the TCP connections to detect anomalies. Using the two 
system approach, Mahoney et al. [5] developed a two- 
fold Intrusion Detection System able to detect individual 
and sets of anomalous packets. Two recently proposed 
IDSs, PAYL and McPAD employ n-gram features to 
represent network packets. 

PAYL [6,7] creates a histogram model based on 1- 
gram features from the ASCII characters in the packet’s 
payload. As new packets come in, PAYL generates a 
histogram based on the each packet’s payload and com-
pares the incoming histogram with the model using the 
Mahalanobis distance. Although PAYL achieves a high 
level of accuracy detecting abnormal packets, it suffers 
from a high false positive rate and low detection rate of 
polymorphic attacks. To improve these results, Roberto 
Perdisci et al. [8] developed McPAD, an IDS which util-
izes multiple one-class support vector machines to accu-
rately classify packets. In the McPAD [1,8] study, Per-
disci represented network packets through 2-gram fea-
tures as well as 2ν-gram where ν is the space between 
two characters in the packet used to capture structural 
information within the payload. With 2ν-gram features, 
McPAD detects the polymorphic attacks while keeping 
the false positive rate minimal. Despite the high detection 
rates of PAYL and McPAD, they cannot treat the dy-
namic nature of network packets. 

A changing flow of network traffic can be viewed as a 
stream of packets. Therefore, stream mining algorithms 
can naturally be applied to anomaly-based intrusion de-
tection [9]. Because data streams are very different from 
traditional batch data, data stream mining algorithms 
must resolve numerous challenges. These algorithms 
must process a large (sometimes infinite) number of data 
points in an online fashion with one pass. As a result of 
the restrictions on processing time, memory usage and 
the need for making use of the most recent data points, 
stream mining algorithms tend to perform worse than 
batch algorithms [9]. 

In 2011 we created two anomaly-based IDSs based on 
stream mining algorithms, and tested the IDSs on net-
work packets represented by 2-gram features [10]. The 
first IDS used a modification of the density-based stream 
clustering algorithm DenStream [11]. This IDS pre-
formed moderately well given its simple concept and 
small number of parameters. The second was a streaming 
histogram IDS based on the approach of PAYL. The his-
togram IDS performed better than the DenStream IDS 
but required more parameters to tune. After testing the 
IDSs with network packets represented by 2-gram fea-
tures, we tested 1-gram features as a comparison. Even 
though the IDSs using the 1-grams did not achieve the 

detection rates of the 2-gram tested IDSs, they took much 
less time to process the data. This study planned to ex-
tend and improve the detection and false positive rates of 
the previous stream IDSs with StreamPreDeCon, a modi-
fied subspace clustering algorithm for an evolving data 
stream. 

2. Materials and Methods 

2.1. Data 

Two publically available datasets were combined to 
provide testing data for our proposed IDS. The first was 
the DARPA ’99 intrusion detection evaluation dataset 
(http://www.ll.mit.edu/mission/communications/ist/corpo
ra/ideval/data/1999data.html) and the second was pro-
vided by the creators of McPAD [1]. The DARPA data 
was used in this study as an example of normal traffic 
and was extracted from the HTTP requests in the first 
week of the dataset. The payload information was re-
trieved using Jpcap (http://netresearch.ics.uci.edu/kfujii/ 
Jpcap/doc/) and the payload characters were converted to 
their corresponding ACSII numbers if the packet length 
was above 1400 characters. This preprocessing resulted 
in 5594 packets of normal traffic grouped by day. The 
number of times each ASCII character occurs was 
counted to generate 256 1-gram features. These features 
were selected instead of the 2-gram features as they pro-
vide a compact representation of network packets. 

