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ABSTRACT 

The three-component coupling reaction of ethyl propiolate (1), phthalimide (2), and aldehyde (3) catalyzed by tripheny- 
lphosphine, was developed. A solution of an equivalent amount of 1 and 2 in benzaldehyde (3a) in the presence of 30 
mol% of PPh3 was heated at 100˚C for 48 h to give N-(1-ethoxycarbonyl-3-oxo-3-phenylpropyl)phthalimide (4a) in 
83% yield. This reaction was thought to proceed via vinylphosphonium salt formed from the reaction of ethyl propiolate 
(1) with triphenylphosphine in situ. 
 
Keywords: Three-Component Coupling; Phosphine; 2-Amino-4-Oxocarboxylic Acid 

1. Introduction 

Phosphines have been the subject of great focus as cata-
lysts for organic synthesis [1-10]. Especially, Morita- 
Baylis-Hillman reaction catalyzed by a phosphine has 
been paid much attention for constructing carbon-carbon 
frame work [11-14]. In these reactions, phosphine attacks 
electron-deficient carbon-carbon multiple bond, and then 
the anion in the produced zwitterionic intermediate at- 
tacks another molecule as a nucleophile. We have fo- 
cused on the reactivity of vinylphosphonium salts, formed 
in situ from acetylenecarboxylates and phosphines in- 
stead of pre-prepared of them [15-18], for the reason of 
simple procedure [19-22]. That is, those [23,24] from 
dialkyl acetylenedicarboxylates or alkyl alkynoates and 
triphenylphosphine have been applied on the synthesis of 
various organic compounds [25-33]. 

In the course of our study for the reaction of acetyle- 
necarboxylic esters in the presence of PPh3, we found the 
efficient three-component coupling of acetylene carbox-
ylic esters, phthalimide, and aldehyde catalyzed by pho- 
sphine. This three-component coupling reaction is an 
efficient way to construct a useful framework in a one- 
pot, and we wish to describe the detail here. 

2. Results and Discussion 

2.1. Reaction Conditions 

The reaction of ethyl propiolate (1) with phthalimide (2)  

and p-nitrobenzaldehyde (3c) was performed in the 
presence of two equivalents of Ph3P in toluene (5 mL) 
(Equation (1)). From the reaction at 100˚C for 48 h, ethyl 
4-oxo-4-(4-nitrophenyl)-2-phthalimidoylbutanoate (4c) was 
obtained in 15% yield accompanied by ethyl 2-phthali- 
midoyl-2-propenoate (5) in 19% yield (Table 1, entry 2). 
This product 4c is not the desired compound by the in- 
termolecular Wittig reaction, but the compound consisted 
of three components. The reaction conditions were then 
optimized (Table 1). At higher concentration, the yield 
of the product 4c was improved. The reaction at room 
temperature or at reflux resulted a lower yield of 4c (Ta-
ble 1, entries 1 and 4). Employment of other solvents, 
such as CH2Cl2, CHCl3, CH3CN, resulted in a lower yield. 
Especially, when acetonitrile was used as the solvent, 
compound 5 was mainly obtained in 36% yield with a 
trace amount of 4c. Finally, a mixture of 1 (1.0 mmol), 2 
(1.0 mmol), and 3c (2.0 mmol) in toluene (1.5 mL) in the 
presence of 2.0 mmol of PPh3 was stirred at 100˚C for 48 
h to give 4c in 40% yield (Table 1, entry 3). 

The effect of the catalyst was also examined (Table 1). 
Using PBu3 instead of PPh3 decreased the yield of the 
product (entry 9). Amines, such as NEt3 and pyridine, did 
not catalyze this reaction at all. Triphenylphosphine was 
demonstrated not to be needed in a stoichiometric amount. 
That is, the use of 30 mol% of Ph3P was enough for this 
reaction (38% yield of 4c, Table 1, entry 7). 

