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ABSTRACT 

Public transportation network reorganisation can be a key measure in designing more efficient networks and increasing 
the number of passengers. To date, several authors have proposed models for the “transit route network design prob-
lem” (TRNDP), and many of them use a transit assignment model as one component. However, not all models have 
considered the “common lines problem,” which is an essential feature in transit network assignment and is based on the 
concept that the fastest way to get to a destination is to take the first vehicle arriving among an “attractive” set of lines. 
Thus, we sought to reveal the features of considering the common lines problem by comparing results with and without 
considering the problem in a transit assignment model. For comparison, a model similar to a previous one was used, 
formulated as a bi-level optimisation problem, the upper problem of which is described as a multi-objective problem. 
As a result, although the solutions with and without considering the common lines showed almost the same Pareto front, 
we confirmed that a more direct service is provided if the common lines problem is considered whereas a less direct 
service is provided if it is not. With a small network case study, we found that considering the common lines problem in 
the TRNDP is important as it allows operators to provide more direct services. 
 
Keywords: Transit Network Configuration and Frequency Design; Bi-Level Optimisation Formulation; Transit  

Assignment Model; Common Lines Problem 

1. Introduction 

To entice travellers to shift from private cars to public 
transportation, many public transport operators have ta- 
ken measures such as reducing off-peak fares. Several 
researchers have proposed models for determining opti-
mal fares [1,2] or optimal transit frequencies [3]. Another 
measure could be to make the network configuration 
more efficient because there are many inefficient bus 
networks worldwide. Therefore, an optimal public trans-
portation route configuration is necessary as a benchmark 
to determine the design of a new public transportation 
route configuration. The problem of designing such a 
network is referred to as the “transit route network design 
problem” (TRNDP); it focuses on the optimisation of bus 
routes or frequencies in order to optimise a number of 
objectives representing the efficiency of public transpor-
tation networks (such as minimising passengers’ cost or 
maximising profit) under operational and resource con-
straints such as the number and length of public trans-
portation routes, allowable service frequencies, and the 
number of available buses [4]. 

Several researchers have proposed models for the 
TRNDP. For example, [5] also proposed a bus network  

optimisation model, the objective of which was to maxi-
mise the proportion of passengers travelling without 
transfers, and solved the model by a parallel ant colony 
algorithm. However, passenger behaviour principles 
seem not to be described clearly in their model. [6] pro-
posed a model for optimising feeder bus routes, where 
the transfer point from the railway to a feeder bus was 
fixed and transferring between feeder buses was not al-
lowed. [7] formulated a simultaneous optimisation prob-
lem for railway line configurations and passenger as-
signments as a linear binary integer problem. Because 
line frequencies were not determined in their model, they 
charged a given transfer penalty as an additional waiting 
time, but any additional waiting time due to a transfer 
should be defined related to the service frequency (pas-
senger waiting time is short if the service frequency is 
high). Another feature of their model is that a branch- 
and-bound method was used as a solution algorithm to 
obtain an exact solution whereas all previous models had 
been solved with heuristic algorithms. However, they 
simplified the network to solve the model within a rea-
sonable time. It would be difficult to apply a strict solu-
tion algorithm to a bus network optimisation problem,  
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which is, generally, more complex than a railway net-
work optimisation problem. 

The literature review has so far revealed that many re-
searchers do not describe passenger route choice behav-
iour accurately. Thus, several papers include a transit 
assignment model within the TRNDP to consider the 
passenger route and transfer choice behaviour. [8] com-
bined a line planning model and a traffic assignment 
model, and demonstrated a solution algorithm based on a 
column generation method. However, their assignment 
model was very similar to the traditional assignment 
model and did not consider the “common lines problem”, 
which is an essential feature in a transit network assign-
ment and is based on the concept that the fastest way to 
get to a destination is to take the first vehicle arriving 
among an “attractive” set of lines (the “attractive” set of 
lines is referred to as the “hyperpath”). [6] demonstrated 
a model framework for combining the TRNDP and a 
transit assignment model considering the common lines 
problem. [9] extended their model to determine the allo-
cation of a limited number of environmentally friendly 
vehicles and applied the model to a real-size network 
(although the details of the transit assignment model are 
not described in either paper). [10] expanded the model 
of [2] to optimise both the routes and frequencies of pub-
lic transportation, and they applied their model to a real 
network. 

