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ABSTRACT 

In this paper, a mathematical model is proposed to study the effect of pollutant and virus induced disease on single spe- 
cies animal population and its essential mathematical features are analyzed. It is observed that the susceptible popula- 
tion does not vanish when it is only under the effect of infection but in the polluted environment, it can go to extinction. 
Also, it has been observed that the replication threshold obtained, increases on account of pollutant concentration con- 
sequently decreasing the susceptible population. Further persistence results for the proposed model are obtained and the 
condition for the existence of the Hopf-bifurcation is derived. Finally, numerical simulation in support of analytical 
results is carried out.  
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1. Introduction 

Pathogens such as viruses, bacteria, protozoan, and hel-
minthes affect their host’s population dynamics [1-7]. It 
is now widely believed that disease and parasites are re-
sponsible for a number of extinctions on island and on 
large land masses. Theory on the effects of parasites on 
host population dynamics has received much attention 
and focused on issues such as how the parasite induced 
reduction of the host fecundity and survival rates change 
the host population dynamics, and how such dynamics be 
applied to predict threats to biodiversity in general and 
endangered species in particular [8,9]. Besides the study 
of effect of disease, effect of environmental pollution is 
also a great challenge in the study of the population dy-
namics in a polluted environment. A great quantity of the 
pollutant enters into the environment one after another 
which seriously threaten the survival of the exposed 
populations including human population. For a general 
class of single population models with pollutant stress, 
[10] obtained a survival threshold distinguishing between 
persistence in the mean and extinction of a single species 
under the hypothesis that the capacity of the environment 
is large relative to the population biomass, and that the 
exogenous input of pollutant into the environment is 
bounded. The threshold of survival for a system of two 
species in polluted environment was studied by [11]. 
Again, a spatial structure has been carried out by [12], to 
describe the dynamics of a population in a polluted envi- 

ronment and the sufficient criteria for the persistence and 
the extinction of the population are described. Many re-
searchers have studied SIR model for different disease, 
such as dengue disease transmission [13]. Most recently, 
the bird flu, or H5N1, has garnered public attention for 
its potential not only to spread from chickens and other 
birds to humans, but also for the virus to mutate in a way 
that allows it to spread between humans. During the 
study period, bird flu killed just over half of the 145 peo-
ple infected with the virus. In the absence of the virus the 
population is growing logistically according to the car-
rying capacity of the particular system but as the virus 
affects the species, its population starts decreasing and 
the population is divided into susceptible and infected 
population. It is well known fact that the virus multiply 
in the host body. This period when it multiply in the sus-
ceptible body is called the latent period and as the latent 
period gets over, it becomes infected and thus the disease 
spreads to the whole population resulting in the Deterio-
ration of the population. But if along with this infection, 
if the population comes in contact with some toxicant 
directly with the food they intake like harmful chemicals 
then the situation gets worse [14]. Developed an exten-
sion of standard epidemiological models that describes 
the probability of disease spread among a given popula-
tion of chicken. The model considered actual disease 
surveillance data gathered by health experts like the 
World Health Organization and looked for anomalies in 
the expected transmission rate versus the actual one. It is 
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assumed that two viruses namely strain 1 and strain 2 
causes the disease and long lasting immunity from infec-
tion caused by one virus may not be valid with respect to 
a secondary infection by the other virus. As a result 
ecologists acknowledge the importance of disease and 
parasite in the dynamics of the population [15-19]. Re-
cently few interesting mathematical models with com-
bined effects of disease and toxicant were studied [20- 
22], for competing and prey predator dynamics. Keeping 
in view of the above, in this paper, we have proposed a 
mathematical model by considering the combined effect 
of both the infection and the toxicant through food intake 
and environmental toxicant. Many researchers have been 
done on the persistence of a biological system affected 
by infectious disease and the harmful toxicant separately, 
but here we have actually studied the combined effect of 
both disease and toxicant on a single population. This 
can be very useful for the researchers as it is not neces-
sary that the system can have only one negative factor 
affecting it. This model is very helpful for plant popula-
tion also which are infected by viruses and by environ-
mental toxicant and the toxicant via food. Plant popula-
tions are affected by harmful toxicant like air pollutants 
which from combustion include sulphur dioxide and 
fluoride and those from photochemical reactions include 
complex nitrates and ozone and affect the plants. A few 
hundred plant viruses cause diseases known as tobacco, 
cucumber or tomato mosaics, potato leaf roll, raspberry 
ring spot, tulip flower breaking, barley yellow dwarf, etc. 
Several viroids cause diseases such as potato spindle 
tuber, cucumber pale fruit, hop and chrysanthemum stunt, 
etc. 