Trost et al. reported that dehydroamino acid derivatives  
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Table 1. Reaction of ethyl propiolate (1), phthalimide (2), and 4-nitrobenzaldehyde (3c) [a]. 

Yield [b] of Products (%) 
Entry Phosphine (equiv) Solvent Reaction Temp. (˚C)

4c 5 

1 [c] PPh3 (2.0) PhCH3 (5 mL) rt 7 8 

2 PPh3 (2.0) PhCH3 (5 mL) 100 15 19 

3 PPh3 (2.0) PhCH3 (1.5 mL) 100 40 17 

4 PPh3 (2.0) CH2Cl2 (1.5 mL) reflux 26 22 

5 PPh3 (2.0) CHCl3 (1.5 mL) reflux 26 20 

6 PPh3 (2.0) CH3CN (1.5 mL) reflux trace 36 

7 PPh3 (0.3) PhCH3 (1.5 mL) 100 38 15 

8 PPh3 (0.1) PhCH3 (1.5 mL) 100 18 10 

9 PBu3 (2.0) PhCH3 (1.5 mL) 100 10 0 

[a] 2 (1.0 mmol), 3c (1.0 mmol), Ph3P (2.0 mmol) were mixed in solvent at room temperature, then 1 (1.0 mmol) was added to the reaction mixture, and the 
resulting mixture was stirred for 48 h; [b] Isolated yield based on the amount of 2; [c] The reaction was carried out for 96 h. 

 
were efficiently formed in the mixture of toluene and 
buffer solution of acetic acid/sodium acetate [34]. There- 
fore, the same system was tried for this reaction. That is, 
the reaction of 1, 2, and 3c in the presence of 2.0 equiv of 
PPh3 in a mixture of toluene, acetic acid, and sodium 
acetate gave the product 4c in 20% yield and 5 in 14% 
yield. 
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2.2. Using Various Aldehydes 

The aldehyde was then changed for determining the scope 
and limitation of this reaction by using a catalytic amount 
of PPh3 (Table 2). Based on above results, the reaction at 
a high concentration smoothly proceeds. Therefore, if the 
aldehyde was a liquid, excess aldehyde (1 mL) can be 
used without solvent. When the aldehyde is a solid, tolu- 
ene was used as the solvent, and the yields were moder- 
ate to low (entries 3 and 7). Without solvent, good pro- 
duct yields were achieved using aromatic aldehydes. 
When using benzaldehyde (3a) as the aldehyde, 4a was 
obtained in 83% yield. Introducing substituents on the 
benzaldehyde did not significantly affect the yield of the 
product. Heteroaromatic aldehydes, such as 2-furanecar- 
baldehyde (3h) and 2-pyridinecarbaldehyde (3i) (Table 2, 
entries 8 and 9), were also used for this reaction, while 
aliphatic aldehydes 3j, 3k, gave products in poor yields 
(Table 2, entries 10 and 11). 

For the reaction of 1 with benzaldehyde (3a), using a 
large quantity of 3a decreased the yield of 4a to 35% 
(Table 2, entry 12). This result shows that the concentra- 
tion of the alkynoate, PPh3, and/or phthalimide is impor- 
tant for this reaction. Tributylphosphine instead of PPh3 
was not effective similar to that mentioned above (Table 
2, entry 13). 
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Next, several alkynoates were examined for this coup- 
ling reaction without solvent. When ethyl 2-butynoate 
was used for this reaction, no three-component coupling 
product was obtained. Dimethyl butynedioate, which 
showed good reactivity for the preparation of heterocyc- 
lic compounds via the in situ vinylphosphonium inter- 
mediate, was allowed to be used for this three component 
coupling. Although various nucleophiles such as amines, 
amides, alcohols, and electrophiles, such as aldehydes, 
ketones, acid chlorides, were employed for this reaction, 
the desired product was not obtained, but only polymeric 
materials were formed. 