The anomaly detection algorithm proposed in this 
study was tested with packets of three attack types. To 
simulate attacks to a network, 66 different types of Ge-
neric HTTP attacks were included in our study. These 
HTTP attacks included threats caused by standard attacks 
like buffer overflow, URL decoding error and input 
validation error. Shellcode attacks were also included as 
they are a special type of packet where the payload con-
tains executable code. CLET attacks attempt to hide from 
the detection algorithm by polymorphically enciphering 
the payload of the packet to appear normal. These attacks 
were also extracted from the packet’s payload using 
Jpcap and inserted into the normal packet stream. On 
each day of the DARPA dataset, the first 20% of the 
packets were set aside for a parameter-tuning phase, and 
the remaining 80% for a full-scale anomaly detection 
testing phase. 

2.2. Methods 

PAYL and McPAD perform well in a static network en-
vironment, but are not designed to consider the dynamic 
nature of real network traffic. To remedy this, we explore 
the use of the modified density based clustering algo-
rithm PreDeCon [12]. PreDeCon is inspired by a well- 
known algorithm DBSCAN [13] and its generalization 
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OPTICS [14]. DBSCAN stands for Density Based Spa-
tial Clustering of Applications with Noise and uses two 
simple parameters to cluster dense points together [13]. 
The first of these is , which defines the radius of a 
neighborhood of a point, termed -neighborhood. When 
the -neighborhood of a point is calculated, DBSCAN 
clusters the points together if the number of points in the 

-neighborhood is larger than the second user-specified 
parameter minPts. Because DBSCAN is a fairly simple 
and effective algorithm, it is the basis for several density 
based clustering algorithms such as OPTICS [14]. In-
stead of assigning points to particular clusters, OPTICS 
orders the points in the way that the DBSCAN algorithm 
would cluster the points if an infinite number of epsilon 
values exist. 










 

     

DBSCAN and OPTICS are proven to efficiently clus-
ter dense points together; however, the accuracy of the 
clustering models decreases with high-dimensional data. 
To extend the effectiveness of DBSCAN and OPTICS to 
high dimensional datasets, the notion of a preference 
subspace is introduced in the clustering algorithm Pre-
DeCon [12]. The preference subspace is formally defined 
as the subset of features for a point in Euclidean space 
that exhibit a low user-specified variance when compared 
with its other features. 

2.2.1. PreDeCon 
PreDeCon uses the preference subspace concept to com-
pute the -neighborhood of a point to cluster points 
together. The preference subspace is defined as a vector 
computed using the variance along a feature of a point to 
a given -neighborhood. The variance of an -neigh- 
borhood is calculated using the following formula: 
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where . Using the subspace preference vector, a 
preference weighted similarity measure associated with a 
point p is defined as  
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can then be formed using this weighted distance function. 
The -neighborhood is formally defined as: 
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 , a preference weighted core point is 
defined as a point whose preference dimensionality of its 

-neighborhood is at most a user defined parameter λ 
and the -neighborhood contains at least µ minimum 
points. If a point is a preference weighted core point, the 

-neighborhood of the point is inserted into a queue. 
PreDeCon then iterates through the queue and checks to 
see if the points in the -neighborhood can reach dif-
ferent points in the data set using the preference weighted 
subspace. A point q is reachable by a point p if q is a core 
point and is within the preference weighted -neigh- 
borhood of p. If a point is reachable but unclassified, the 
point is added to the queue. Using these definitions, 
PreDeCon then creates the clusters using the Expand-
Cluster method described in Figure 1. 

2.2.2. PreDeConInc 
The incremental version of PreDeCon attempts to update 
the clustering model built by the original algorithm as 
new data comes in through an added update step [15]. 
This update step simply checks to see if the new point 
causes a core point to change its preference vector or to 
become a non-core point and vice versa. Once an af-
fected point (one of the points that has changed) from the 
insert is found, all reachable points are found using the 
new preference weighted subspace and updated with the 
new subspace preference vector. This approach mini-
mizes the number of distance queries between two points 
because the extra steps to find the reachable neighbors of 
a point x are not executed unless the new point affects x. 
Although the incremental version of PreDeCon allows 
 

ExpandCluster(): 
For each unclassified   do 
  if o is a core point then: 
    generate new clusterID;   

    insert all  o
wx N o  Φ

Φ

 into queue ; 

 while   do 

q = first point in ;  Φ

      Compute  | , ;pref
denR x D DirReach q x 

     for each x R  do 
       if x is unclassified then: 
         insert x into ; Φ

Φ

       if x is unclassified or noise then: 
         assign current clusterID to x 
       remove q from ; 
    else 
      mark o as noise;  
end; 

Figure 1. Expand cluster method to create preference wei- 
ghted subspace clusters. 
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the clustering model to update itself as new points arrive 
into the system, this algorithm needs to be modified to 
handle streaming data. 