As described so far, some TRNDPs have considered 
the common lines problem, while others have not. Con-
sidering the common lines problem implies that passen-
gers can consider the complex route set perfectly, which 
so far was almost impossible in dense networks. How-
ever, due to personalised information technology, such as 
smart phones, passengers can nowadays obtain better 
knowledge of the complex route set. Also, passengers 
will tend to use common lines if transit agencies aggre-
gate separate bus stops. Therefore, it is important for 
transit agencies to know how the optimal network con-
figuration differs if passengers come to know the com-
plex route set. Thus, in this study, we explore the impor-
tance of the common lines problem in the TRNDP by 
comparing results with and without considering common 
lines. The model used in this study is similar to that of 
[10], which is formulated as a bi-level optimisation 
problem, the decision variables of which are the route 
and frequency of each line, but the following aspects 
were modified: 
 The assumption of a fixed origin/destination for each 

bus line was relaxed by introducing a dummy origin 
and destination node. 

 Vehicle number constraints were considered more 
accurately by combining a vehicle assignment proce-
dure and a frequency setting procedure in the solution 
algorithm. 

 Capacity constraint conditions were not considered in 
this paper to save computational costs ([10] con-
firmed that capacity constraint conditions did not af-
fect the output of the TRNDP in a real network). 

The remainder of the paper is organised as follows. 
Section 2 describes briefly the minimum cost hyperpath 
searching problem that is one component of the transit 
assignment model proposed by [11]. Section 3 describes 
a mathematical formulation of the bus network optimisa-
tion model, and Section 4 shows the solution algorithm. 
Section 5 illustrates a case study with a simple network, 
comparing the model with and without considering the 
common lines problem. Finally, Section 6 provides con-
clusions and identifies future research. 

2. Minimum Cost Hyperpath Searching 
Problem 

In this chapter, the minimum cost hyperpath searching 
problem, one component of a transit assignment model 
[11] that is used in the lower problem of the proposed 
model, is presented briefly. 

2.1. Network Representation 

To consider the capacities of transit lines together with 
the common lines problem, the transit network shown in 
Figure 1(a) was transformed into the graph model shown 
in Figure 1(b). An origin node represents a trip start 
node. A destination node represents a trip end node. A 
stop node represents a platform at a station. Any transit 
lines stopping at the same platform are connected via 
boarding arcs and failure nodes. At stop nodes, passen-
gers can either take a bus or walk to neighbourhood bus 
stops, and if they take a bus, they are assigned to any of 
the attractive lines in proportion to the arc transition 
probabilities. A boarding node is a line-specific node at 
the platform where passengers board. An alighting node 
is a line-specific node at the platform where passengers 
alight. Note that boarding and alighting node are se- 
paretely defined in order to allow consideration of dwell 
time and capacity constraints. line arc represents a transit 
line connecting two stations. A boarding arc denotes an 
arc connecting a stop node to a boarding node. An 
alighting arc denotes an arc from an alighting node to a 
stop node. A stopping arc denotes a transit line stopping 
on a platform after the passengers alight and before new 
passengers board; this arc is created to express the 
available capacity on the transit line explicitly. A walking 
arc connects an origin to a platform (access), a platform 
to a destination (egress), and neighboring platforms 
(walk to neighboring platforms). 

Generally, the network representation used in public 
transit assignment models requires more computer me- 
mory compared to that used in road traffic assignment 
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models because of the many arcs and nodes. However, 
this may be less of a problem considering recent progress 
in computer technology. Moreover, because the compo-
nents of the graph network are simple, it is possible to 
convert automatically from Figure 1(a) to Figure 1(b). 
The minimum cost hyperpath searching problem is now 
described. If the common lines problem is not considered, 
it is easy to obtain a minimum cost path by applying a 
shortest path searching algorithm, such as the Dijkstra 
method, with the graph network shown in Figure 1(b). 

2.2. Notation 

We use the following notation regarding the transit as-

signment model. Other notation will be shown as appro-
priate. 