Various nitrogen-containing nucleophiles having pro- 
tonation ability were tested next. The primary amine, bu- 
tylamine, directly reacted with propiolate to give mainly 
the Michael adducts. N-Tosylamide [34] was subjected to 
this reaction, but only a trace amount of the desired pro- 
duct was formed. Amides, such as caprolactam, N-acety- 
laniline, did not react with 1. Pyrrole was employed for 
this reaction, but no reaction occurred as well. 

2.3. Plausible Reaction Mechanism 

The reaction may occur in the following way (Scheme 1): 
(1) nucleophilic attack of Ph3P to ethyl propiolate (1) to 
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Table 2. Reactions of ethyl propiolate (1), phthalimide (2), and various aldehydes (3) [a]. 

Aldehyde 3 Product 4 
Entry 

 R=  Yield [b] (%) 

1 3a Ph 4a 83 

2 3b 4-FC6H4 4b 81 

3c 3c 4-NO2C6H4 4c 38 

4 3d 4-MeC6H4 4d 68 

5 3e 4-MeOC6H4 4e 70 

6 3f 1-naphthyl 4f 65 

7 [c] 3g 2-naphthyl 4g 45 

8 3h 2-furyl 4h 51 

9 3i 2-pyridyl 4i 72 

10 3j (C2H5)2CH 4j 27 

11 [d] 3k CH3(CH2)2 4k 25 

12 [e] 3a Ph 4a 35 

13 [f] 3a Ph 4a 21 

[a] Phthalimide (2, 1.0 mmol) and Ph3P (30 mol%) were mixed in the aldehyde (3, 1.0 mL) at room temperature, and then ethyl propiolate (1, 
1.0 mmol) was added. The mixture was stirred at 100˚C for 48 h; [b] Isolated yield based on the amount of 2; [c] Aldehyde (3, 1.0 mmol) and 
toluene (1.5 mL) were used; [d] The reaction was carried out at 65˚C; [e] Benzaldehyde (3c, 3 mL) was used; [f] PBu3 was used instead of 
PPh3. 
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Scheme 1. Plausible mechanism. 
 
give zwitterionic intermediate (6), (2) protonation of the 
intermediate 6 by phthalimide, (3) Michael addition of 
phthalimidate anion to give ylide 7, and (4) ylide attacks 
to aldehyde to give 8. In the last step, the Wittig al- 
kenylation does not proceed, and the γ-keto α-amino acid 
derivative 4 is produced. Probably, the hydride shift oc- 
curred from the intermediate 8. This type of hydride shift 
was suggested in the reaction of butanal with the bu- 
toxymethylenetriphenylphosphonium ylide forming 1- 
butoxy-2-pentanone [35]. In our reaction, the same hy- 
dride shift could proceed to give the product 4 in good  

yield. Alternatively, 7 undergoes intramolecular proton 
transfer, and elimination of the phosphine (by an E1cb 
mechanism). The phosphine may add to the aldehyde to 
generate an umpolung type intermediate, which would 
undergo conjugate addition to the acrylate (derived from 
7) to give an intermediate analogous to 8, which can 
eliminate the phosphine to give 4 [36]. 

3. Conclusion 

In conclusion, three-component coupling reaction of ace- 
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tylenic ester, phthalimide, and aldehyde was established. 
This reaction gives the γ-keto α-amino acid derivatives in 
one-pot in up to 83% yield. The reaction seems to pro- 
ceed through vinylphosphonium salts derived from ace- 
tylenic ester and phosphine, and via hydride transfer re- 
action. The application of this unique reaction is now 
underway. 

4. Experimental 

4.1. General 

Proton nuclear magnetic resonance (1H NMR) spectra 
were measured using a JEOL JNM A-400 (400 MHz) 
spectrometer using tetramethylsilane as the internal stan- 
dard. IR spectra were measured on a Shimadzu IR-408 
spectrometer. Mass spectral (GC-MS) data were recorded 
on a Shimadzu GP2000A instrument. Elemental analyses 
were performed at the Microanalytical Center of Kyoto 
University. High resolution mass spectra (FAB) were 
measured using a JEOL JMS-700 with meta-nitrobenzyl 
alcohol as the matrix. Melting points were measured on a 
Yanako Model MP and were not corrected. All substrates 
were purchased and used without further purification. 