2. Mathematical Model 

The mathematical model that we are presenting in this 
paper is constrained to the following assumptions: 

1) We have two populations viz. a single species ani-
mal population in terrestrial ecosystem denoted by sym-
bol  H t  at time t and a virus biomass, which are bac-
teriophages, denoted by symbol  P t  at time t. 

2) In the absence of bacteriophages (i.e. viruses) the 
single species population density grows according to a 
logistic curve with carrying capacity  with an 
intrinsic birth rate constant : 

 ЄC C R 
 ЄR 

d
1

d

H H
H

t C
  

 

              (1) 

3) In the presence of virus biomass, we assume that 
total population  H t

 
 is composed of two population 

classes:    H t S t  I t , where S is the suscep-
tible population class, and 

 t  
 I t  i  infected popula-

tion class. 
s the

4) It has been assumed that only susceptible popula-

tion is capable of reproducing with logistic law. However, 
the infected population still contributes with susceptible 
population growth towards the carrying capacity. 

5) A susceptible population  becomes infected  S t
 I t  under the attack of many virus particles. Virus 

enters into susceptible individual, and then starts its rep-
lication inside the susceptible individual (now infected). 
Therefore, the evolution equation for the susceptible 
class  S t  according to the Equation (1) under assump-
tions 4) and 5) is: 

d
1

d

S H
S

t C
     

 
KSP          (2) 

where,      H t S t I t  . In equation above  K KЄR  
represents effective animal population contact rate with 
viruses.  

6) An infected individual  I t  has a latent period, 
which is the period between the instant of infection and 
that of lysis, during which the virus reproduces inside the 
individual. The lysis death rate constant  ЄR    gives 
a measure of latency period T being 1 T  . The lysis 
of the infected individual on the average, produces b vi-
rus particles  Єb R , b is the virus replication factor. 

7) The virus particles have a death rate constant 
 ЄR   , which accounts for all kinds of possible mor-

tality of viruses due to enzymatic attack, pH dependence, 
temperature changes, UV radiation etc. 

From the above assumptions, the model equations are:  

d
1

d

S H
S

t C
     

 
KSP              (3) 

d

d

I
KSP I

t
                      (4) 

d

d

P
KSP P b I

t
                  (5) 

It has been observed that virus replication factor i.e. b 
plays an important role in shaping the dynamics of sys-
tems (3)-(5). If b is greater than some critical value then 
system exhibits the oscillatory behavior. Also, it has been 
established that systems (3)-(5) is uniformly persistent if 

 where *b b * 1b   KC . Further, to elaborate the 
effect of environmental pollution on single species 
population  H t  when it is already subjected to virus 
induced infection, we consider following assumptions: 

8) We assume that pollutant enters into population via 
food which they intake and also from environment. 

9) Pollutant losses from organism due to metabolic 
processing and other causes. 

If Q is the constant exogenous input rate of the pollut-
ant into environment then evolution equation for the 
concentration of environmental pollutant and for the or-
ganismal concentration of toxicant is given as: 
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d

d

X
Q hX

t
                       (6) 

 1
1 1

1

d

d

dU
a X l l U

t a


    2         (7)  

where,  X t
U t
 is the environmental concentration of the 

pollutant,  is the organismal concentration of the 
pollutant. h is the loss rate of toxicant from environment, 
a1 is environmental pollutant uptake rate per unit mass 
organism, the uptake rate of pollutant in food per unit 
mass organism is denoted by second term in Equation (7); 



 , is the concentration of the pollutant in resource,  , is 
the average rate of the food intake per unit mass organ-
ism, d1, the uptake rate of pollutant in food per unit mass 
organism. l1 and l2 are organismal net ingestion and de-
puration rates of pollutant, respectively. The natural loss 
rate of pollutant from environment can be due to bio-
logical transformation, hydrolysis, volatilization, micro-
bial degradation, including other processes. Thus the 
extended form of the systems (3)-(5) including Equations 
(6) and (7) is given as follows: 

1

d
1

d

S H
S KSP

t C
      

 
rUS          (8) 

2

d

d

I
KSP I r UI

t
                    (9)              

d

d

P
KSP P b I

t
                   (10) 

d

d

X
Q hX

t
                         (11) 

 1
1 1

1

d

d

dU
a X l l U

t a


    2          (12)  

where, r1 and r2 are loss rates from susceptible and in-
fected populations respectively due to effect of pollutant. 
In the next section, we will show that all the solutions of 
the Model (8)-(12) are bounded. 

