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ABSTRACT

In this paper, we will establish some oscillation criteria for the higher order linear dynamic equation on time scale in
term of the coefficients and the graininess function. We illustrate our results with an example.
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1. Introduction

Since Stefen Hilger formed the definition of derivatives
and integrals on time scales, several authors has ex-
pounded on various aspects of the new theory, see the
papers by Agarwal et al. [1] and the references cited
therein.

A book on the subject of time scale, i.e., measure
chain, by Bohner and Peterson [2] summarize and organ-
izes much of time scale calculus on time scale and refer-
ences given therein.

A time scale T is an arbitrary closed subset reals,
and the cases when this tie sale is equal to the reals or to
the integers represent the classical theories of differential
and of difference equations.

In recent years there has been much research activity
concerning the oscillation and non-oscillation of solution
of some differential equations on time scales,we refer the
reader to the few papers [3-7].

In [4], the authors considered the second order dy-
namic equation

(p(VX* (1)) +a(t)x( () =0

and some sufficient conditions for oscillation of all solu-
tion on unbounded time scales are given. But, the oscilla-
tion criteria are not considered the impulsive influence. It
is rarely about the oscillation of higher order impulsive
dynamic equations on time scales.

In this paper we shall consider the following linear
higher order impulsive dynamic equation

“Corresponding author.
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x4+ p(t)x7 (t)=0,t ey =[0,00)NT,
tet, k=12,
X () =a®x" (t,),i=01-,n-1, k=12

x(to*): Xg X" (to*): xS

where n is even, al’ >0, p(t) is positive real-valued
rd-continuous functions defined on the time scales and
(i)
. +o0 ak _
(Hl) -Lo H FAS = +00.

to <ty <s

)

£ ()= lim £ (UG(R;::A (s)

.S eT{o-(t)}.

h—0*

x(t7) = lim x(t, +h), x* ()= lim x* (t, +h),

()= lim x(t, +h), 5 ()= im x* (3, +1)
Throughout the remainder of the paper, we assume

that, for each k =1,2,---, the points of impulses t, are

right dense (rd for short). In order to define the solutions

of the problem (1), we introduce the following space

AC' = {x :J; = Risi-times A-differentiable, whose

i-th delta-derivative x*' is absolutely continuous}.

PC = {x :J — Ris rd-continuous expect at the points
t., k=12, for which y(tk‘), x(t;), X (tk‘) and

x (t;)exist with x(tk‘) =x(t), X (tk‘)z X" (t )}
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Definition 1. A function y e PCNAC' (I, \{t,,---},R)
is said to be a solution of (1), if it satisfies

x* (t)+ p(t)x (t)=0 ae.on J;\{t}, k=12, and
for each k=12,
X (t)=a0x X" (t,) and the initial conditions X(t5 ) =%

(6)=x%"

Before domg so, let us first recall that a solution of (1)
is a nontrivial real function x(t) satisfying Equation (1)
for t>a. A solution x(t) of (1) is said to be oscilla-
tory if it is neither eventually positive nor eventually
negative, otherwise it is non-oscillatory. Equation (1) is
said to be oscillatory if all its solutions are oscillatory.
Our attention is restricted to those solutions of (1) which
exist on some half line [t,,0) and satisfy

sup{|[x(t)]:t>t,} >0 forany t>t,.

x satisfies the impulsive condition

2. Preliminaries

A time scale T is an arbitrary non-empty closed subset
of the real numbers R. Since we are interested in oscil-
latory behavior, we suppose that the time scale under
consideration is not bounded above, i.e., it is a time scale
interval of the form [a, ). On any time scale we define
the forward and backward jump operators by

o(t)=inf{seT:s>t}, p(t)=sup{seT:s<t}. (2)

A point t is said to be left-dense if p(t)=t, right-dense
if o(t)=t, left scattered if p(t)<t, and right-scat-
tered if o(t)>t. The graininess x of the time scale
is define by u(t)=o(t)-t. The set T* is derived
from T as follow: If T has a left-scattered maximum
m, then T =T—{m}; otherwise, T"="T.

