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ABSTRACT 

Empirical estimates of power and Type I error can be misleading if a statistical test does not perform at the stated rejec-
tion level under the null hypothesis. We employed the permutation test to control the empirical type I errors for 
zero-inflated exponential distributions. The simulation results indicated that the permutation test can be used effectively 
to control the type I errors near the nominal level even when the sample sizes are small based on four statistical tests. 
Our results attest to the permutation test being a valuable adjunct to the current statistical methods for comparing dis-
tributions with underlying zero-inflated data structures. 
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1. Introduction 

Statistical analysts sometimes encounter data that have 
an excessive number of zeros and these data often pre-
sent analytical difficulties because traditional methods 
rely on assumptions that may be unrealistic and plausible 
transformations may not be found. Many studies have 
reported on statistical methods for analyzing count data 
with excessive zeros [1-6]. Some zero inflated data may 
be viewed as having a mixed distribution where zeros 
have a point distribution and the distribution of non-zero 
observations is positive and continuous. This distribution 
has not been investigated adequately and statistical meth- 
ods with favorable Type I and Type II errors for com- 
paring these non-traditional distributions are desired.  

Testing equivalence of zero-inflated populations in the 
context of underlying mixed distributions is equivalent to 
testing equality of the probabilities of zeros and simulta-
neously equality of the parameters of the non-zero ob-
servations [7]. The likelihood ratio (LR) [8] and Wald [9] 
tests are two widely used methods. These two methods 
typically perform well if the probability density function 
that applies under the null hypothesis is known. Recently, 
Monte Carlo simulations were employed to compare 
several approaches including the LR, Wald, central limit 

theorem (CLT), modified central limit theorem (MCLT) 
tests with respect to their empirical Type I errors and 
testing powers for three zero-inflated continuous distri-
butions [7]. The LR, Wald, and MCLT tests were found 
to be preferable to the tests based on central limit theory. 

There are two important issues when several popula-
tions with zero-inflated data structure are compared. First, 
the underlying distribution is usually unknown and, there-
fore, the assumptions of specific distributions can be eas-
ily violated by using assumption-constrained methods. 
Second, empirical Type I errors and testing powers are 
difficult to determine because the relevant parameters are 
almost always unknown even if the assumed distribution 
is correct. Moreover, a small sample size may contribute 
to higher Type I and Type II errors. Thus, a test that con-
trols the empirical Type I errors and yields valid esti-
mates of testing powers is helpful. 

Permutation tests are advocated for data analysis when 
assumptions required to validate parametric procedures 
are violated [10-13]. Unlike parametric tests, permutation 
tests can generate probabilities by repeatedly “resam-
pling” the data and evaluating the obtained results with 
reference to an empirically derived distribution [14,15]. 
Permutation tests have two major advantages: 1) they can 
be used to adjust the empirical Type I errors and the 
testing powers and, 2) they can be used when some as-
sumptions required to justify parametric tests are violated. *Corresponding author. 
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Hence, their use may lead to more appropriate statistical 
conclusions. 

The purpose of this study was to investigate the issues 
raised above pertaining to the use of ancillary permuta-
tion tests to compare several populations when the ran-
dom variable of interest has either a known or unknown 
zero-inflated continuous distribution. Four statistical tests 
were compared with respect to both their empirical type I 
errors and testing powers. First we assumed the data fol-
lowed a zero-inflated exponential distribution as reported 
by Zhang et al. [7]. Empirical Type I errors and testing 
powers for these tests were compared with and without 
adjunct permutation tests by empirical estimates obtained 
using Monte Carlo simulations. Section 2 describes a 
general permutation test that generates an empirical prob-
ability for each test. Simulated results for four carefully 
selected parameter configurations are presented in Sec-
tion 3. Finally, Section 4 demonstrates the results with 
the permutation test for a data set reported by Koopmans 
[16]. 

2. Statistical Methods 

2.1. Four Testing Methods 

Performances of four tests including the likelihood ratio 
(LR) [8], Wald [9], central limit theorem (CLT), and 
modified central limit theorem (MCLT) tests [7] were 
evaluated. The CLT test considers only the population 
means calculated over all zero and non-zero observations 
while the MCLT test considers both the probability of 
zeros and simultaneously the mean of non-zero observa-
tions. The first two tests are distribution-based while the 
other two are distribution-free based. Maximum likeli-
hood (ML) estimators [17] are required for both the LR 
and Wald tests. For the CLT and MCLT tests, the Wald 
test was incorporated to derive the probability for each 
test [7]. These methods were detailed in one of our pre-
vious papers [7] and were not repeated in this study. 