3. Boundedness and Equilibria 

The boundedness of the solutions can be achieved by the 
following lemma. 

Lemma 3.1. All the solutions of the Model (8)-(12) 
will lie in the following region as :  t 

  5
1

1

* *

, , , , Є , 0 ,

0 , 0 , 0

B S I P X U R I P X

Q
X X U U S

h
C





  


       


 

wher

 

e  

 *
1 2

* 1
1

* *1

1 2

min , , ,

,

r U b h

d
a X

a Q
U X

l l h

  



  


 



 



and C is the carrying capacity of the susceptible popula-
tion. 

Proof. Let us consider the function 

     W t I t P t X      t  
then from Equations (9)-(11), we get 

   *
2r UW t I hX PQ b       

 *
1 2min , ,r U b h     Let  then 

  1W t Q W   

then by usual comparison theorem [23], we get the fol- 

lowing expression as :t    
1

W t



  and hence 

     
1

I t P t X t



    

From (12), we get 

 * 1
1 1

1
2d

d
l l U

t a
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Let 

dU
a X 

* 1
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1

max
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a X
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 
, then we get 

 2 1 2

d

d

U
l l U

t
    

then by usual comparison theorem [23], we get the fol-
lowing expression as :t   

   
2

1 2

U t
l l





 

From (11), we get 

d

d

X
Q hX

t
   

then by again usual comparison theorem, we get 

* Q
X X

h
   

This completes the proof of lemma. 
Now, consider the following system: 

   ,x t f t x              (13) 

   y t g y              (14) 

where, f and g are continuous and locally Lipschitz in x 
in nR , and solutions exists for all positive time. Equa-
tion (14) is called asymptotically autonomous with limit 
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equ on (13) if  ati  ,f t x g y  as t   uniformly 
for all x in nR . 

Lemma 3.2. Le cally stable 
equilibrium (1

t e be a locally asy
4) and ω be the ω

mptoti
-limit set of of  a forward 

bounded solution  x t  of (13). If ω contains a point y0 
such that the solutions of (14), with   00y y  con-
verges to e as t  , then  e   i.e.  x t e  as 
t  . 

Corollary. If olutions e syst are 
d an

 the s  of
e equilibrium e of t

 th  (13) 
bounde he li m (14) is 
gl

em
mit systed th

obally asymptotically stable than any solution  x t  of 
the system (19) satisfies  x t e  as t  . 

The Equations (11) and (12) can be solved e itly 
and we obtain 

xplic

  *limsup
t

X t X


Q

h
 

and  

 

 
*

*p
a X

U t U 

ing above corollary
wing equivalent asy

1 1 1

1 2

u
d a

l l




 

Thus, on ply  in system 8)-(12) 
we get th mptotic autonomous 
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lims
t

 ap
e follo

s (
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*
11S KSP rU S

t C
    

 
      (15) 

dS H 
d

*
2

d

d

I
KSP I r U I           

t
      (16) 

d

d

P
KSP P b I

t
    

To pred e dynamical behavio
(12) it is sufficient to study the behavior of the systems 
(1

             (17) 

ict th r of the systems (8)- 

5)-(17), since the behavior of the systems (15)-(17) near 
to the steady states is similar to the behavior of the sys-
tems (8)-(12). Now, we rescale the systems (15)-(17) us-
ing following non-dimensionalised quantities: s S C , 
i I C , p P C  and KCt  , we get 

   1

d
1as sp m U *i s s          (18)  

d
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

*
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i
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
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d

d

p
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where, 


                (20) 

a
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
 , 1

1

r
m
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2

r
m
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  

and  0 0 , 0s s   00 0i i 
itial conditio

,   00p p  , 
ns for (18)-(20

0 * 0C  , 
) may be*U 0 e in  

point in the non-negative orthant of 

. All th

any 3
0R  of 3R  

3and R  is defined as the interior of 3
0R . We will use 

notation t instead of notation   for the convenience  
rest of the paper. Systems (18)-(20) h three feasible 
equilibrium points, trivial equi rium point 

 in
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lib  0 0,0,0E , 
disease free equilibrium point  *

1 11 ,0,0E m U a  and  

a interior equilibrium point  * * * *, ,E s i p  where 
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 

*
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m l m U
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
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2bl l m U 

*
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*
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*
21b m U l  , * *1 1s m U a  . Whenever  

*
11s m U a  then d , 
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um 
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0p 
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lluted 

i.e. in this 
dis-case ibr approaches toE  

brium s 1 in po environment. 
Now, we move to the biological relevant parameter b i.e. 
the virus replication factor. This parameter plays an im-
portant role in shaping the dynamics of the system. We 
see that as *