For a function f:T — R (the range R of may ac-
tually be replaced by any Banach space), the (delta) de-
rivative is defined by

A (t) —lim f (O-(t))_ f (S)

ot o(t)-s

seT{o(t)). ()

A function f:[a,b]—> R is said to be re-continuous
at each right-dense point and if there exists a finite left
limit in all left-dense points, and f is said to be differen-
tiable if its derivative exists, the derivative and the shift
operator o are related by the formula

f7 = f+uf® where f7:=f oo, @)

We will make use of the following product and quo-
tient rules for the derivative of the product fg and the
quotient f/g of two differentiable functions f and g

(fg)" = f*(0)g(t)+ f(o(1) 9" (1)

(5)
= f(1)g* )+ F*(t)g(o (1)),

Copyright © 2012 SciRes.

Y D)= T()e (1)
) o s0eew) P

The integration by parts formula reads
jf (t)at=f (b)g(b)-f(a)g(a)
SIAMOLY

Remark 1. We note that if T=R, then o(t)=t,
u(t)=0, f2(t)=1f'(t) and (1) becomes the higher
order differential equation

X (1)+ p(t)x(t) =0, t £t k=12,
X0 () =% (t,),i =01, ,n-1 k =1.2--
5

X(t5) =%, xO (5 ) = x.
If T=2Z, then o(t)=t+1, u(t)=1,

XA (t)=A"X(t)=A"'x(t+1)—A""x(t),

()

and (1) becomes the higher order difference equation
AX(t)+p(t)x(t+1)=0,t =t k=12,
A‘x(t) al’A'x(t,),i=0,1---,n-1, k=12
x(tg)zxo,A'x<tg):Aixo.
If T=hZ, h>0, then o(t)=t+h, u(t)=h,
x(t+h)-

t
X (0) =, (1) = S U}
and (1) becomes the higher order difference equation
Apx(t)+p(t)x(t+h)=0,t=t k=12,
AX(t ) =alAx(t,),i =01 ,n-1 k=1,2---

x(tg)zxo,A‘hx(tg)zAon.
If T=q"={t:t=q"keN,q>1}, then o(t)=qt,
u(t) = (a-Dt,
XAtquX(t)zw
(a-1)t
and (1) becomes the higher order difference equation
Agx(t)+p(t)x(at)=0,t =t k=12,
Agx(t) al’Ayx(t),i=01---,n-1 k=12
x(tg)zxo,A:]x(tg):Aiqxo.

If Nj={t*:teN}, then o—(t)z(\/f+1)2 and
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u(t) =1+24k,

x((\/f+1)2)—x(t)
1+ 24t

and (1) becomes the higher order difference equation

AXy (t) =

AVX(t)+ p(t)x(1+24E+t) =0, t 2t k=12,
Ax(t ) =aPAgx(t ), i =01+,
x(tg):xo,A‘Nx(tg):AL,xo.

n-Lk=12.-

3. Main Results

In the following, we will prove some lemmas, which will
be useful for establishing oscillation criteria .
Lemmal.Let y,feC, and peR".Then

yr(t)=p(t)y(t)+1 (1),

implies, forall teT

y(t)<y(ty)e, (t,to)+j:ep(l,o-(s)) f(s)as  (8)

0

See [2,Pys].
Lemma 2. Assume that m e PC! [T,R] and

m*(t)< p(t)m(t)+a(t),

teJ, =[0,0)NT,t=t, k=12, (9)
m(t; ) <d,m(t;)+b, k=12,

then for t>t,
m(t)<m(t) T T, 8o (1)
+ 2ol Toaadie (L8))p @0)
+ I b (o (s))a(s)as
Proof. Let te[tyt,]
m(t)<m(ty)e, (t.t;)+ j
tet,t]..