2.2.3. StreamPreDeCon 
Here we propose a new algorithm StreamPreDeCon, 
which applies the preference weighted subspace cluster-
ing techniques of PreDeConInc to the stream setting. To 
accomplish this, we apply a decay factor to the Euclidean 
Distance and the Preference Weighted Similarity Meas-
ure so that the algorithm can capture the concept shifting 
and drifting nature of a data stream. Due to the poten-
tially large volume of data in a data stream, a weighted 
distance deletion method of noise points is implemented 
to maintain an effective model of constant size. 

The large amount of data that needs to be processed as 
well as the possibility for data evolution warrants a decay 
factor be applied to the distances between points. This 
allows for recently arrived points to have greater influ-
ence on the clustering. The decay factor was generated 
using the function: 

  2 tf t  ,                 (6) 

where   is a predefined constant greater than 0 and t is 
the difference in the timestamp between the current point 
and the point already in the model. After the decay factor 
is determined, the distance between the points is calcu-
lated with the weighted distance function multiplied by 
the decay factor through the formula: 
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where t  is the timestamp of a point . This multi-
plication causes older points to seem further away from 
newer points. The decay factor is also applied to the 
preference vector calculation by modulating the variance 
depending on the timestamp. 

In order to process the large amount of stream data 
while keeping only the recent information in our model, 
PreDeConInc needs to be modified further to allow dele-
tion of old points in the model. This is done by adding a 
new step immediately after the new point arrives. During 
this step, StreamPreDeCon checks the decayed distance 
between the new point and the model of core points. If 
this distance is above a certain threshold parameter 

For each incoming point p  do 

   Place p  into the database 

   Compute the subspace preference vector pw . 

   //Check preferred dimensionality with database: 

   //Check changes in core member property of  o
wN p . 

   Calculate Weighted Distance for Deletion of Model: 

   Delete any noise points where distance is greater than γ. 

   For each  o
wq N o   do 

      Update pw  

      Check changes in core member property of  o
wN q  

      If change exists, update core members. 

           Expand cluster using Decayed Euclidean Distance.

end; 

Figure 2. StreamPreDeCon algorithm for anomalous packet 
detection. 
 
remains current within the stream of data. 

The clustering models generated by StreamPreDeCon 
can be used to classify data points in the stream. When a 
new point arrives, StreamPreDeCon calculates the pref-
erence vector for the new point and checks where the 
new point is clustered. After the point has been clustered 
or marked as noise, StreamPreDeCon classifies the point 
as a core or non-core point. Since a point can either be 
classified as a core or non-core point, this approach lends 
itself well to binary classification problems such as the 
detection of abnormal packet within a network stream. 
To apply StreamPreDeCon, we consider packets classi-
fied as core points normal and noise points as abnormal. 

The classification of network packets is evaluated 
through the performance metrics of sensitivity and false 
positive rate. Sensitivity measures the detection rate of 
abnormal packets and the false positive rate measures the 
number of false-alarms. These are defined as: 

  
and the point is currently a noise point, it is deleted. This 
step not only reduces the size and maintains recent in-
formation stored in the model, but also improves cluster-
ing efficiency and accuracy by removing old points that 
are very far from the clusters in the data stream. Core 
points are also eligible for future deletion because they 
are not guaranteed to remain core points in the future. By 
implementing the deletion step in Figure 2, the model 

sensitivity
TP

TP FN



,               (8) 

FP

TN FP



false positive rate ,         (9) 

where TP is the number of correctly classified abnormal 
packets, FP is the number of incorrectly classified nor-
mal packets, TN is the correctly classified normal packets, 
and FN is the number of incorrectly classified abnormal 
packets. 