21b m U l   then *s  , and in pollu-
tion free environment, we have *s   as 1b  . It is 
readily clea it for v lication factor 
has been increased to 

r that lower lim irus rep
*

21b m  from U l  1b   due 
to presence of the toxicant into the environment. Of 
course, the range of viru actor ha ome 
shorter 

s replication f s bec
 *

2Є 1 ,b m U l   in polluted environment as 
compared to  Є 1,b   in pollution free environment for 
the exist  equilibrium point. It is clear 
that for increa e of U* the lower limit of parame-
ter b for the existence of positive equilibria of system 
increases, and we know as b increases then *

ence of the int
sing valu

erior

s  is mono-
tonically decreasing but constrained to the range  

 * *
10 1s m U a    and it reaches the valu  e 
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*
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2
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d  as 

a


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In this case, we have stable boundary equilibrium point 
E1 at which epidemic cannot occur and the trivial equi-
librium E0 state remains unstable saddle point for any 
parameter value provided *

1a m U . Increasing b fur- 

ther i.e.  **Є ,b b  ; we see that 
*

* 11
m U

s
a

 
  
 

 and  

* 0i  , 

can sum

* 0p 
han b

marize

. Hence, when the virus replication factor 
 th

n 

is larger t en interior equilibria will exists. We ** ,
 the above result in following proposition. 

Propositio 1. Whenever, 
*

*1Є 1 ,
m U

b b
a

 
 

 
 then  

equilibria of the system (18)-(20) are E0 and E , and 
w positive equilibr

1

henever  **Є ,b b   then the ia *E  
is feasible. Moreover, as  then 1E E  and at 

**b b  we have 1E . It is clear by the above dis-
cussion that for the existence of positive equilibria the 
virus replication factor i.e. b should be much higher i.e. 

 in the polluted environment instead of pollution 
free environment where * **b b b  . Also, as *U  in-
creases then **b  increases and simultaneously *

**b b * 
 *E 

**b b

s  de-
creases. Thus, amount of toxicant in environment plays 
an important role in co-existence of all species in the 
systems (18)-(20). 

4. Local Stability and Bifurcation Analysis 

In this section we will discuss local stability analysis of 
s-



where . At trivial equi-
librium

0

We have following eigen values cor sponding to 

the systems (18)-(20). Moreover, condition for the exi
tence of Hopf-bifurcation has also been discussed in this 
section. The jacobian matrix for the systems (18)-(20) is 
given as: 
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*a m U
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1

the susceptible population can vanish only when it’s in-
trinsic growth rate become smaller than the death d e to 
pollutant. On the other hand if  then suscepti-

ble population can never vanish. It has been already 
studied that in pollutant Free State, jacobian of the sys-
tems (18)-(20) corresponding to 0E  s repulsive 
in s direction. Thus, it is clear that due to effect of toxi-
cant, the susceptible population can vanish. While, on the 
other hand in pollutant free environment susceptible 
population in systems (15)-(17) can never vanish. Ac-
cording to eigen values it has been observed that Jaco-
bian J corresponding to trivial equilibria 0E  is repulsive 
in s direction when *

1a m U , and attracting in i and p 
direction. Thus, the above discussion shows that 0E  is 
an unstable saddle point. We know disc the disease 
free equilibrium poin en *

1a m U , then corre-
sponding to this equilibrium point we have the following 
jacobian matrix: 

*U

uss 
t E1, wh

* *
1 1

11 1 1
m U m U

n a

*

*

a a

a
* 1

2

1

m U
l m U

m U
bl m

a

0 1

0 1

    
       

    
         
 


 
   
  

 

where 
* * 

 
 

. *1 1
11 1 1

m U m U
n a U

a a

  
        

Then, we have following eig va of 

1m

en 

1a

lues  1J E : 
 *

1 a m   11 U a  and 2  and 3  are roots  
following quadratic: 

 of the

  2
1 2 0q n n      

where  

*

a

  
     

* 1
2 1

m U
n l m U m      1

 
* * 

 
 

 

in t

* 1 1
2 2

m U m U
n l m U m

a a

 
    

 

It is clear that  and e 
following form: 

1 1bl

can be rewritten 

 
  

 

 





1 0n  , 2n h

 
*

* *1
2 2 1

m U
n b m U s     l l

a

 
   

 

where *s  is first point in positive equilibri  poi
Now, if 

um nt E* : 
 *

21b m U   * *
1m U a l  and 1 s , then  

E  is a saddle point, and when 1  *b , the* *1 ;b m U a 1

we have 

Є n  

 * *s 11 m U a  efore positiv
for the si

 and e equi-
le

ther
. Thus, librium point  is not feasib ation *E tu

 * *1 0m U a s1    equation o real  q  0  has tw
ve r  Now, wand negati hen **b b  then  oots.