Ap: Set of arcs on hyperpath p; 
L: Set of line arcs; 
Ll: Set of line arcs on line l; 
Ul: Set of platforms on transit line l; 
WA: Set of walking arcs; 

BA: Set of boarding arcs; 
Sp: Set of stop nodes on hyperpath p; 
Vp: Set of elementary paths on hyperpath p; 
OUTp(i): Set of arcs that lead out of node i on hyper-

path p; 
wkl: Stopping arc of line l on platform k; 

 

O 1 23 4 5

Line I
Frequency = 1/5 minute
Capacity = 500 passengers / vehicle

Line II
Frequency = 1/10 minute
Capacity = 1,000 passengers/ vehicle

12 12 12
15 8

ARC TRAVEL TIME
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Figure 1. Network representation. (a) Example transit network; (b) Graph network.      
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bkl: Boarding arc of line l on platform k; 

; 

; 

 

lows satisfying flow con-
se

cluded in l, 
ot

2.3. Assum

lowing assumptions regarding the 

es 

ading out of nodes on a 

τap: Arc split probability on hyperpath p; 
l(a): A transit line that is included in arc a
gp: Cost of hyperpath p; 

; ca: Arc cost on arc a  A
ta: Travel time on arc a  A
ξ: On-board value of time; 

;ζ: Value of time for walking
η: Value of time for waiting; 
Ω: Set of feasible hyperpath f
rvation; 
λlp: Probability of choosing any particular elementary 

path l of hyperpath p; 
αap: Probability that traffic traverses arc a; 
βip: Probability that traffic traverses node i; 
δal: Dummy variable, equal to 1 if arc a is in
herwise 0; 
εil: Equal to 1 if elementary path l traverses node i, 

otherwise 0; 
Y: Vector of hyperpath flows; 
X: Vector of arc flow; 

/min). fl: Frequency of line l (1

ptions 

We adopted the fol
common lines problem, similar to previous studies (See, 
[11,12]): 
 All bus lines operate with given exponentially dis-

tributed headways, and a mean equal to the inverse of 
the line frequency. The distributions of the lines are 
assumed to be independent of each other. 

 Passengers arrive randomly at every stop node and 
decide whether to take a bus or walk. If they take a 
bus, they always board the first arriving vehicle of 
their choice set. 

2.4. Arc Split Probabiliti

Where there are several arcs le
hyperpath, traffic is split according to τap. As shown in 
Figure 1, passengers may be split at stop, failure, or 
alighting nodes. At stop nodes, because passengers can-
not simultaneously choose between taking a bus and 
walking to other platforms, the arc split probability is 
defined with boarding arcs and walking arcs separately, 
as shown in Equation (1). If boarding arcs are included in 
hyperpaths, the arc spilt probability is proportional to the 
line frequency, 

  
  

( )
,  

1

l a ip p
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p

f F a OUT i BA
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  
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              (2) 

2.5. Cost of Hyperpaths 

In this paper, the cost of a hyperpa
generalised cost that consists of three elements: the 

time, the monetary value of 

th is represented as a 

 
 p

ip l a
a OUT i

F f


   

monetary value of the travel 
the expected waiting time, and the implicit cost associ-
ated with the risk of failing to board. We admit that pas-
sengers may walk to another bus stop by creating a 
walking arc between all stop nodes. Thus, the cost for 
each arc, ca, is defined as: 
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Using the cost of arc a, ca, the generalised cost of hy-
perpath p, gp, can be written as follows: 
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The first term of Equation (4) represents the “moving 
cost,” which consists of the mon
in-vehicle time and the walking co
represen

3.1. Outline of the Model 

olders, the 
op ed to wish to 

and movement cost. Addi-
he operator knows the pas-

etary value of the 
st. The second term 

t the monetary value of the expected waiting 
time. Note that αap and βip in Equation (4) represent the 
probability that passengers traverse arc a and node k, 
respectively, both of which are derived from the prob-
ability that the elementary path l within hyperpath p is 
chosen. As Equation (4) can be separated by the subse-
quent node, Bellman’s principle can be applied to find 
the minimum cost hyperpath. For simplicity, we treat ta 
and fl as constants. 

3. Bus Network Configuration and 
Frequency Optimisation Model 

In the proposed model, we consider two stakeh
erator and passengers, and both are assum

minimise the total travel time 
tionally, if it is assumed that t
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sengers’ route choice norm (i.e., minimising the move-
ment cost) and that the operator can influence, but not 
control, passenger route-choice behaviour, then the pro-
posed model can be formulated as a Stackelberg game or 
a bi-level optimisation problem, where the operator is the 
leader and the passengers are followers. If the transit 
operator tries to minimise the total travel time, the level 
of service will decrease, causing an increase in passenger 
cost; thus, the objectives of the stakeholders often con-
flict. Thus, the upper problem is formulated as a multiple 
objective optimisation problem. In addition to the as-
sumptions shown in Section 2.3, we make the following 
assumptions in the proposed model.  

