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ABSTRACT 

New form of necessary conditions for optimality (NCO) is considered. They can be useful for design the direct infinite- 
dimensional optimization algorithms for systems described by partial differential equations (PDE). Appropriate algo-
rithms for unconstrained minimizing a functional are considered and tested. To construct the algorithms, new form of 
NCO is used. Such approach demonstrates fast uniform convergence at optimal solution in infinite-dimensional space. 
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1. Introduction 

Three classes of optimization problems for PDE are 
known, e.g., [1]: optimal control, parameter identification, 
and optimal design. To solve its in general case are used 
optimization algorithms in infinite-dimensional spaces, 
and finite-dimensional spaces. In the last case the algo- 
rithms are applied after transformation a desired parame-
ter-function into a finite-dimensional space. We shall 
consider direct optimization [2,3], i.e. immediately mini- 
mization an objective functional ( )J u  by infinite-di- 
mensional methods on the basis of the gradient J . 
Here ( ; )J u   is a Frechet derivative, which is a linear 
functional. It depends on desirable parameter  and 
space-time variable 

u
 . 

It is well known classical NCO for unconstrained op- 
timization problems: 

 
( )

0
U S

J u  

S

             (1) 

where ( ) ( )u U 
( )U S

S ( )U S

 is an optimum value of a desired 
parameter,  is a space of desired parameters de- 
fined on ,  is an adjoint space.  

Because of computing errors the NCO (1) is never im- 
plemented. Approximate value of (1) is used sometimes 
for estimating a relative minimization of ( )J u  in linear 
search problems. Sometimes approximate value of (1) is 
used as a completion criterion for optimization. No one 
uses NCO (1) for choosing a minimization direction in 
optimization algorithms.  

We will consider NCO in a new form. It can be used 
for choosing a minimization direction for direct optimi- 
zation algorithms. 

2. Necessary Condition and Optimization 
Algorithm 

2.1. Algorithm 

For direct minimization approach the solution  
 minarg J u  is searched on the basis of the algorithm 

 1( ) ( ) ,;

, 0, 1, 2, ,

k k k ku u b p u

S k

  


  

  
       (2) 

where direction   ( );
kkp p Uu   

k kp J

S  is a linear func-
tional representing the anti-gradient of the objective 
functional, here  

k kp J
, or the conjugate gradients, 

e.g. Polak-Ribière (CG-PR) 1k p k   , 

 
21k k1,k k k kJ J J     J b,  is a step-size. 

Unfortunately, the optimizing by the algorithm (2) is 
not always possible. Even for a quadratic J there are no 
grounds of convergence for infinite-dimensional algo- 
rithm (2).  

Let’s replace (2) by the following algorithm: 

 1( ) ( ) ( ) ,;

, 0, 1, 2, ,

k k k k ku u b p u

S k

    


  

  
      (3) 

where ( )k 
ku

 is a function which regulates a conver- 
gence u  on each iteration. 

2.2. Necessary Condition 

How correctly to set a function ( )k   in (3)? Let’s re- 
quire: the algorithm (3) has to provide almost every- 
where on  (a.e. ) convergence in an adjoint space S S
U  . Thus instead of integral NCO (1) we must to intro- 
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duce the following NCO. 
Theorem. Let ( )J u

u

 be a smooth unconstrained func-
tional, and it has a strict minimum at . Then in some 
neighborhood of  the sequence  exists such, 
that 

u

u k u

  0;kJ u     a.e. S .           (4) 

The singularity of introduced NCO (4) is that it is im- 
posed on the gradient in vicinity of a minimum u  in- 
stead of not exactly at u  as it is presented in (1). 
Therefore the condition (4) can be used for constructing 
minimization steps near . We are going to use new 
NCO (4) to set a function 

u
k ( )   for algorithm (3). 

The algorithm (3) with implementation of (4) allows 
us to solve infinite-dimensional optimization problems, 
under assumption that from a convergence a.e.  in an 
adjoint space  the similar convergence follows in a 
primal space . 

S
U 

U
For a quantitative estimation of condition (4) let’s in- 

troduce NCO-function 
1

1

1
( ) sign ,

k
k k k

k k

kJ J
J J

J J
 







   

 


1, 2,k,    

For this function, it is possible to write the NCO (4) in 
a more strong form 

0k

U



  .           (5) 0k 

The NCO-Theorem with (5) instead of (4) requires 
decrease of function  ;kJ u   not only a.e. , but 
proportionally a.e.  for each iteration  under driving 
to 

S
S k

min J . The analogy in a finite-dimensional space for 
condition (5) denotes that the gradients vectors have to 
be collinear for all iterations up to  [4]. u

2.3. Implementation 

The difficulty of practical implementation of method (3) 
is contained in a selection of function ( )k   for satis- 
fying the NCO (4) or (5). Consider one of methods for 
approximate implementing (5) on initial iterations. 

We need to introduce a concept of template approxi- 
mations. Let initial 0 (u )  and  J 0 ;u  wn. Let’s 
set the first approximation 1( )u

 kno
( )   , e ( ) wher    

emplate function, for which the gradient ( ; )Jis a t    
o (5), i.e. proportionally decreases after the first 

iteration. Thus from (3) we can find, under 0 1b
satisfies t

 : 

 
0

0

0

( ) ( )
( )

;

u

J u

   






,  0 0;J Su     

On the following iterations we set parameter 

. 

( )k    
0 ( )  . In the given method from the researcher

 to make some first experimental iterations for se- 
lecting an appropriate template function ( )

 it is re-
quired

  , which 
satisfies to NCO (5).  

We call your attention that the described method for 
( )k   can be applied to such 0u , that  

 0 const;J u   , i.e. en Jsign
all 

wh  0 0;u    for 
S  . 