 * *
11s m U   and the disease free equilibrium point a
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E  has one vanishing  and two1  eigen value  real and nega-
tive eigen values:  *m U a1 11a    , 2 1n    and 

3 0  , i.e. in this case E1 is critically asymptotically 
stable. Finally, when **b b  and  * *

11 m U a s   then 
positive equilibria E*

1 e . 
above results can be summarized as in the form of 

the following lemma. 
Lemma 4.1. For the systems (18)-(20), the triv

 exists and 

e free

E

ial 

 equ

 becom repulsive

ilibria E1 in polluted en-

The 

eq

vir

uilibrium point E0 is always an unstable saddle point if 
*

1m U a . The diseas
onment is locally asymptotically stable point if 
 * **

1Є 1 ,b m U a b ; i.e. when E* is not feasible. At 
1 become critically stable. Whereas, when E* is 

feasible i.e. for  **Є ,b b  , E1 is repulsive. 
uss the local behavior of the flow of 

tem (18)-(20) near to the positive equilibrium 
point E*. Let us *

**b b , 

Now, 
the sys

E

we wil

consi

l disc

der s   and Є 0, * a . 

then the characteristic equation co ve 

1

e jacobian of the system (18)-(20) corresponding to 
positive equilibrium point *E  is given as: 

* * *

* * *

as as s

p l m s

   
 

  

1 m U

* *s m    

 

rrespond g to abo

Th

jacobian 

2

p b

U

l

in
 1J E  is given as: 

*
2

       3 2 0h A B C            

where 

    1 A l m mU a     

   2
1 2*

a

U a



2

B a
l m

        
 

  
*

1m U

a
*

2l m 1C am U 
 
  

 
 

 

 

 *U 1 22 l m am     

*
*U m

d B 

1
2 2 1 1

m U
l m a

a


  
        

 


,  an  for all  Here   0A     0

 *m U a10,1Є  , and for  B   we have following two  

ca

1) 

ses: 
* *

* 1 11 1
m U m U

a
   

       , in this 2l m U m
a a

 
   

 for case B   0  all  *
1Є 0,1 ,m U a  

2) 
*

* 1 1
2 1 1

m U m U
l m U m

*

a a

   
       

  
 in this  

 for all 

a


case B   0   1 0,Є 

 *
1 1 Є ,1 m U a    and  at   0B  

, and  for  

all 

   0B  

1   where 

 2
1 1 22a 1

1
4a        

ch is the root of 2whi 2
1a     .

 and sufficient co
 urw

rion gives a necessary ndition for local 
asymptotic stability of E*. 

Routh-Hurwitz criterion and Hopf-bifurcation: For any 

The H itz crite-

 *
1Є 0,1 m U a  , E mptotically stable if 

and only if: 

* is locally asy
  0A   ,         0D A B C       

and   0C   . 
In the following we give for our case the definition of 

sume that the positive equi-
librium depen  t  
depe e 

a simple Hopf bifurcation. As
ds E* of he system (18)-(20) smoothly

nds on th parameter  *
1

ists 
Є 0,1 m U a  . If there  

ex  *
1

ˆЄ 0,1 m U a   such that 
1) A simple pair of complex conjugate eigen values of 

Equation (22) exists, say  1

 

   i   and      

    2 1( )i       , such    that they become 

purely imaginary at ˆ  , i.e.  ˆ 0    and  ˆ 0   ,  

3  at ˆ whereas the other eigenvalue  remains real 

2) At ˆ
and negative. And, 

  , i = 1 e must h, 2, w ave 

   d Re d
0

d
i  


   
d




atThen ˆ    we have a simple Hopf-bifurcation. 
Without kn genvalues, [15] prove  that if owing ei d  A  , 
 D   and  C   are smooth functions of   in   

in

an open

terval of ˆЄR  such that  ˆ 0A   ,  ˆ 0C   ,  ˆ 0D     

and at ˆ   
 dD 

 0

ple Hopf-bifurcation occurs at 

d

then sim ˆ  .
Theorem

 According 
to the above results we can prove the  4.1. 