First, regarding the bus operation service: 
 The position of bus stops is given and fixed, but not 

all the bus stops have to be used. 
 Express service is not considered (i.e., all buses stop 

xed. 

ement: 
rpath for a 

ey can walk 
 origin or intermediate 

ion of hyper-

 each line, denoted as r = (r1, 
, f|L|), respectively. The pro-
: 

at all stops they pass en-route). 
 Travel time between bus stops is constant. 
 The maximum number of lines is fi
 Dwell time is not considered. 

Second, regarding passenger mov
 Passengers choose the minimum cost hype

given bus network configuration, and th
to a different bus stop from an
bus stop if it is cheaper (see the definit
path cost in Equation (4)). 

 The OD demand is fixed regardless of the bus net-
work configuration. 

3.2. Model Formulation 

The decision variables in the proposed model are the 
route and frequency of
r2, ···, r|L|) and f = (f1, f2, ···
posed model is formulated as

 
,

min , , ,  1, 2,m
r f
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such that 
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0 otherwise
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L
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
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where 
M: Number of objective functions in the upper prob-

lem; 
|L|: Number of lines (fixed); 

 Minimum cost from the origin of the hyperpath (r) 
to

 Travel demand between OD pair rs; 
ime on line l; 

esents the objective function, de-

fin e case where 
all the choose the 
sh hort-
est

mrs
*:

 the destination (s); 
drs:

max
lC : Upper value of travel t

NV: Number of available vehicles. 
Equation (10) repr

ed later, and Equation (11) describes th
passengers between each OD pair 

ortest hyperpath. Passengers are assigned to the s
 hyperpath based on Markov Chain assignments (see 

[11]). Equation (12) concerns vehicle number constraints. 
The number of vehicles required to operate a certain line 
is assumed to be proportional to the line length and fre-
quency, implicitly neglecting turning time or waiting 
time at the depot. The objective function of the operator 
is to minimise total operational costs (ψ1), and the objec-
tive function of the passengers is to minimise total 
movement cost (ψ2), formulated as: 

  2
1 1

, ( )
L

l l ll
r f f C r


                (13) 

 2 , , ( )
rsrs W p H

y r f y g y
 

 * p p      (14) 

where 
W: Set of OD pairs; 

Set of hyperpaths between OD pair rs. 
Equation (13) represents the total travel time for the 

r because the left-hand side of Equation (12) 
re f vehicles required to operate line 
l. 

the upper problem of a multi-objective optimisation 
 problem, we use the elitist 
ic algorithm (NSGA-II) pro- 

n the figure, two types of genes are de-
hicles (A genes) and genes 
een neighbourhood lines (B 

*
rsh : 

operato
presents the number o

4. Solution Algorithm 

As shown in Section 3, the proposed model is formulated 
as 
problem. To solve the upper
non-dominated sorting genet
posed by [13], which is an expanded genetic algorithm 
(GA) that requires fewer parameters than other methods. 
In this section, only a solution algorithm within one ge- 
neration is described, which consists of “Vehicle As-
signment”, “Route Design”, and “Frequency Setting”. A 
frequency for each line is determined by combining a 
“Vehicle Assignment” procedure and a “Frequency Set-
ting” procedure. 

4.1. Vehicle Assignment 

Figure 2 illustrates the chromosome for vehicle assign-
ment. As shown i
fined: genes representing ve
representing boundaries betw
genes). The number of A and B genes are equivalent to 
the number of available vehicles and maximum number 
of operated lines, respectively. Using these genes, the 
number of vehicles for each line is equivalent to the 
number of A genes sandwiched between two B genes. 
Figure 2 illustrates an example of vehicle assignment. In 
this example, two vehicles are assigned to line 1, three 
vehicles are assigned to line 2, but no vehicle is assigned 
to line 3. 
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… …

Number of Vehicles (Number of Lines)-1 

… …

Line 1: 
2 Vehicles

Line 2: 
3 Vehicles

Line 3: 
0 Vehicle  

Figure 2. Chromosome illustration for vehicle assignment. 