2.2. Permutation Test 

The procedures of using the permutation test in zero- 
inflated data are:  

Step 1: Calculate the p-value using each of the above 
mentioned four tests (e.g. LR) to analyze the original 
data; 

Step 2: Reshuffle the original data and randomly as-
sign the data to different populations without replace-
ment; 

Step 3: Calculate the p-values by the same method 
used in Step 1 for the reshuffled data obtained in Step 2; 

Step 4: Repeat Steps 2 and 3 “N times”; 
Step 5: Construct the sampling distribution of p-values 

obtained in Steps 2 through 4; 
Step 6: Locate the p-value in this distribution that cor-

responds to each p-value calculated in Step 1. If the p- 
value from the original data is in the main body of the 
distribution (α/2 to (1 − α/2)), then there is no significant 
difference at probability level α among populations. Oth-
erwise, there is evidence that the difference between 
(among) populations is significant.  

The above procedures from Steps 1 to 6 were applied 
to all four tests in this study. 

3. Simulation Study 

3.1. Simulation Procedure 

In our empirical investigation we assumed interest was in 
testing the hypothesis that three zero-inflated distribu-
tions had identical means. We simulated data from three 
zero-inflated distributions with sample sizes ranging from 
25 to 300 and performed each of four tests repeatedly 
using the replicate samples to test the null hypothesis. 
We tabulated the number of rejections of the hypothesis 
under each known scenario to estimate Type I errors and 
powers. Twelve sample sizes (n = 25 × s, where s = 1, 2, 
···, 12) were considered and the nominal probability level 
was set at 0.05 throughout. Although different configura-
tions were considered only one was listed for the null 
distributions and three for alternative distributions as 
described in Table 1. The first configuration in Table 1 
was designed to estimate the empirical Type I errors and 
the remaining three configurations were designed to es-
timate the empirical testing powers. Each set of simu-
lated data was analyzed by the four tests with and with-
out employment of the permutation test. Repetitions of 
1000 simulated samples were used for each case. All 
simulations were conducted by a C++ program written 
by the authors of this paper. 

3.2. Simulation Results 

First the number of permutations sufficient for statistical 
tests at a given probability level is determined. The Type 
I errors and testing powers from 100 to 2000 different 
permutations for configurations 1 and 2 with sample size 
200 are summarized in Figures 1 and 2, respectively. 
These figures clearly demonstrate that both empirical 
Type I errors and testing powers became reasonably sta-
ble after the sample size surpassed 100 permutations. 
Results from additional simulations for various different 
sample sizes and configurations showed similar trends. 
Thus samples of 500 permutations were chosen for all 
the remaining simulations. 

The empirical Type I errors of the four tests with and 
without permutation tests are summarized in Table 1 for 
the case of a zero-inflated exponential distribution. The  
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Table 1. Four parameter configurations for the simulation 
study under zero-inflated exponential distribution. 

Design 1 1,  † 2 2,   3 3,   

1 0.35, 1.00 0.35, 1.00 0.35, 1.00 

2 0.25, 0.75 0.25, 1.00 0.25, 1.25 

3 0.15, 0.20 0.35, 0.25 0.55, 0.30 

4 0.15, 0.75 0.25, 1.00 0.35, 1.25 

Design 1 is for null hypothesis and 2 to 4 are alternative hypotheses. †: δj 
and βj are zero probability level and mean of exponential distribution for jth 
population. 

 

 

Figure 1. Empirical type I errors obtained by 20 different 
numbers of permutations. (LR = likelihood ratio, CLT = 
central limit theorem, and MCLT = modified central limit 
theorem). 
 

 

Figure 2. Empirical testing powers obtained by 20 different 
numbers of permutations. (LR = likelihood ratio, CLT = 
central limit theorem, and MCLT = modified central limit 
theorem). 
 
differences between observed Type I errors and the 
nominal 0.05 level tend to be smaller as the sample size 
increases for all four tests without permutation tests, in-
dicating that all these tests tend to perform better as the 
sample size increases. However, with the permutation 
tests, the empirical Type I errors are close to the nominal 
0.05 level for different methods and various sample sizes 
including small sample sizes (Table 2). The results indi-
cate that the permutation tests can reduce the high Type I 

errors that are prevalent with small sample sizes. When 
the sample sizes are large, i.e., at least 100, the empirical 
Type I errors for the four statistical methods are almost 
identical irrespective of using the permutation tests.  