Theorem 4.1. Assume that  for all    0B 
 *

1Є 0,1 m U a , then a single Hopf-b cation oc-  

curs at the unique value 

  ifur
*

1ˆЄ 0,1
m U

a


 
 

 
 for decreasing  

 , e equilibria E* is asymptotically stable  i.e. the positiv

in  *
1,1 m U a   and u  ˆ0,ˆ nstable in . 

Proof. Coefficients of the characteristic Equation (22) 
for positive equilibria E* are  A  ,  D   and  C  , 
and  B   when 0  then all these c
tive. Now, we 

oefficients are posi-
look at        D A B C     . Since  

 
0

0B




  and  

   
*

0

m U
C am






 * 1
2 1 0l m U

a
    

 
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then we have  
0

0D 
 

 . Further at 
*

10,1
m U

a


 
  
 

, 

    0A B   ,   0C    and hence   *
1m U

1
0.

a

D



 

  

Since  D   is continuous on 
*

10,1
m

 e 
U

a




 
, then a valu

* 1ˆЄ 0,1
m U

a



 

 
 must exists at which   ˆ 0A

 



 , 

  ˆ 0B  ,  
 

 ˆ 0C
 



 . T  he value at 

*

a

 1ˆ Є 1 


m U



 is unique because    A B   is 

creasing a  monotone in nd C   is monotone decreasing 

in 
*

11
m U

a



.


 Fur
 

ther, it is easy to check ˆthat at   , 

 
ˆ

d
0

d

D

 




  


Hence  in   0D    *
1

ˆ,1 m U a  , and according 

E* is asymptotically stable to Routh-Hurwitz criterion 

 *
1

ˆ,1 m U a  . Furthermore, at ˆ  , 

riodic 



we have a sim-

catio s peple ifurHopf-b n toward solutions for de-

creasing θ, being   0D    in ˆ0, , i.e. E* is unsta-

ble when  ˆ,Є 0  . This finishes oof. 

Suppose, 

the pr

* *
* 1 1

2 1 1
m U m U

l m U m a
  

a a


        

   
, i.e.

there exis

 

ts 
*

10,1
m U 

   such which1Є a




 

  1 0B     

an  for d  B   0  1Є 0,   and  for    0B  
 *

1 1,1 m U  
 

Є a prove the 

2. Assume that  

. Now, in this case we can 
Theorem 4.2. 

Theorem 4.
* *

* 1 11 1
m

l m a
a a

  
  

  
. there ex-2

m U U
U m


     


, i.e

ists 
*

1
1Є 0,1

a
  

 
 at which

m U 
 Then, there 

exists a unique value 

  1 0B  

   at which a *
1 1

ˆЄ ,1 m U a  

occurs for decreasinsimple Hopf bifurcation g  . There-
 the positive equifore, libria E* is a ally stable in symptotic

*
1ˆ,1
a

  
 

 and unsta
m U 

ble in  ˆ0, . 

Proof. Let us remark that   0B    in  10,  and 

  0C    in 
*

1m U

a


0,1


 

 
 with 

*
1m U 

1 0C
a

  
 

. Then, 

 in  10, .  0D    Furthermore,  at   0D  
*m U

a

 11   
 

. Since,  D   is continuous on  

*
10,1

m U

a

 
 

 
, then there exists a  ˆЄ a  *

1 1,1 m U 

such that  ˆD  0 . The eness of  uniqu   follows  

from the remark that   A B    is monotone increas-
ing and  C   is monotone decreasing functions of    

 in  ˆ0,in *
1 1m U,1 a   . Hence,   0D   , and 

  0D    in 
*

1m U ˆ
a


,1  

 
  with

 
ˆ

dD 
0

 

  
d

i.e. at   

ym

we ha le Hopf-bifurcation, with E* as- 

ptotically stable in 

ve simp
*

1ˆ,1
m U

a

 

 
 

, and unstable in 

 ˆ0, . This finishes 

will esta

b , wher

the proof. 

nd Persiste

is section, we blish global stability and per-
We claim that 

e 

5. Global Stability a nce 

e results for the system (18)-(20). 
* * **

In th
sistenc

2l m U  b

*
**2

*
1

1 1

1

m Um
b

lm U

a

 
 
  

  



 

 
 

 

E1 is globally asymptotically the boundary equilibria 
3Rstable with respect to  . 