4.2. Typical Experimental Procedure 

In an 80 mL-Schlenk tube were added phthalimide (2, 
147 mg, 1.0 mmol), triphenylphosphine (79 mg, 30 mol%), 
aldehyde (3, 1.0 mL), and then ethyl propiolate (1, 98 mg, 
1.0 mmol). The resulting mixture was heated at 100˚C 
for 48 h. Product was purified by column chromatogram- 
phy (silica gel (200 - 400 mesh), hexane-ethyl acetate). 
When aldehydes were solid at room temperature, 1.0 
mmol of aldehyde and 1.0 mL of toluene were used for 
the reaction. 

4.3. Identification of the Products 

N-(1-Ethoxycarbonyl-3-oxo-3-phenylpropyl)phthalim
ide (4a): Light yellow solid, mp. 122˚C - 123˚C; 1H 
NMR (CDCl3) δ 7.99 (m, 2H), 7.83 (m, 2H), 7.72 (m, 
2H), 7.44 - 7.58 (m, 3H), 4.92 (dd, J = 9.0, 5.6 Hz, 1H), 
4.46 (dd, J = 14.0, 9.0 Hz, 1H), 4.23 (dd, J = 14.0, 5.6 Hz, 
1H), 4.10 (m, 2H), 1.11 (t, J = 6.8 Hz, 3H); IR (KBr) 
3500, 3000, 1770, 1710, 1595, 1460, 1435, 1395, 1350, 
1290, 1170, 980, 883, 722 cm–1; FAB-MS (m/z) 352 
(M+), 306 (M+-OEt). Anal. calcd for C20H17NO5: C, 
68.37; H, 4.88; N, 3.99. Found: C, 68.38; H, 4.72; N, 
3.99. 

N-[1-Ethoxycarbonyl-3-oxo-3-(4-fluorophenyl)prop
yl]phthalimide (4b): White solid, mp. 93˚C - 94˚C; 1H 
NMR (CDCl3) δ 8.04 (m, 2H), 7.83 (m, 2H), 7.73 (m, 
2H), 7.12 (m, 2H), 4.91 (dd, J = 9.4, 6.0 Hz, 1H), 4.46 
(dd, J = 14.4, 9.4 Hz, 1H), 4.22 (dd, J = 14.4, 6.0 Hz, 
1H), 4.11 (m, 2H), 1.12 (t, J = 7.2 Hz, 3H); IR (KBr) 

3450, 3100, 2900, 1767, 1700, 1590, 1505, 1465, 1390, 
1348, 1305, 1220, 1156, 1108, 1030, 970, 857, 720 cm–1; 
Anal. calcd for C20H16FNO5: C, 65.04; H, 4.37; N, 3.79. 
Found: C, 65.08; H, 4.24; N, 3.79. 

N-[1-Ethoxycarbonyl-3-oxo-3-(4-nitrophenyl)propy
l]phthalimide (4c): Light yellow crystal, mp. 113˚C - 
115˚C; 1H NMR (CDCl3) δ 8.31 (m, 2H), 8.15 (m, 2H), 
7.84 (m, 2H), 7.74 (m, 2H), 4.94 (dd, J = 8.6, 6.0 Hz, 
1H), 4.46 (dd, J = 14.4, 8.6 Hz, 1H), 4.26 (dd, J = 14.4, 
6.0 Hz, 1H), 4.11 (m, 2H), 1.12 (t, J = 6.8 Hz, 3H); 13C 
NMR (CDCl3) δ 191.6, 167.8, 167.2, 150.6, 140.1, 134.3, 
131.7, 129.6, 123.9, 123.5, 62.4, 52.5, 36.6, 13.7; IR 
(KBr) 3000, 1772, 1710, 1600, 1525, 1395, 1347, 1288, 
1110, 1030, 970, 855, 750, 720 cm–1; FAB-MS (m/z) 397 
(M+), 351 (M+-OEt). Anal. calcd for C20H16N2O7: C, 
60.61; H, 4.07; N, 7.07. Found: C, 60.69; H, 3.96; N, 
6.96. 