Hence (10) is true for te[t,,t] . Now assume that
(10) holds for te(ty,t,]. for some integer n>1. Then

for te(t,t,,]., it follows from (9) and Lemma 1, we
get

use Lemma 1, we obtain

»(to(s))a(s)as

m(t)<m(t; e, (t,tn)+J':ep (t.o(s))a(s)as

n

Copyright © 2012 SciRes.

Using (9), we obtain from (10)
m(t)<[d,m(t;)+b, Je, (t.t,)+ e, (t.o(s))a(s) s
sdnep<t,tn>[m<to>nto<tk<tn
SO I | § AR ECS

[T o, 8 (0 <>> (s
+hiey (b)) + ] e, (to(s)a(s
<m(ty) [T, ey (L)
(

)

>
7]
[E——

+Zt0<tk<t(l_[tk<t <t Jep ttk ))
IHs<tk<td € to'( ) ( )

which on simplification gives the estimate (10) for
te[ty,t,.,],» by induction, we get (10) holds for t>t,.
Lemma 3. Let x(t) be a solution of (1), and condi-
tions (H,) are satisfied. Suppose that there exists an
ie{l,2,---,n-1} andsome T >t,,such that

A (t)20(<0), W (t)>0(<0) for t=T. Then, there

exists some T,>T suchthat x*" (t)>0(<0) for t>T,.
Proof. Without loss of generality, let T =t,. Assume

that forany t, >T ,x*" (t)<0.By x*" (t)>0,
X" (t)>0, te(t,t,, ], we have that X" (t) is mono-

tonically nondecreasing on (t,.t,.,].. For te(t,t,].,

we have
X" (t)= X" (tf).

Integrating the above inequality, we have

X () 2 X (1) x (1) )j;zAt. 11)
Similar to (11),

X ()2 x () +x ()] t23At. 12)
By x*(t,)>x"(t/) and (11), (12), we have
X (1) 2 (8 )+ x () ] ?At
() +aPx (t,) I )[oAt

:ag’l)[x“1 (t7)+x* (tf)J' }rag') X" J At
:agl{xw(q)ﬂ (1) e+ (,”1) . (tf)J':At}.

Applying induction we have, for any natural number
ml

_ agi—l) X
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)l )
A [as ty ag” ty
+x" (1) I&AHag“l’ [ At
alal...a0

RPN IR NENEN a(' R Jtml }} (13)

: : i1
a(|—1) a§|—1)a£|—l) {XA (tf)

e g 20
o ()" T1 o]

1 <ty <ty ak

By condition (Hl) and a >0, for all sufficiently
large m, we have x* (t, )>0 i.e., there exists a natu-
ral number N, when m> N, we have x* (m)>O.By

X" (t)>0 again, we have x* (t)>x*" (t,)>0, for

te(totoi], - When t>T,, wehave x* (t)>0, where
ty =T, . The proof of Lemma 3 is completed.

Lemma 4. Let x(t) be a solution of (1) and condi-
tions (H;) are satisfied. Suppose that there exists an
ic{l,2,---,n} and some T >t, such that x(t)>0,
X~ (t)<0 for t=T. x* (s) is not always equal to 0
in [t,+e0). for t>T. Then we have x* (t)>0 for
all sufficiently large t.

Proof. Wlthout loss of generality, let T =t,. We
claim that x* ( )>0 forany t >T.

If it is not true, then there exists some t; >T such

that x*" (t.)so. Since x*' () <o, XA (t) is mono-

tonically non- increasing in (t,,t,.,], for k>j. And
because x* (s) is not always equal to 0 in [t,+0).,
there exists some t >t; such that x* (t) is not al-
ways equal to 0 in (t,,t,ﬂ]T Wlthout loss of general-
ity,we can assume | = j, that is, x* (t) is not always

equal to 0in (t;,t,,, | .So we have

(1) < () =af e (1) <o

For te(t ] we have

j+1 J+2
x* (tj+2)<x (tj+l) al Dx (t,,,) <.

