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ABSTRACT

New form of necessary conditions for optimality (NCO) is considered. They can be useful for design the direct infinite-
dimensional optimization algorithms for systems described by partial differential equations (PDE). Appropriate algo-
rithms for unconstrained minimizing a functional are considered and tested. To construct the algorithms, new form of
NCO is used. Such approach demonstrates fast uniform convergence at optimal solution in infinite-dimensional space.
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1. Introduction

Three classes of optimization problems for PDE are
known, e.g., [1]: optimal control, parameter identification,
and optimal design. To solve its in general case are used
optimization algorithms in infinite-dimensional spaces,
and finite-dimensional spaces. In the last case the algo-
rithms are applied after transformation a desired parame-
ter-function into a finite-dimensional space. We shall
consider direct optimization [2,3], i.e. immediately mini-
mization an objective functional J(u) by infinite-di-
mensional methods on the basis of the gradient VJ .
Here VJ(u;7) is a Frechet derivative, which is a linear
functional. It depends on desirable parameter u and
space-time variable 7.

It is well known classical NCO for unconstrained op-
timization problems:

V3 (u,)

U™ () =0 (1)
where u,(z) eU(S) is an optimum value of a desired
parameter, U(S) is a space of desired parameters de-
finedon S, U"(S) isan adjoint space.

Because of computing errors the NCO (1) is never im-
plemented. Approximate value of (1) is used sometimes
for estimating a relative minimization of J(u) in linear
search problems. Sometimes approximate value of (1) is
used as a completion criterion for optimization. No one
uses NCO (1) for choosing a minimization direction in
optimization algorithms.

We will consider NCO in a new form. It can be used
for choosing a minimization direction for direct optimi-
zation algorithms.
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2. Necessary Condition and Optimization
Algorithm

2.1. Algorithm

For direct minimization approach the solution
arg,,;, J (u) is searched on the basis of the algorithm

U (r) =u* (2) +b*p(u; 7).
reS, k=0,1 2,--,
where direction p(u*;z)= p*eU’(S) is a linear func-
tional representing the anti-gradient of the objective
functional, here p* =-VJ*, or the conjugate gradients,
e.g. Polak-Ribiére (CG-PR) p* =-VJ* + g*p**,
B = <VJK,(VJ k_vJ k*1)>/||VJ k’1"2 , b* isastep-size.
Unfortunately, the optimizing by the algorithm (2) is
not always possible. Even for a quadratic J there are no
grounds of convergence for infinite-dimensional algo-
rithm (2).
Let’s replace (2) by the following algorithm:
u“(r) =u () + b (r) p(u*; 7).
reS, k=0,1 2,---,

O]

©)

where " (z) is a function which regulates a conver-
gence u* —u, on each iteration.

2.2. Necessary Condition

How correctly to set a function «*(z) in (3)? Let’s re-
quire: the algorithm (3) has to provide almost every-
where on S (a.e.S) convergence in an adjoint space
U”". Thus instead of integral NCO (1) we must to intro-
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duce the following NCO.

Theorem. Let J(u) be a smooth unconstrained func-
tional, and it has a strict minimum at u,. Then in some
neighborhood of u, the sequence u* — u, exists such,
that

\A (uk;r)—>0 a.e.S. (4)

The singularity of introduced NCO (4) is that it is im-
posed on the gradient in vicinity of a minimum wu, in-
stead of not exactly at u, as it is presented in (1).
Therefore the condition (4) can be used for constructing
minimization steps near u,. We are going to use new
NCO (4) to set a function &*(zr) for algorithm (3).

The algorithm (3) with implementation of (4) allows
us to solve infinite-dimensional optimization problems,
under assumption that from a convergence a.e.S in an
adjoint space U" the similar convergence follows in a
primal space U .

For a quantitative estimation of condition (4) let’s in-
troduce NCO-function

k v‘] K H k-1 k
n°(r) ||VJ H” S|gn<VJ ,VJ >

Wi
Vo'

For this function, it is possible to write the NCO (4) in
a more strong form

k=12,

WfL*:O vk >0. (5)

The NCO-Theorem with (5) instead of (4) requires
decrease of function VJ(U";T)| not only a.e.S, but
proportionally a.e. S for each iteration k under driving
to minJ . The analogy in a finite-dimensional space for
condition (5) denotes that the gradients vectors have to
be collinear for all iterations up to u, [4].

2.3. Implementation

The difficulty of practical implementation of method (3)
is contained in a selection of function «*(z) for satis-
fying the NCO (4) or (5). Consider one of methods for
approximate implementing (5) on initial iterations.

We need to introduce a concept of template approxi-
mations. Let initial u’(z) and VJ(u%;z) known. Let’s
set the first approximation u'(z)=¢(z), where ¢(r)
is a template function, for which the gradient VJ(¢ ;7)
satisfies to (5), i.e. proportionally decreases after the first
iteration. Thus from (3) we can find, under b° =1:

(1) -u’(z)

@ ()= v (u°;r)

, VJ(uo;r);tO VreS$S.

On the following iterations we set parameter «*(z) =
a’(z) . In the given method from the researcher it is re-
quired to make some first experimental iterations for se-
lecting an appropriate template function ¢(z), which
satisfies to NCO (5).
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We call your attention that the described method for
a*(z) can be applied to such u’, that
sign, VJ (u%;z)=const , i.e. when VJ(u°%z)=0 for
all zeS.