4.2. Route Design 

Although m  
g

me shortcomings for solving the 
erating indirect routes. In this sec-

from the 
ge

an that of creating route 

0-

o each line and 
 Then, the frequency of each 

any researchers examining the TRNDP use a
enetic algorithm (GA) as a solution algorithm, the 

original GA has so
TRNDP, such as gen
tion, a modification of the GA procedure for route search 
under fixed origin and destination nodes is described 
following Inagaki et al. [14], using the example network 
shown in Figure 3(a). In the modified GA procedure, the 
number of genes in a chromosome is the same as the 
number of nodes in a network N. Each gene m can only 
take the values of the nodes to which direct links from 
the node m exist; that is, a link connecting nodes m and n 
is represented by assigning node ID n to the mth gene. 
Thus, the alignment of the genes in a chromosome can 
provide the ID of nodes that make up a route, if one 
keeps moving (“jumping”) from gene m to gene n (in 
Figure 3(b), these are the genes with a square). 

Thus, the chromosome defined here consists of two 
types of genes, those contributing to the representation of 
the route and those not. The Proposition in the Appendix 
1 shows that we can always obtain a valid route 

nes that contribute to the route description, unless a 
cyclic route is obtained, which occurs if the same node 
ID appears in at least two of these genes. Figure 3(b) 
represents the route (0 → 1 → 4 → 6 → 7), with predete- 
mined origin and destination nodes as 0 and 7, respec-
tively. For the genes that are not needed for the route 
description, a random node ID among the available node 
IDs is selected. With this chromosome definition, one 
can trace a unique route from the origin to destination 
nodes. There are also the well-known elements of cross-
over and mutation within GA optimisation, as described 
in (14) (See, Appendix 2). 

Note that the modified GA procedure might not create 
all the possible routes with equal probability. For exam-
ple in Figure 3(a), the probability of creating route 
0-1-3-7 would be higher th

1-4-6-7 because with above definition, the probability 
of connecting from node 3 to 7 equals to one (there is 
only one arc connecting nodes 3 and 7) whereas the 
probability of connecting node 4 to 6 is 0.33. However, 
the latter route overlaps also with a number of would 
have a route with higher overlapping rate (e.g. 0-1- 
4-5-6-7) than the former route. Therefore, since the 
modified GA procedure implicitly generates routes that 
overlap less with higher probability, this procedure is 
expected to create more variety of routes. 

4.3. Frequency Setting 

As a result of vehicle assignment and route design pro-
cedures, the number of vehicles assigned t
the line length are known.
line is defined as: 

2
l

l
l

V
f

T
                 (15) 

where 
Tl: Travel time of line l; 
Vl: Number of vehicles assigned to 
Different from [10], who chose the frequency of each 

 four options, the proposed procedures, com-
bi ent and frequency setting, can 
co re accurately. 

 at 
and was generated at each 
n bus stops was 4 min by 

line l. 

line from
ning vehicle assignm
nsider vehicle number constraints mo

5. Numerical Example 

The proposed model was applied to the simple network 
shown in Figure 4. Bus stops were assumed to exist
each node, and passenger dem
node. The travel time betwee
bus and 12.5 min by walking, and the value of time pa-
rameters were 13 yen/min (about 0.1 €/min), 26 yen/min, 
 

0

1
3

4

7

6

52  
(a) 

4 7 6 61 4 6 7

0 1 2 3 4 5 6 7Node ID

Chromosome
 

0

7

Predetermined origin node

Predetermined destination node  
(b) 

Figure 3. Alignment of genes in a chromosome. (a) Example 
network; (b) Alignment of chromosomes. 
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and 50 yen/min, respectively, for boarding time, waiting 
time, and walking time based on the SP-mode choice 
survey of [15]. Also, to r he 
origin and destination of ea us line is fixed, a dummy 

ks with zero cost 

 nodes in Figure 
4,

tions with and 77 solutions without considering the 
comm n line roblem ere obtained. ss er 
cost he u r left lution  lowe herea he 
operator cost hose tions higher is rel n-
ship tween  two eholde  is rev for -
tions own i he low ght  of figure. he 

ss and the print of each line was proportional 
to

elax the assum
ch b

ption that t

origin node (Node 25) is introduced, which is an origin 
of all lines of buses. Further, dummy lin
connect the dummy origin node to all of the bus stops. 
Similarly, a dummy destination node (Node 26) and 
zero-cost dummy links connecting all the bus stops with 
the dummy destination node are added. 