3. Results and Discussion 

In this section, we describe the setup of our evaluation 
tests for the StreamPreDeCon IDS. After the appropriate 
values of parameters were determined through a parame-
ter-tuning phase, the performance of the StreamPreDe-
Con IDS was tested with the remaining 80% data. This 
new IDS performed well in all but one day. To gain un-
derstanding of this anomaly, we analyzed both the pack-
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

 

500

Table 1. Parameter values used for streamPreDeCon pa-
rameter-tuning and testing phases. 

ets themselves and the algorithm’s output at each step. 
An initial setup of the StreamPreDeCon algorithm was 

required due to the number of parameters used. To find 
which parameters have the highest influence on the clus-
tering, each virus type for a particular day was run. Be-
cause  was found to have the greatest effect on the 
outcome of the algorithm, we fixed the remaining pa-
rameters to values that gave us a good initial clustering 
model. The values of the parameters used for both the 
tuning and the testing phases are displayed in Table 1. 

 Tuning (20% data) Testing (80% data) 

  400 - 1100 490 - 1610 

min_pts 5 5 

  200 200 

  0.5 0.5 

  0.06 0.06 
Once the initial values of the parameters were identi-

fied, we tuned the  parameter to get a basic idea of  
values we should try in the full-scale test. Using the 20% 
data set, we began with 

  5 20 

 
  and increased this 

value if we desired a lower false positive rate, and low-
ered it if we wanted a better detection rate. By using the 
small 20% data set, we quickly found a range of parame-
ter values ideal to start the full scale tests on the 80% of 
data. 

Generic Http and Shellcode attacks. Also, the Shellcode 
attacks exhibited a near perfect detection rate while the 
false positive rate was below 10%. This gave us some 
room to work as we could get the false positive rate be-
low 1% with a higher   value. Because of the larger 
number of packets, the  ranges needed to be altered 
slightly as the amount of variation between packets in-
creases with the number of packets. Also to keep the al-
gorithm running efficiently, we multiplied the gamma 
parameter by a factor of four to reflect the number of 
packets in the 80% test data. 







Keeping the same parameter values from the parame-
ter-tuning phase, we began testing different values for . 
The effect  has on the classification is demonstrated in 
Figure 3. As  is increases, the detection rate and the 
false positive rate both decrease. In other words, to 
maintain a low false positive rate at the expense of a 
lower detection rate, a higher  must be selected. For 
the Monday data, when  is less than 480, the sensitiv-
ity is greater than 94% for all attack types, but the false 
positive rate is above 40%. Then when  is greater than 
680, the false positive rates and the sensitivity decrease 
to less than 10% and 54% respectively. This trend is fur-
ther observed for greater   values, the false positive 
and detection rates both continue to decrease. We also 
noticed slight differences in the detection rates of the 
different virus types in this preliminary tuning phase. The 
CLET attacks generally had lower detection rates but 
higher false positive rates in comparison with the other 
two attack types. This means that the overall range of  
values would most likely be much smaller than those for 












After performing multiple experiments on a set of  
values, we displayed three test runs for each virus type 
and day. We selected the test that demonstrated the 
highest detection rate while keeping the false positive 
rate below 10%, a run where the lowest false positive 
rate occurred while keeping the detection rate above 60% 
and a  in between the highest and lowest. The sensi-
tivity and false positive rates are displayed in Table 2. 

As demonstrated by Table 2, the StreamPreDeCon 
based IDS is an improvement over previous stream 
anomaly-based IDSs. For all days except for Thursday, 
the StreamPreDeCon clustering algorithm achieved the 
highest detection rates with the least false positive rates 
for the Shell-code attacks averaging 94 percent with the 

 

 

Figure 3. Anomalous packet detection sensitivity and false positive rates of the StreamPreDeCon IDS. 
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Table 2. StreamPreDeCon ID detection results of anomalous packets within the 80 testing data. 