2.4. Example 

we shall consider a one-dimensional li- As an example 
near parabolic heat equation in area  

   0 1( , ) , ,a bt x t t x x  : 
2

2
0,

T T
C

t x
  

 
 

            (6) 

0 1

, ,
a

at
x x

T T
q u T

x x
  

T  
 

 

where is a temperature, ( , )T t x  C ,  , and   is a 
thermal ity, a density, and a thermal conduction 
accordingly. It is necessary to find a heat flow ( )u t  on 
bound 1

 capac

x  (set   1,a bS t t x  ) that keeps a tem ture 
T

pera

  on o er bounth d 0x  for given outflow q : 

 
0

2
( ) d min

b

a

t

x
t

J u tT T           (7) 

Applying the adjoint variables, we find the gradient 

( ; ) ( , )J u t f t x    on S , 

( , )f t x
 

where  is a solution of wing adjoint  the follo
problem

 
0

1

2

2
0, 2

0, 0
b

x

t
x

f f f
C T

t xx

f
f

x

  



T
  

   
 


 



 

The curve 1 on Figure 1 illustrates unsuccessful at- 
tempt of solving the problem (6), (7) by infinite-dimen- 
sional algorithm (1) with direction p  from method CG- 
PR. At initial approximation 0 ( ) 400u t  kJoule/(m2·s) 
and optimal 


   ( ) 350 a b au t t t 350t t     

kJoule/(m2·s)  v
segment 


 the gradient has form very non-uni alue on 

 ,a bt t  (up to 7 orders) and, as a corollary, we 
obtain a form convergence to u  by method 
CG-PR. 

The at

non-uni

tempt of solving the problem by finite-dimen- 
sional optimization algorithms has not given a positive 
outcome. Next we tried to do expansion of function  

1
( ) ( )

n

i iu t u B t



   through B-splines of zero order 

1i
(piece-wise functions) with carriers equal to time-step 

 b at t t n    as it was made in [5]. Given this, the 
al control nu R , 100n  , was found 

by quasi-Newton method BF ,7 lution coin- 
cided with the previous curve 1 on Figure 1. 

All minimizing was finished under relative cha

finite-dimension
GS [6 ]. The so

nge of 
J  and u  less than 1%. It is necessary to notice, that  
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Figure 1. Solution of optimal control problem. 1: methods 

e further iterating for method BFGS has allowed it to 

problem (6), 
(7

   (8) 

The given function satisfies the
se

CG-PR and BFGS; 2: method (3); u0: initial approximation; 
u*: exact solution. 
 
th
minimize J better than CG-PR. However, the curve 1 has 
varied not in essence. The outcomes speak that the opti- 
mization even with linear systems, which governed by 
PDE, is not always possible by traditional infinite-di- 
mensional and finite-dimensional methods. 

The curve 2 on Figure 1 is a solution of 
) by new infinite-dimensional method (3) under p  

chosen by method CG-PR with template function 
00.2u               

 NCO (4). We tried the 
cond template function as: 

   0( ) 0.036 1t u   8 a b at t t t      (9) 

It satisfies the strong NCO (5). Here solution has c
ci

oin- 
ded with u  precisely on Figure 1. 
To select a function ( )t  we analyze a behavior of 

function ( )t . A value is function for all methods 
on the f experimental step 

of th
irst 1 0 00.2u u u   is 

shown in Figure 2. We see, that t ods 
CG-PR, BFGS (see the curve 1) realize the new NCO 
badly, to be exact, they do not implement its. Method (3) 
with 

he classical meth

  in (8) (see the curve 2) not bad implements 
NCO (4), but does not implement strong NCO (5). 
Method (3) with   in (9) (see the curve 3) implements 
strong NCO (5) a  provides convergence to exact solu- 
tion u  better all especially on the first iterations.  

It necessary to tell, that the template function

nd

is s   

 

Figure 2. NCO-function η(t) for first experimental step. 1: 
method CG-PR; 2: method (3) with NCO (4); 3: method (3) 

on, and strict NCO (on a first 

with strong NCO (5). 
 
Table 1. Initial and final values of the objective functional, 

e proximity to an exact solutith
experimental step). 

Method Iteration k Functional Jk ku u    

 All 0 41.86 10  62.97 10  

CG-PR 14 2.62  61.73 10  11.32 10

BFGS 10 2.72  61.74 10  11.32 10

(3), (8) 54 42.12 10  44.31 10  24.71 10

(3), (9) 52 41.06 10  37.85 10  41.82 10

 
here  searching a ep-size e method 

olfe with quadratic interpolation  (Wright, 
N ut

Everyw  for st k , thb
was usedW

ocedal, 1999). Here step-size was comp ed from con- 
ditions  

   

 
1

2

, ,k k k k k kk

, ,k k k k k k

J u b p J c b J pu   

J u b p p c J p   
   (10) 

The parameters of a method were given 4
1 10c   and 

2 0.1c  . 
In the Table 1 are shown the obtained f the 

e f
values o

objectiv unctional, the proximity to exact solution, and 
NCO (5) (on a first step) for all methods. From outcomes 
of computations it is seen, that the new method on the 
basis of algorithm (3) with NCO (5) minimizes the func- 
tional J on 4 orders better than the traditional methods. 
The method has allowed us to approach to optimal solu- 
tion u  on 3 orders closer.  

3. Conclusion 

in (8) and (9) give noticeably different minimization out- 
comes only on the first iteration. With growth of itera- 
tions they give approximately equal good outcomes. It is 
explained to that the parameters ( )k t , regulating a de- 
scent in method (3), are comput h the account of 
NCO only on the first step. For discussed method  

ed wit

0( ) ( )k t t  . 

Thus, the new N
structing the algori

CO has appeared effective for con- 
thms of direct optimization for pro- 
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