Tables 3-5 present the empirical powers of the four 
tests for three parameter configurations as defined in 
Table 1. As expected, the testing power increased for all 
four tests as the sample size increased. The testing pow-
ers obtained without permutation tests were typically 
lower than those obtained with permutation tests for all 
methods when the sample size is small (100 and below). 
However, as the sample size increases, the testing powers 
were similar irrespective of using permutation tests. As 
for parameter configuration 2 described in Table 1, the 
CLT test and the other three tests have similar testing 
powers because only means for the non-zero observa-
tions contributed the differences (Table 3). As for de-
signs 3 and 4, the CLT test has an extremely low testing 
power compared with other three tests (Tables 4 and 5). 
The increase or decrease of both zero probability level 
and the non-zero mean made the differences among popu-
lations hard to detect with the CLT method, while the 
other three tests are sensitive and maintain desirable test-
ing powers. This indicates that the LR, Wald, and the 
MCLT tests are better than the CLT test in general. When 
the zero probability levels among populations are similar, 
the CLT test is still a good option. 

In many situations, the distribution for a given zero- 
inflated data set is unknown. It will be interesting to re-
veal the empirical Type I errors and testing powers ob-
tained using these methods by assuming the following 
distributions. In this study, we generated 1000 simulated 
data sets based on different parameter configurations as 
described in Table 1 with the zero-inflated exponential 
distribution. Then the LR and Wald methods were ap-
plied to test the differences among three populations by 
assuming the data follow zero-inflated gamma and log- 
normal distributions. Although simulations for various 
sample sizes were conducted only the results for con-
figurations 1 and 2 with sample size of 200 were reported 
(Table 1) because the similar patterns were observed for 
different configurations with different sample sizes (data 
not shown). Given zero-inflated exponential data, both 
the LR and Wald tests resulted in unfavorably high Type 
I errors if no permutation tests were applied; however, 
these type I errors were adjusted substantially to be close 
to the nominal level on using the permutation test. On the 
other hand, the testing powers obtained by the LR and 
Wald tests were lower when the lognormal distribution 
was assumed. For the gamma distribution, both the LR 
and Wald tests have similar and desirable testing powers 
when the permutation tests are applied (Table 6). The 
results suggested that the tests could have caused either 
higher Type I errors or lower testing powers when an 
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Table 2. Empirical Type I errors for zero-inflated exponential distribution based on 1000 simulations. 

Without permutation With permutation‡ 
Size 

LR† Wald CLT MCLT LR Wald CLT MCLT 

25 0.060 0.060 0.082 0.101 0.050 0.044 0.061 0.056 

50 0.062 0.056 0.060 0.073 0.056 0.051 0.050 0.056 

75 0.047 0.048 0.059 0.059 0.047 0.047 0.047 0.046 

100 0.046 0.046 0.064 0.062 0.051 0.049 0.061 0.050 

125 0.051 0.048 0.055 0.055 0.054 0.054 0.054 0.053 

150 0.039 0.038 0.048 0.047 0.045 0.043 0.053 0.041 

175 0.042 0.040 0.057 0.043 0.041 0.039 0.054 0.045 

200 0.042 0.044 0.052 0.045 0.043 0.044 0.052 0.043 

225 0.048 0.054 0.053 0.053 0.043 0.051 0.050 0.050 

250 0.049 0.047 0.042 0.051 0.049 0.045 0.038 0.049 

275 0.050 0.051 0.055 0.054 0.048 0.048 0.054 0.050 

300 0.052 0.053 0.053 0.053 0.055 0.052 0.052 0.051 

†: LR = likelihood ratio, CLT = central limit theorem, and MCLT = modified central limit theorem; ‡: 500 permutations were used. 

 
Table 3. Empirical testing power for zero-inflated exponential distribution based on 1000 simulations for configuration 2. 