Theorem 5.1. If l m * * *
2U b b * 
obally asym

 then e boundary 
 point ptotically stable in 

th
equilibrium

3ЄG R
E1 is gl

 . 

en

bounda
pr

Proof. Let G be the set of 3
0R . We proved that any 

solution of systems ( -(18)
e

librium E

20) ing outside G either 
 finite ti

 equi 1 sufficient to 

 start
me, say 

. It is therefore 

ters into G at som 0 0t   and then it 
remains in its interior G for all 0t t  or tends to the 

ry
ove that E1 is asymptotically stable with respect to G to 

prove global asymptotic stability in 3R . Let  

  3 3
0 0, , 0R s i p Є R s   , consider lar function a sca

3
0:V R R  , such that 

    , , logV s i p s s k i k p     1 2
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where k1 and k2 are real 
Equations (18)-(20) we arri

positive numbers. Then from 
ve at: 

        *
1

*
1 1 1 2 2 2 2

, , 1 1V s i p s i s p m U s

k sp k li k m U i k sp k mp k bli

      

     
 

1 1a s 

(25) 

In Equation (25) we can choose 1 2*
2

bl
k k

l m U

 
  

 
, 

then we get:  

 

 

*
1

2 2*
2

1 1 1

1 1

m U
V a s s

a

bl
k k m

l m U

 
      

1 p



 
   

 



 

Furthermore, if we choose k2 in such a way that 


 

   
 

*
2

2 *
2

1
Є ,

l m U
k

m bl l m U

 
 


 
 

 

then from Equation (26) we get: 

   
*m U 1, , 1 1 0V s i p a s s i

a
       

 
   (27) 

The above Inequality (27) holds for any  s t ,  i t  
and  p t  in 3ЄG R . However, in this case we have: 

    

 
*

, , , , Є , 0

1

M s i p s i p G V

m U

 

  





 

It is straightforward to show that the largest invariant 
set in M is E1, by the well known Lasalle-Lyapunov 
theorem, we again show that E1 is globally asymptoti-
cally stable when . This finishes the proof. 

Assume now that positive equilibria E* is feasible i.e. 

h

11, , , , .i p i p G
a

   
  



**b b

**b , thus we can prove the following theorem about 
E1. 

Theorem 5.2. If **b b  then there are no  
 0 0 0; ; Є ˆs i p G  (w ˆ  is interior of G ) such that  

b

ere G

       1, ,lim s t i t p t E  as t  . 

of. Let us consider following function: Pro

where , (i = 1, 2) which is of course positive in 
since d 

 ,V i p 1 2k i k p   

Єik R

0i   an
G 

0p  . let ЄI  be -neighborhood of 
E1 e get: 



a ε
 in G. Then from Equationa (19) and (20) w

      *
1 2 2 2 1 2,V i p k k s k m p k k l m U i       bl

(28) 

or  

   

  

*
1m U  

1 2 2

*
2 1 2

, 1V i p k k k m p
a

k bl k l m U i

         

  

 (29

 the inequality on the right of the Equation (29) 
holds true in 

) 

where
 Positive definiteness of  ,V i p

ЄI  in 

ЄI  requires that 

2
1*

2

blk
k

l m U



 

and  

1 2 *
1

1
1

m
k k

m U

a


 
 
      
   

 

and this in turns requires that 

2
* *

2 1

1
1

blk m

l m U m U

a


 
 
       
   

      (30) 

when,  then, for all **b b   * *
1Є 0, 1 m U a s    

Inequality (30) holds true, t
Inequality (29) holds tr

hus for the choice of k  and k2 
ue. Hence, there is 

1

0   such 
that for the above choice of k1 and k2, we get: 

   ,  ,V i p V i p  

in Iε. This finishes the proof. 
Moreover, it has been observed in the light of above 

theorem that, when **b b  then boundary equilibria E1 
is uniformly strong repeller, and in this case positive 
equilibria E* is uniformly persistent.  

. In this case, inte-
 system (18)-(20) is E* = 
ince, we have considered 

6. Numerical Example 

Let us we consider following set of parameters a = 10, l 
= 24.628, m = 14.925, m1 = 0.01, m2 = 0.011, Q = 1, h = 
0.1, a1 = 1, d1 = 0:21, θ = 1, β = 0:12, (l1 + l2) = 0:5. 