With this network, all the demands were assumed to 
be generated from node 22, with destinations spread to 
all the other nodes. The demand volume was generated 
with a uniform random number, taking the value from 0 
to 1; 200, 100, and 50 times the random number was de-
fined as the demand to node 12, the grey

 and other nodes, respectively. As a result, the demand 
pattern shown in Table 1 was obtained. Also, the number 
of available vehicles and maximum number of operated 
lines were set as 30 and 10, respectively. Note that al-
though the proposed model can be applied to a real net-
work [10], we assume above demand distribution on a 
small grid network in order to better understand the ef-
fect of considering the common lines in TRNDP. 

Figure 5 shows the Pareto solutions with and without 
considering the common lines problem. In total, 96 solu- 

 

1 2 3 4

5 6 7 8 9

10 11 13 14

15 16 17 18 19

20 21 22 23 24

0

1225 26

…

…

22

 

Figure 4. Test network. 
 

Table 1. Assumed OD volume (Origin node is 22). 

Destination Demand Destination Demand Destination Demand

0 66 8 44 16 43 

1 37 48 

2 30 10 19 18 3 

 

 

9 5 17 

3 27 11 8 19 10

4 97 12 130 20 32

5 41 13 3 21 23 

6 42 14 4 23 17 

7 93 15 21 24 7 

o s p  w The pa eng
for t ppe  so s is r, w s t

of t solu is . Th atio
be the stak rs ersed  solu
 sh n t er ri  side the  T

extreme case is a solution with zero operator cost, where 
the operator does not provide any bus services and all the 
passengers have to walk to their destination. Furthermore, 
contrary to expectations, solutions with and without con-
sidering the common lines problems showed almost the 
same Pareto front. We suspect that this is due to a fairly 
low number in GA iterations (1000 iterations with 100 
individuals) exploring only a very small range of the 
possible solutions. Nevetheless we find some interesting 
differences in the network structures as described in the 
following. The reason for the fairly low number in GA 
iterations is due to the computational cost of the lower 
problem. Especially when considering common lines is 
the lower problem becomes computationally relatively 
expensive. 

Because it is impractical to show the results of all the 
Pareto solutions, we compared the results when the oper- 
ator’s cost = 40. Figure 6 illustrates the line configure- 
tion and headways (inverse of frequency) from the output 
with and without considering the common lines problem. 
The thickne

 the operational frequency, as shown in the figure. 
When considering the common lines problem, many 
lines were concentrated in the centre of the network 
(22-17-12-7-2), a “trunk with feeders” network, whereas 
only one line ran in the centre of the network, a “trunk 
and branch” network when not considering the common 
lines problem. The reason for such a difference is that a 
“trunk with feeders” network brings benefit to those who 
consider the common lines problem because they can 
take a line coming first among the bundle. On the other 
hand, a “trunk with feeders” network does not bring 
benefit to those who do not consider the common lines 
problem, because they stick to a single line. Instead, a 
“trunk with branch” network is more attractive to them 
because they have more chance to transfer to a branch 
line from the feeder line. As a result, many direct ser-
vices from node 22 to node 2 are provided if considering 
the common lines problem whereas only one direct ser-
vice from node 22 to node 2 is provided and many pas-
sengers are forced to transfer if it is not considered. A 
transfer penalty was not considered in this study; a dif-
ferent result might have been obtained if we had con- 
sidered one. 

6. Conclusions 

This study revealed the effect of considering the common  
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Figure 5. Pareto solutions and the corresponding Pareto front (With/without considering the common lines problem). 
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Figure 6. Bus routes and headways (Solution at operator’s cost = 40). (a) Considering the common lines problem; (b) Without 
considering the common lines problem. 
 

s ones, formulated 
s a bi-level optimisation problem, the upper problem of 

lem is considered. This has implications for transit plan-
ners and the design of bus stops. Our results suggests that, 

lines problem in the transit route network design problem 
(TRNDP). A similar model to previou

more direct service is optimal if the common lines prob-

a
which was described as a multi-objective problem, was 
used, but several assumptions were relaxed. The lower 
problem of the model is a passenger assignment model 
and the output of the TRNDP with and without consid-
ering the common lines problem in passengers’ route 
choice was compared. The output of the TRNDP in a 
simple network was compared with and without consid-
ering the common lines problem. It was confirmed that a 

if bus stops for several lines are arranged in such a way 
as to make it easy for passengers to interchange between 
lines, this could result in very different network struc-
tures, possibly reducing operator as well as passenger 
costs. 