CLET Generic HTTP Shell-code 
Day 

   FP Sens  FP Sens  FP Sens 

489 (30) 5.6 (20) 61.8 (78) 550 (30) 13.6 (20) 76 (95) 650 (30) 9 (20) 94.5 (100) 

500 (45) 5.6 (9) 60 (67) 625 (45) 8 (10) 74.5 (76) 800 (45) 5 (10) 94.5 (95) Mon 

750 (60) 0.5 (6) 52.7 (49) 1200 (60) 0.3 (7) 74.5 (73) 1290 (60) 0.2 (7) 63.6 (93) 

625 (65) 10 (35) 71.8 (62) 630 (65) 8 (35) 82.1 (74) 625 (65) 10.2 (35) 94.8 (86) 

650 (80) 5 (33) 71.8 (56) 950 (80) 5.5 (34) 82.1 (72) 700 (80) 1.8 (34) 94.8 (81) Tue 

1610 (100) 0.5 (33) 53.8 (50) 1180 (100) 0.13 (33) 56.4 (69) 1250 (100) 0.8 (33) 94.8 (79) 

615 (95) 11 (11) 72 (37) 650 (95) 3 (11) 79 (62) 615 (95) 10.5 (11) 94.4 (81) 

625 (110) 2 (10) 70 (29) 1200 (110) 1 (10) 81.1 (60) 700 (110) 0.7 (10) 94.4 (78) Wed 

1000 (125) 0.7 (8) 64.7 (25) 1250 (125) 0.3 (8) 65.2 (56) 1280 (125) 0.4 (8) 72.2 (72) 

1300 (5) 42.5 (4) 73 (98) 1300 (5) 68.3 (3) 96.9 (100) 1300 (5) 69.3 (3) 94.8 (100) 

1400 (30) 38.7 (2) 61 (84) 1350 (30) 38.1 (1) 52 (90) 1350 (30) 46.7 (1) 65.5 (93) Thu 

1420 (55) 24.5 (2) 40 (76) 1400 (55) 38 (1) 51.6 (81) 1400 (55) 31 (1) 48.3 (82) 

610 (55) 8 (9) 62.9 (58) 800 (55) 11 (9) 77 (77) 625 (55) 7.9 (9) 94 (94) 

1000 (65) 5 (9) 58.1 (53) 110 (65) 5.4 (9) 77 (74) 1100 (65) 4.8 (9) 94 (92) Fri 

1040 (75) 0.3 (8) 46.8 (49) 1260 (75) 0.3 (9) 51.6 (71) 1280 (75) 0.2 (8) 60 (88) 

Best Sens Avg 15.4 (15.8) 68.3 (66.6)  20.8 (15.6) 82.3 (81.6)  21.4 (15.6) 94.5 (92) 

Best FP Avg 5.3 (11.4) 51.6 (49.9)  7.8 (11.6) 59.9 (70)  6.5 (11.4) 67.8 (85.2)

Best Sens Avg* 8.7 (18.8) 67.1 (58.8)  8.9 (18.8) 78.6 (77)  9.4 (18.5) 94.4 (90.3)

Best FP Avg* 0.5 (14.3) 54.5 (43.3)  0.3 (14.3) 61.9 (67.3)  0.4 (14) 72.7 (83) 

In this table, we displayed the sensitivity and false positive rates of the StreamPreDeCon-based IDS. The values within the parenthesis are taken from the 
1-gram tests of [10] to show the improvement. To show the overall rates, we took the averages of the  values that gave the best sensitivity and false positive 
rates for each day and virus type. The averages with the asterisks are the average rates with Thursday tests omitted. 




 
smallest  values. StreamPreDeCon also achieved mo- 
derate results for the Generic HTTP and CLET attacks. 

Because the CLET attacks are meant to fool the anom-
aly-based IDS through polymorphic techniques, these 
attacks cause the lowest acceptable detection rates. De-
spite the slightly poor detection of CLET attacks, the 
StreamPreDeCon IDS on average had mostly higher sen-
sitivity values with substantially lower false positive 
rates than the results of [10]. 