Then we get X* = 10 and U* = 20.05
rior equilibrium point of the
(0.3862, 0.0799, 5.1388). S

*s   as a Hopf-bifurcation parameter, thus at ˆ   
we have: 

      0A B C     

where 

ˆ ˆ ˆ

  is the positive and real root of the following 
equation: 

4 3 2
1 2 3 4 0s s s s               (31)  

where 
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2
1 2

1 2
4a s ak k

s


  
2a k

2
1 4 2 5 3

2 2
2

ak k ak k a mk
s

a k

 
  

2 2
1 5 3 3 6

3 2
2

ak k amk a mk k
s

a k

 
  

2
3 6

4 2
2

amk k
s

a k
  

and, 
*

1 3 2 3 2, 1 ,k k m k a k l m U       

  4 3 5 3 3 62 , 1k k am k k k m a k       ,

 *
6 11k m U   a

s, for the above numerical data we have following 
ve root of the equation 

Thu
positi ̂  

 ha
= 0.1568 and corre-

sponding to this value of θ, we ve threshol  replication 
factor b = 97.0463 and b** = 16.3759. So, we have the 
following numerical observations: 

1) if b Є (k6, 16.3759) t en steady state E1 is globally 
asymptotically stable, and um point E* 
of

d

h
 interior equilibri

 the systems (18)-(20) does not exist (Figure 1). 
2) if b Є (16.3795, 1), then interior equilibrium point 

E* of the systems (18)-(20) exists. 
Moreover, if b Є (16.3759, 97.0463), then equilibria 

E* is locally asymptotically stable (Figures 2 and 3). 
W *henever b ≥ 97.0463, then E  is locally asymptotically 
unstable, and in this case systems (18)-(20) exhibits small 
amplitude Hopf-type oscillations around steady state E* 
(Figures 4 and 5). Now, we increase exogenous input 
rate of the pollutant in the systems (18)-(20), suppose 
increased exogenous input rate of the pollutant is Q = 5. 
Then we have:  

X* = 50, U* = 100.0504 and E* = (0.4003, 0.0673, 
4.3244), b** = 18.3701, ̂  = 0:1452, b̂  = 100.4832. 

In this case, we have following observations: 
1) if b Є (k6, 18.3701), then E1 is globally asymptoti-

cally stable and, E* is not feasible in this situation. 
2) if b Є (18.3701, ) then steady state E* is feasible, 

and moreover, E* is locally asymptotically stable when 
b 

 

r 
th

Є (18.3701, 100.4832), further, as b ≥ 100.4832, then 
system exhibits small amplitude oscillations around E*. 

it is cleaFrom both the above numerical observations, 
at due to effect of toxicant bifurcation threshold ̂  

comes down as environmental pollutant increases. On the 
ot **her hand, b  increases as environmental pollutant in-
creases, which in turn, conclude that as environmental 
pollutant increases then system would have co-existence 
of all constituent units i.e. existence of interior equilib-
rium point for higher values of virus replication factor 

 

Figure 1. E1 is globally asymptotically stable. 
 

 

Figure 2. E* is locally asymptotically stable. 
 

 

Figure 3. E* is locally asymptotically stable (Phase plane). 
 

 

Figure 4. E* is locally unstable. b  
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Figure 5. E* is locally unstable (Phase plane). 
 
as compared t ot present in 
the system. 

7. Conclusion 

A mathematical model for single species population 
which is infected by virus induced disease in a polluted
environment is studied. We have studied the local and 
global behavior of the flow of the system around pos
steady states. It has been established that boundary
libria i.e. E1 is the globally asymptotically stable. Further, 
as boundary equilibria hen

ow o
* *

e to pollutant otherwise it is unstable saddle 
ound that virus replication factor play
n shaping the dynamics of the system

also been added in support to analytical results. 

o the case when pollutant is n

 

sible 
 equi-

E1 become strongly repeller t
f the system is persistent towards the po

 
fl sitive 
equilibria E . E0 is attractor when a < m1U  i.e. the in-
trinsic growth rate of susceptible population is less than 
the death du
point. It has been f
an important role i

s 
 

in both the polluted and fresh environment. Further, 
when the effect of pollution is not considered then it has 
been established that susceptible population can never 
vanish, while, on the other hand when the effect of the 
environmental pollution has been considered then sus-
ceptible population can vanish if amount of the environ-
mental pollutant is higher than a certain level. Further-
more, we have traced out two basic effects of environ-
mental pollutant on single species when it is already 
subjected to some virus induced disease. One of them is 
that due to effect of pollutant equilibrium level of popu-
lation goes down as organismal toxicant increases, which 
is a generally known effect. The second effect is that due 
to presence of pollutant, threshold of virus replication 
factor increases which in turn again depress the suscepti-
ble population density level. Moreover, it has been estab-
lished that system exhibits oscillatory behavior as virus 
replication factor increases by a certain threshold level. 
We have established the existence of the oscillatory be-
havior of the solutions of the system using Hopf-bifur- 
cation technique. Global behavior of the system has also 
been discussed using Lyapunov-LaSalle principle and 
persistent technique. Finally, a numerical example has 
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