N-[1-Ethoxycarbonyl-3-oxo-3-(4-methylphenyl)pro
pyl]phthalimide (4d): Light yellow solid, mp. 85˚C - 
87˚C; 1H NMR (CDCl3) δ 7.88 (d, J = 8.0 Hz, 2H), 7.82 
(m, 2H), 7.72 (m, 2H), 7.24 (d, J = 8.0 Hz, 2H), 4.90 (dd, 
J = 9.0, 6.0 Hz, 1H), 4.45 (dd, J = 14.0, 9.0 Hz, 1H), 4.21 
(dd, J = 14.0, 6.0 Hz, 1H), 4.09 (m, 2H), 2.38 (s, 3H), 
1.11 (t, J = 6.8 Hz, 3H); IR (KBr) 2900, 1768, 1700, 
1600, 1462, 1390, 1350, 1300, 1220, 1110, 1022, 963, 
893, 822, 800 cm–1; Anal. calcd for C21H19NO5: C, 69.03; 
H, 5.24; N, 3.83. Found: C, 68.96; H, 5.04; N, 3.84. 

N-[1-Ethoxycarbonyl-3-oxo-3-(4-methoxyphenyl)pr
opyl]phthalimide (4e): Light yellow solid, mp. 82˚C - 
83˚C; 1H NMR (CDCl3) δ 7.98 (d, J = 8.8 Hz, 2H), 7.83 
(m, 2H), 7.72 (m, 2H), 6.91 (d, J = 8.8 Hz, 2H), 4.90 (dd, 
J = 9.2, 6.0 Hz, 1H), 4.45 (dd, J = 14.4, 9.2 Hz, 1H), 4.20 
(dd, J = 14.4, 6.0 Hz, 1H), 4.09 (m, 2H), 3.85 (s, 3H), 
1.12 (t, J = 6.8 Hz, 3H); IR (KBr) 2900, 2250, 1770, 
1710, 1670, 1590, 1510, 1463, 1395, 1355, 1260, 1228, 
1170, 1028, 910, 845 cm–1; Anal. calcd for C21H19NO6: C, 
66.14; H, 5.02; N, 3.67. Found: C, 66.25; H, 4.82; N, 
3.58. 

N-[1-Ethoxycarbonyl-3-oxo-3-(1-naphthyl)propyl]p
hthalimide (4f): Light yellow solid, mp. 98˚C - 101˚C; 
1H NMR (CDCl3) δ 8.60 (d, J = 8.8 Hz, 1H), 7.44 - 7.96 
(m, 10H), 5.07 (dd, J = 8.6, 6.4 Hz, 1H), 4.41 (m, 2H), 
4.00 (m, 2H), 0.97 (t, J = 7.2 Hz, 3H); IR (KBr) 3000, 
1771, 1715, 1678, 1393, 1357, 1215, 1031, 970, 720 
cm–1; Anal. calcd for C24H19NO5: C, 71.81; H, 4.77; N, 
3.49. Found: C, 72.01; H, 4.53; N, 3.56. 

N-[1-Ethoxycarbonyl-3-oxo-3-(2-naphthyl)propyl]p
hthalimide (4g): Light yellow solid, mp. 91˚C - 92˚C; 1H 
NMR (CDCl3) δ 8.53 (d, J = 1.6 Hz, 1H), 7.51 - 8.04 (m, 
10H), 5.09 (dd, J = 9.0, 5.8 Hz, 1H), 4.51 (dd, J = 14.4, 
9.0 Hz, 1H), 4.28 (dd, J = 14.4, 5.8 Hz, 1H), 4.10 (m, 
2H), 1.10 (t, J = 7.2 Hz, 3H); IR (KBr) 3000, 1771, 1715, 
1505, 1465, 1430, 1395, 1355, 1300, 1215, 1123, 1087, 
1025, 760 cm–1; HRMS calcd for C24H19NO5 402.1341, 
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found 402.1325. 
N-[1-Ethoxycarbonyl-3-oxo-3-(2-furyl)propyl]phth