The poor results for the Thursday data are attributed to 
the data itself. Within the initial 200 normal packets, 
there is a large amount of variation between packets in 
the same  -neighborhood. This causes StreamPreDe-
Con to create an inaccurate initial clustering model as its 
preferred subspace dimensionality is larger than 200. In 
fact, for StreamPreDeCon to initially cluster the packets, 
all 265 features are needed compared to the other days 
needing fewer than 200. Also, after a certain packets, 

every single normal packet is the same. This causes nor-
mal packets to be classified as abnormal once an abnor-
mal packet is classified as normal. Because of this, both 
the sensitivity and false positive rates for Thursday data 
are very close for all parameter values tested. 

To further analyze the data, we counted the occurrence 
of each ASCII character in each normal and abnormal 
packet and then normalized frequency counts and grouped 
them by day and attack type. In Figure 4, we display the 
histogram generated for Monday since all the days ex-
cept Thursday shared a similar distribution pattern. We 
also generated separate histograms for each attack type to 
view their differences. 

There is a clear difference between the typical normal 
packets and the Thursday normal packets (Figure 4). In 
general, the normal packets have a high normalized oc-
currence of the ACSII code 0 and low normalized counts 
for the rest. In particular the normal packets for Thursday  
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Figure 4. Assorted histograms generated using byte frequency distribution. 
 
do not have the high occurrence of ASCII code 0 which 
might have caused the poor performance rates on those 
tests. The abnormal packets each have unique signatures 
in comparison to normal packets which offer the basis for 
anomaly detection. Each of the three attack types has 
peaks at positions 66 and 145. CLET has two more peaks 
at position 7 and 236 which might help these attacks 
blend in with normal traffic. Because StreamPreDeCon 
monitors the stream one packet at a time, there could be 
packets appear to be normal. This would explain the high 

detection rates in certain attack types on particular days. 
The histograms illustrate the different distribution pat-
terns of the average packet payload. 

4. Conclusions 

This study aimed to create an anomaly-based IDS based 
on StreamPreDeCon. In general, anomaly-based IDSs are 
characterized by being able to detect new attacks but 
suffer from a high false-positive rate and difficulty de-  
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tecting polymorphic attacks. The preference subspace 
clustering algorithm offers a unique method to analyze 
how particular subspaces interact which could maximize 
the detection of polymorphic attacks while maintaining a 
low false positive rate. In order for the PreDeCon algo-
rithm to handle data changes within the network packet 
stream, we modified PreDeCon by adding a decayed dis-
tance measurement along with a deletion scheme and 
binary classification technique, which allow the IDS to 
detect anomalous packets. The addition of a decay factor 
give the most recent points in the model a greater influ-
ence on the clustering of the incoming points. The dele-
tion step keeps the model current and manageable by 
deleting old noise points that have no effect on the clus-
tering. 

Tested on a dataset comprised of normal packets from 
the first week of the DARPA ’99 intrusion detection 
evaluation dataset and various types of malicious traffic 
from [1], the IDS based on StreamPreDeCon out-per- 
formed previous stream-based IDS [10] using the same 
dataset in all days except for one day. For these days, the 
anomalous packet detection of the StreamPreDeCon IDS 
improved the sensitivity rate of the DenStream based 
IDS from 30% - 90% to 60% - 94% and reduced the false 
positive rates from a high of 20% to between 1% and 
10%. 

Although our proposed IDS achieved better results 
when compared with other IDSs of the same type, there 
is still room for improvement. First StreamPreDeCon 
needs to be more efficient. This could be implemented 
with the help of micro-clusters utilized by other stream 
clustering algorithms such as DenStream [11]. Micro- 
clusters will allow the Intrusion Detection System to 
store a compact representation of a set of points and thus 
reduce the number of distance calculations. Second, a 
smarter classification technique could be developed to 
better differentiate the normal core points from abnormal 
core points to increase the detection rate and decrease the 
number of false positives. These two adjustments will 
potentially help both the efficiency and effectiveness of 
the StreamPreDeCon IDS. 
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