2.4. Example

As an example we shall consider a one-dimensional li-
near parabolic heat equation in area

(t, %) e[t t, ] x[ X, X, ]:

oT . 8T
——1—=0, 6
Pa "o ©)
PRCL NRICLE TR TR
Xy, ox |, fa
1

where T(t,x) is a temperature, C, p, and 1 is a
thermal capacity, a density, and a thermal conduction
accordingly. It is necessary to find a heat flow u(t) on
bound x, (set S=(t,,t,)xx,) that keeps a temperature
T, on other bound x, for given outflow q:

)
MW:JU—Lf‘dL»mm @
ta %o
Applying the adjoint variables, we find the gradient
VI(u;t)=—f(t,x) on S,

where f(t,x) is a solution of the following adjoint
problem

of  of of
Cop—+A—=0, A—| =2(T-T,
P o X ( )
22 =0, f| =0

OX k

X

The curve 1 on Figure 1 illustrates unsuccessful at-
tempt of solving the problem (6), (7) by infinite-dimen-
sional algorithm (1) with direction p from method CG-
PR. At initial approximation u®(t) =400 kJoule/(m?-s)
and optimal u, (t) =350+ (t, —t)350/(t, —t,)
kJoule/(m?-s) the gradient has very non-uniform value on
segment [ta,tb] (up to 7 orders) and, as a corollary, we
obtain a non-uniform convergence to u, by method
CG-PR.

The attempt of solving the problem by finite-dimen-
sional optimization algorithms has not given a positive
outcome. Next we tried to do expansion of function
u(t) :z:ui B,(t) through B-splines of zero order
(piece-wise functions) with carriers equal to time-step
At=(t,—t,)/n as it was made in [5]. Given this, the
finite-dimensional control ueR", n=100, was found
by quasi-Newton method BFGS [6,7]. The solution coin-
cided with the previous curve 1 on Figure 1.

All minimizing was finished under relative change of
J and |u| less than 1%. It is necessary to notice, that
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Figure 1. Solution of optimal control problem. 1: methods
CG-PR and BFGS; 2: method (3); u": initial approximation;
u-: exact solution.

the further iterating for method BFGS has allowed it to
minimize J better than CG-PR. However, the curve 1 has
varied not in essence. The outcomes speak that the opti-
mization even with linear systems, which governed by
PDE, is not always possible by traditional infinite-di-
mensional and finite-dimensional methods.

The curve 2 on Figure 1 is a solution of problem (6),
(7) by new infinite-dimensional method (3) under p
chosen by method CG-PR with template function

@=0.2u° (8)

The given function satisfies the NCO (4). We tried the
second template function as:

o(t) =0.036u° (1+8(t-t,)/(t, -t,)) (9)

It satisfies the strong NCO (5). Here solution has coin-
cided with u, precisely on Figure 1.

To select a function ¢(t) we analyze a behavior of
function n(t) . A value of this function for all methods
on the first experimental step [u'—u’|=0.2 u"L is
shown in Figure 2. We see, that the classical methods
CG-PR, BFGS (see the curve 1) realize the new NCO
badly, to be exact, they do not implement its. Method (3)
with ¢ in (8) (see the curve 2) not bad implements
NCO (4), but does not implement strong NCO (5).
Method (3) with ¢ in (9) (see the curve 3) implements
strong NCO (5) and provides convergence to exact solu-
tion u, better all especially on the first iterations.

It is necessary to tell, that the template functions ¢
in (8) and (9) give noticeably different minimization out-
comes only on the first iteration. With growth of itera-
tions they give approximately equal good outcomes. It is
explained to that the parameters «*(t), regulating a de-
scent in method (3), are computed with the account of
NCO only on the first step. For discussed method
a(t)=a’(t).
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Figure 2. NCO-function n(t) for first experimental step. 1:
method CG-PR; 2: method (3) with NCO (4); 3: method (3)
with strong NCO (5).

Table 1. Initial and final values of the objective functional,
the proximity to an exact solution, and strict NCO (on a first
experimental step).

k

Method Iterationk Functional J  |u* —u,| 7]
All 0 1.86x10* 2.97x10°

CG-PR 14 2.62 1.73x10° 1.32x10™

BFGS 10 2.72 1.74x10° 1.32x10™

(3),(8) 54 2.12x10™ 4.31x10" 4.71x10°

3), (9) 52 1.06x10™ 7.85x10° 1.82x10™

Everywhere for searching a step-size b*, the method
Wolfe with quadratic interpolation was used (Wright,
Nocedal, 1999). Here step-size was computed from con-
ditions

(U +b*p ) < I (ur)+cb <VJk, pk>,
KVJ (uk +b* pk), p"> SCZKVJ", pk>‘

The parameters of a method were given ¢, =10 and
c,=0.1.

In the Table 1 are shown the obtained values of the
objective functional, the proximity to exact solution, and
NCO (5) (on a first step) for all methods. From outcomes
of computations it is seen, that the new method on the
basis of algorithm (3) with NCO (5) minimizes the func-
tional J on 4 orders better than the traditional methods.
The method has allowed us to approach to optimal solu-
tion u, on 3 orders closer.

(10)

3. Conclusion

Thus, the new NCO has appeared effective for con-
structing the algorithms of direct optimization for pro-
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cesses which governed by PDE. The algorithm (3) with
NCO (4) or (5) can be recommended to solving the infi-
nite-dimensional optimization problems.
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