alimide (4h): White solid, mp. 105˚C - 106˚C; 1H NMR 
(CDCl3) δ 7.68 - 7.84 (m, 4H), 7.56 (d, J = 1.2 Hz, 1H), 
7.32 (d, J = 3.6 Hz, 1H), 6.54 (q, J = 1.6 Hz, 1H), 4.65 
(dd, J = 8.2, 6.8 Hz, 1H), 4.40 (dd, J = 14.4, 8.2 Hz, 1H), 
4.25 (dd, J = 14.4, 6.8 Hz, 1H), 4.13 (m, 2H), 1.14 (t, J = 
7.2 Hz, 3H); IR (KBr) 3000, 1770, 1715, 1672, 1563, 
1460, 1390, 1360, 1300, 1213, 1025, 968, 755, 720 cm–1; 
Anal. calcd for C18H15NO6: C, 63.34; H, 4.43; N, 4.10. 
Found: C, 63.29; H, 4.17; N, 4.38. 

N-[1-Ethoxycarbonyl-3-oxo-3-(2-pyridyl)propyl]ph
thalimide (4i): White solid, mp. 112˚C - 113˚C; 1H 
NMR (CDCl3) δ 8.55 (m, 1H), 8.06 (d, J = 7.6 Hz, 1H), 
7.69 - 7.86 (m, 5H), 7.43 (m, 1H), 4.96 (dd, J = 8.3, 6.8 
Hz, 1H), 4.45 (dd, J = 14.4, 8.3 Hz, 1H), 4.33 (dd, J = 
14.4, 6.8 Hz, 1H), 4.09 (m, 2H), 1.05 (t, J = 7.2 Hz, 3H); 
IR (KBr) 3450, 2900, 1770, 1700, 1610, 1580, 1462, 
1390, 1350, 1317, 1220, 1118, 1032, 963, 895, 800, 720 
cm–1; Anal. calcd for C19H16N2O5: C, 64.77; H, 4.58; N, 
7.95. Found: C, 64.73; H, 4.36; N, 7.71. 

N-[1-Ethoxycarbonyl-4-ethyl-3-oxo-hexyl]phthalim
ide (4j): Light yellow solid, mp. 55˚C - 56˚C; 1H NMR 
(CDCl3) δ 7.85 (m, 2H), 7.72 (m, 2H), 4.06 - 4.27 (m, 
5H), 2.60 (m, 1H), 1.66 (m, 2H), 1.46 (m, 2H), 1.23 (t, J 
= 7.2 Hz, 3H), 0.83 (m, 6H); IR (KBr) 2900, 1772, 1715, 
1610, 1463, 1430, 1390, 1362, 1295, 1215, 1130, 1034, 
970, 755, 720 cm–1; Anal. calcd for C19H23NO5: C, 66.07; 
H, 6.71; N, 4.06. Found: C, 65.89; H, 6.67; N, 3.83. 

N-[1-Ethoxycarbonyl-3-oxo-hexyl]phthalimide (4k): 
Light yellow oil; 1H NMR (CDCl3) δ 7.72 - 7.85 (m, 4H), 
4.04 - 4.26 (m, 5H), 2.62 (m, 1H), 2.51 (m, 1H), 1.62 (q, 
J = 7.2 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H), 0.90 (t, J = 7.2 
Hz, 3H); IR (NaCl) 2900, 1773, 1720, 1610, 1462, 1430, 
1391, 1365, 1290, 1193, 1035, 970, 885, 790, 720 cm–1; 
HRMS calcd for C17H20NO5 318.1341, found 318.1324. 
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