Without permutation With permutation‡ 
Size 

LR† Wald CLT MCLT LR Wald CLT MCLT 

25 0.213 0.170 0.242 0.252 0.177 0.123 0.183 0.157 

50 0.383 0.347 0.435 0.406 0.356 0.322 0.383 0.340 

75 0.557 0.534 0.589 0.579 0.531 0.519 0.562 0.532 

100 0.680 0.658 0.671 0.678 0.660 0.644 0.659 0.656 

125 0.799 0.791 0.785 0.796 0.792 0.782 0.779 0.786 

150 0.893 0.878 0.885 0.884 0.881 0.874 0.870 0.882 

175 0.931 0.932 0.933 0.929 0.931 0.924 0.928 0.924 

200 0.960 0.964 0.955 0.963 0.957 0.955 0.950 0.958 

225 0.980 0.982 0.975 0.984 0.983 0.979 0.975 0.982 

250 0.987 0.988 0.982 0.992 0.988 0.987 0.982 0.990 

275 0.993 0.996 0.993 0.994 0.991 0.994 0.994 0.994 

300 0.997 0.997 0.994 0.995 0.996 0.997 0.993 0.995 

†: LR = likelihood ratio, CLT = central limit theorem, and MCLT = modified central limit theorem; ‡: 500 permutations were used. 

 
inappropriate distribution was assumed. However, with 
the permutation tests, the chance to make Type I errors 
can be greatly decreased, yet the testing powers can be 
desirable in many cases. 

4. Application 

Koopmans [16] reported results of a study of seasonal  

activity patterns of field mice. Data consisted of the av-
erage distances traveled between captures by field mice 
at least twice in a given month. The distances were 
rounded to the nearest meter. A large number of zero 
distances were observed in addition to non-zero distances 
resulting in data with a zero-inflated distribution. The 
exact distribution of the non-zero observations is unknown.     
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Table 4. Empirical testing power for zero-inflated exponential distribution based on 1000 simulations for configuration 3. 

Without permutation With permutation‡ 
Size 

LR† Wald CLT MCLT LR Wald CLT MCLT 

25 0.766 0.810 0.161 0.828 0.771 0.795 0.121 0.746 

50 0.984 0.988 0.143 0.988 0.982 0.987 0.125 0.981 

75 1.000 1.000 0.151 1.000 0.999 0.999 0.142 0.999 

100 1.000 1.000 0.206 1.000 1.000 1.000 0.192 1.000 

125 1.000 1.000 0.215 1.000 1.000 1.000 0.203 1.000 

150 1.000 1.000 0.270 1.000 1.000 1.000 0.251 1.000 

175 1.000 1.000 0.264 1.000 1.000 1.000 0.260 1.000 

200 1.000 1.000 0.307 1.000 1.000 1.000 0.299 1.000 

225 1.000 1.000 0.330 1.000 1.000 1.000 0.326 1.000 

250 1.000 1.000 0.325 1.000 1.000 1.000 0.314 1.000 

275 1.000 1.000 0.367 1.000 1.000 1.000 0.351 1.000 

300 1.000 1.000 0.398 1.000 1.000 1.000 0.388 1.000 

†: LR = likelihood ratio, CLT = central limit theorem, and MCLT = modified central limit theorem; ‡: 500 permutations were used. 

 
Table 5. Empirical testing power for zero-inflated exponential distribution based on 1000 simulations for configuration 4. 

Without permutation† With permutation‡ 
Size 

LR Wald CLT MCLT LR Wald CLT MCLT 

25 0.398 0.366 0.088 0.427 0.366 0.326 0.066 0.312 

50 0.731 0.725 0.126 0.749 0.724 0.707 0.108 0.708 

75 0.924 0.918 0.164 0.920 0.916 0.900 0.146 0.898 

100 0.980 0.976 0.211 0.978 0.975 0.972 0.187 0.971 

125 0.990 0.989 0.257 0.991 0.989 0.988 0.248 0.984 

150 0.997 0.997 0.288 0.997 0.997 0.996 0.273 0.996 

175 1.000 1.000 0.328 1.000 1.000 1.000 0.330 1.000 

200 1.000 1.000 0.345 1.000 1.000 1.000 0.340 1.000 

225 1.000 1.000 0.435 1.000 1.000 1.000 0.435 1.000 

250 1.000 1.000 0.457 1.000 1.000 1.000 0.446 1.000 

275 1.000 1.000 0.485 1.000 1.000 1.000 0.486 1.000 

300 1.000 1.000 0.554 1.000 1.000 1.000 0.555 1.000 

†: LR = likelihood ratio, CLT = central limit theorem, and MCLT = modified central limit theorem; ‡: 500 permutations were used. 