By induction, for te(t,
x* " (t)<0. So we have

X7 (1) <0,x* (1) <0, te(t

} we have

j+m? J+m+1

jor o)

By Lemma 3, for all sufficiently large t, we have
x4 (t) < 0. Similarly, we can conclude, by using Lemma
3 repeatedly, that for all sufficiently large t, x(t)<O0.
This is a contradiction with x(t)>0(t=T)! Hence, we
have x*" (t,)>0 forany t >T.So we have x* (t)>0

for all sufficiently large t. The proof of Lemma 4 is com-

Copyright © 2012 SciRes.

pleted.

Lemma 5. Let x(t) be a solution of (1) and condi-
tions (H,) are satisfied. Suppose T >t, and x(t)>0
for t>T . Then there existsome T'>T and

| 6{1,3,-..’n_1} such that for t>T".
X~ (t)>0, i=01--1:
(-1 X (1) > 0,i=1+1--,n -1, "
x*" (t)<0.

Proof. Let T =t,, for x(t)>0(t>t)), by (1) and
p(t) is nonnegative and is not always equal to 0 in any
(t+2),,

XA (t)=—p(t)x7(t)<O0.

X (t) isnot always equal to 0 in (t,+e)_, by Lemma
4. So we have x* (t)< 0 for all sufficiently large t.
Without loss of generality, let t>t,, x* (t)>0. So
x* " (t) is monotonically non-decreasing in (t,.t,.,], -
If for any t., x*" (t)<0, then x*" (t)< 0( >1,).
If there exists some t,, x*" (t (t;)=0, by x* () s
monotonically nondecreasing and a(” >0, then
x* (t)>0 for t>t;. So there exists some T, >T,
when t>T,, then one of the following statements holds:

(A) " (1) >0, x4 (1)>0,t>T;

(Bl) XAHA

when (A;) holds, by Lemma 3, then x*" (t)>0, forall
sufficiently large t. By Lemma 3 over and over again, at
last, for all sufficiently large t, we have

()50, %

When (B,) holds, by Lemma 4, then X" (t)>0, forall
sufficiently large t. By deducing further, there exists
some T,>T, when t>T,, then one of the following
statements holds:

(A) X" (1)>0,x""

(t)>0, x4 (1) <0,t>T;

" (1) >0, x" (t)>0,x(t)>0.

(t)>0,t>T,;

(B2) X"

discuss the above over and over,eventually, there exists
some T'>T and le{1,3,---,n-1}, when t>T', we

(t)>0,x"" (t)<0,t>T,;

have
X* (t)>0,i =01,
(- 1) M (1) >0,i=1+11+2,--,n-1.
x* (t)sO.

The proof of Lemma 5 is completed.
Remark 2. If x(t) is an eventually negative solution
of (1),we have conclusions similar to Lemma 4 and
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Lemma 5.
Theorem 1. If conditions (H;) hold, and
+00 1
J.t H a(n -1) p( ) = +00. (15)
to<ti <t Ak

then every solution of (1) is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of (1).
Without loss of generality, let x(t)>0(t>t,). By
Lemma5 and (1), there exists T'>t,, when t>T', we

have
X" (1)< 0,2 (t) >0, x* (t)> 0, x(t)>0.  (16)

Let T'=t,. when t, >t,, x*" (t) is monotonically
non-increasing in (t,.t.,,]. and x(t) is monotoni-
cally increasing in (t,,t

By (1), we have

x*" (1) =—p(t)x (t). (17)
Integrating (17) from t,

XAn—l (t

k+1 17 *

to t, we have
X" (1) = j p(t)x° (t)At,  (18)

by the above equation and x(t) is monotonically in-
creasing, we have

X (1) =x"" (1) - j;lp (t)x° (1) At

then

(L) <x (6)-x7 () [ p(t)at (19)
similar to (19), we have

X () =% (1) -x (4 )ff p(t)At.  (20)