In future work, it would be valuable to confirm 
whether this finding is generalisable with various de-
mand patterns and other networks. Furthermore, more 
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computational efficient algorithms are future research 
topics, especially in connection with further applications 
to larger networks. 

 pp. 105-124.  
doi:10.1002/atr.5670350204
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Appendix 1 

osition 

of the genes within a chromosome de-
.2 ensures that the destination is reached 

clic. 

s takes value d, which is the ID 
of the destination node. Let N1 indicate the number of 

describe the route until destination d is 

The procedures of crossover and mutation in the
fied GA procedure are described using following notations. 

rmined origin node; 

er. 

in the modified GA is shown 
as sover is executed only when 
a m number, is smaller than a 
gi

1.1. Prop

The alignment 
fined in Section 4
if the route is not cy

1.2. Proof 

Suppose none of the gene

genes that 
reached. Because no node takes value d, the search for a 
feasible route will continue until all bus stops in the net-
work have been visited so that N1 will be equal to N, the 
number of genes or bus stops. Because no cyclic route is 
included, this means that each bus stop is visited only 
once. However, because N equals the number of bus 
stops, this means that one gene must take value d or at 
least one bus stop must be visited twice, both of which 
contradict our assumptions. 

Q.E.D 

Appendix 2 

 modi-

r: The predete
s: The predetermined destination node; 
N: The set of nodes (representing for bus stops) in a 

network; 
g[*]: Gene of parent; 
h[*]: Gene of offspring; 
Mrate: Mutation rate; 
Kmax: Threshold numb
1) Crossover 

e cr ure Th ossover proced
elo b w. Note that the cros

erated randorepeatedly gen
ven crossover rate. 
Step 1 (Initialise) 
Set m ← r and h[n] ←   for n ∈ N; 
Step 2 (Roulette selection) 

 rSelect two parents andomly g1 and g2; 

ly and h[m] ← 
gi

Step 3 (Crossover) 
 2) randomSelect one parent i (i = 1,

[m], m ← gi[m]; 
 of loop) Step 4 (Termination

Repeat Step 3 until m = s; 
Step 5 (Interpolation of the empty genes) 
If g[m] =   (m ∈ N), then, 

 n. 
select one node n going 

ou
ke the value  

t from node m and g[m] ←
As the genes of the offspring will only ta

4 7 6 61 4 6 7
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Parent 1

Offspring

Node ID

Parent 2

 
(a) 

4 7 6 61 4 6 7

3 7 32 4 6 76

Parent

Offspring
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(b) 

0 Predetermined origin node  
7 Predetermined destination node

 

Figure 7. Illustration of mutation and crossover. (a) Exam-
ple of crossover; (b) Exampl
 
of a valid node, this crossover procedure alwa s generates 
a connected route which either is cyclic or follow-

Figure 7(a)  

 with predeter-

e of mutation. 

y
valid 

ing the above proposition.  illustrates this
crossover. In this example, a route (0→1→4→5→6→7) 
s generated as a result of the crossoveri

mined origin and destination nodes as 0 and 7. 
2) Mutation 
The following procedure shows the mutation of the 

modified GA. 
Step 1 (Initialise) 
Set m ← r and h[n] ←   for n ∈ N; 

tion) Step 2 (Muta
Generate a random number rnd; 
If rnd < Mrate, then, select one node n going out from 

node m and h[m] ← n and m ← n; 

g[
Else 

 ← m]; h[m] ← g[m] and m
Step 3 (Termination of loop) 
Repeat Step 2 until m = s; 
Step 4 (Interpolation of the empty genes) 

] = If g[m   (m ∈ N), then, select one node n going 
ou

ion of the parent chro-
m →7) is generated as a 
re nd des-
tin 

t from node m and g[m] ← n. 
Figure 7(b) illustrates mutat

→6osome. A route (0→2→4
sult of the mutation with predetermined origin a

s a ndation node s 0 a  7. 
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