 
Various LR tests were used to identify which parameter(s) 
were associated with the seasonal differences by assum-
ing the data followed a mixture of zero-inflated log- 
snormal distributions [18]. To illustrate our approach, we 

analyzed the data by four tests alone and by the permuta-
tion test with 1000 repetitions assuming the underlying 
distribution was a zero-inflated exponential distribution 
(Table 7). The results for all four tests, with and without  
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Table 6. Empirical type I errors and testing powers esti-
mated by the LR and Wald tests by assuming three differ-
ent distributions (exponential, Exp, Gamma, and log nor-
mal, LogN) as zero-inflated exponential distribution with 
and without permutation tests based on 1000 simulations 
for population size 200. 

With no permutations 
  

Type I error† Testing power‡ 

Exp 0.041 0.952 

Gamma 0.423 1.000 LR 

LogN 0.167 0.806 

Exp 0.038 0.952 

Gamma 0.417 1.000 Wald 

LogN 0.170 0.808 

With permutation test∆ 
  

Type I error† Testing power‡ 

Exp 0.040 0.954 

Gamma 0.045 0.978 LR 

LogN 0.051 0.543 

Exp 0.035 0.947 

Gamma 0.043 0.979 Wald 

LogN 0.046 0.560 

† and ‡: Based on design 1 and design 2 in Table 1, respectively; ∆: 500 
permutations were used. 

 
Table 7. P-values obtained by different methods by assum-
ing zero-inflated exponential distribution for the Koop-
mans’s data (1981) with and without permutation tests. 

Method† No permutations With permutations 

CLT 0.033 0.050 

MCLT 0.031 0.041 

LR 0.052 0.024 

Wald 0.043 0.018 

Note: 1000 permutation tests were used; †: LR = likelihood ratio, CLT = 
central limit theorem, and MCLT = modified central limit theorem. 

 
employment of the permutation tests, indicated that the 
mice distances differed significantly among the three 
seasons. 

5. Discussion 

It is desired that a statistical method sustains a preset 
nominal Type I error and a high testing power. Many 
methods are based on the appropriate statistical assump-
tions and require a large sample size. In some situations, 

the sample size may be very small and test statistics may 
yield unfavorable Type I errors and testing powers. In 
addition, the real distribution is often unknown so desir-
able testing properties cannot be expected on employing 
distribution-based tests. In this study, we investigated 
statistical properties of the permutation tests integrated 
with four distribution-based tests to compare populations 
with zero-inflated data structures. Based on the results 
from the simulated zero-inflated exponential data, several 
conclusions can be made on use of the permutation test: 
1) high Type I error caused by the appropriate statistical 
tests without the permutation test for small sample sizes 
can be adjusted to the preset nominal level when the 
permutation test is used; 2) high Type I errors caused by 
the inappropriate assumptions can be adjusted to the pre-
set nominal level; and 3) for a large data set, both the 
type I errors and testing powers are similar regardless the 
use of the permutation test for appropriate distribution 
assumptions. The same conclusions applied for the other 
two types of zero-inflated continuous distributions includ- 
ing gamma and lognormal distributions (results not shown).  

As reported by Zhang et al. [7] and in results of this 
study, the LR and Wald tests hold similar type I errors 
and testing powers but they are distribution dependent. If 
an inappropriate distribution is assumed, both inflated 
Type I errors and low testing powers can occur (Table 6). 
The CLT test is data structure dependent because it con-
siders only the population mean including zeros. When 
the population means are similar (because the popula-
tions have similar probabilities of observations equal to 
zero) and their non-zero observations have similar dis-
tributions, then the CLT test may have statistical proper-
ties similar to the other three tests. The MCLT test con-
siders two parameters: the zero probability and non-zero 
mean and thus is better than the CLT test and robust for 
most cases. In addition, high Type I errors caused by the 
MCLT test can be adjusted by the permutation test for 
small sample size. Therefore, the MCLT test can be 
recommended for general use regardless whether the data 
distribution is known or unknown. Numerical investiga-
tion on other types of distributions should help gain more 
information regarding the MCLT method. 

Even though the permutation test showed several ma-
jor advantages, the LR and Wald test still sustain desir-
able Type I errors and testing powers and are not as 
computationally intensive when the distribution for a 
large data set is known or the assumed distributions are 
appropriate. Nevertheless, the permutation test could be a 
valuable addition to the current statistical tests especially 
when a data set is small or the distribution is unknown. 
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