By (19), (20) and x(t) being monotonically increas-

ing,
XAH (tz ) < XA"*l (tf ) _x° (tf )I: p (t)At
e () ()P o)
<a[x [ (tg )-x(t5 )L:p(t)At} -x7 (15 )I: p(t)At
n-1 t ’ tg t2
< ai(n—l) [XA (tg)_ Xa(tg) ) p(t)At _%Ll p(t)At]1
similarly ,we have

(L) <x (1) -x () [P ()t

then

Copyright © 2012 SciRes.

K" (1)< Vel [x ()= () ,p(v)a
0
X (t) x(6)

)
afn—l) _Ll p(t)At— agn—l)ai(n—l) t

p(t)At].
By induction we have,for any natural number m> 2,

ATt (n-1) 5 (n-1) (n-1) ) LA™ (o
X (t,) <@ Paf™d el O (1)

- x° (tg )Dl:p(t)At +ﬁj§2 p(t)At

L1
(1) A (nD)
&

. (21)
tms
al(n l)a(n -1) a(n -1) J. At:|}

-1) A(n-1 =) ANt
e

¥ (tg){fm” I %p(t)m}}

[t

0 to <ty <t Ak

By (15), (21) and a{” >0, for all sufficiently lager m,
we have

X" (t,,) <0.

This contradicts x*" (t)>0, for t>T'>0. Hence,
every solution of (1) is oscillatory. The proof of theorem
1is completed.

Corollary 1. Assume the conditions (H;) holds, and
there exists a positive integer k, such that a" <1
for k>k,. If j p(t)At = +o0, then every solution of
Q) is oscillatory.

Proof. Without loss of generality, let k, =1. By

1
"™ <1, weget —— >1, therefore
a"

k

1

I: [T o p(s)as>|

t
Oty <ty <s Ay 0

t

p(s)As.

Let t— +o, j t)At =+o0 ,we get that (15) of

Theorem 1 holds. By Theorem 1, we know that every
solution of (1) is oscillatory.

Corollary 2. Assume the condition (H;) holds and
there exist a positive integer k, and some positive in-

t a
teger o >0, such that L >( ;”] , for k>k,. Fur-
k

a.lsn—l) -

thermore, assume that +wt“p('[)At:+oo, then every
solution of (1) is oscillatory.
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t a
Proof. By > [%} , We have

(n-1) —
a, K

t
J-tolp(t)At-‘_ a1(n -1) J- p At+ (n l)a(n -1) J‘

1 tm+1
Tt al(n—l)a(n—l) (n 1) ,[ At

i e

t at
s | Zmel ™ (1) At
’ +[u]1‘m P

ztiia[ At+jt t)At+- +jr"* «.p(t )At]
ztiia“‘zt p(t At+jt p(t)At+-- +j"“1 )At]

1 tm+l
>

o

Let m— +oo, +°°t"p(t)At:+oo,we get that (15) of

Theorem 1 holds. By Theorem 1, we know that every
solution of (1) is oscillatory.

4. Example
Example. Consider

X +%X”(t):0,t2 gtk k=12,

X(lj = x,, x¥ (lj =0, (22)
2 2
1

where n is even, a!” =L, i=012,-,n-1,
k+1

1

1 .
t)=—, t =k, t, ==. For condition (H
p(t) TR 0755 (Hy)

when al’ =al™ =11
+

Copyright © 2012 SciRes.

a®

j 11 wE) S _At= LOMAI = 40,

to<te <t &

From the above, the condition (H,) holds.
Let

+00 a _ +00 _ +00 i _ +00£ _
[Ttop(t)at=["tp(t)dt =[ t4tAt_j 7 A=+

By Corollary 2, we know that every solution of (22) is
oscillatory.
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