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ABSTRACT

In this paper, based on the Kirchhoff transformation, the coupling of natural boundary element method and finite ele-
ment method are discussed for solving exterior anisotropic quasilinear problems with elliptic artificial boundary. By the
principle of the natural boundary reduction, we obtain natural integral equation on elliptic artificial boundaries, the cou-
pled variational problem and its numerical method. Moreover, the convergence and error estimate of the approximate
solutions are obtained. Finally, some numerical examples are presented to illuminate the feasibility of the method.
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1. Introduction

Based on the Green’s function and Green’s formula,
natural boundary element method (NBEM) reduces the
boundary value problem of partial differential equation
into a hypersingular integral equation on the boundary,
and then solves the latter numerically [1,2]. It has ad-
vantages over the usual boundary reduction methods:
such as the diminution of the number of space dimen-
sions by 1, the conservation of energy functional, the pre-
servation of self-adjointness and coerciveness. But it also
has evident limitations, it’s difficult to obtain Green’s
functions for solving problem in general domains. There-
fore, the coupling of NBEM which is also called artificial
boundary condition [3,4] or DIN method [5,6] and finite
element method (FEM) [2] is useful and necessary for
general cases.

The standard procedure of the coupling method can be
described as follows. We introduce an artificial boundary
to divide the original domain into two subregions, a
bounded inner region and an unbounded one with a special
boundary, such as circle, ellipse, and spherical surface,
on which the boundary element method and finite ele-
ment method are used respectively. This technique has
been used to solve many linear problems [1,2,4-6] and it
has also been successfully generalized to solve nonlinear
boundary value problems [7-9] or quasilinear problems
[3,10,11]. The problems were discussed in [3,10,11] take
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circle as artificial boundary, but for the problems with
elongated domains, an elliptic boundary that leads to a
smaller computational domain is obviously better than
the circle one. The purpose of the paper is to study the
coupling of NBEM and FEM to solve the anisotropic
quasilinear problems with an elliptic artificial boundary.

Let Q be a elongated, bounded and simple connected
domain in [0? with sufficiently smooth boundary
dQ=T,. Q°=02/Q. We consider the numerical solu-
tion of the exterior anisotropic quasilinear problem

—[%(aa(x,u)g—zj+%[ﬂa(x,u)%j}— f,in Q°,

u=0, onI,
u(x)=0(1), as |x| > oo,
(1.1)

With f>a>0 or a=4=1, x=(xy), a(.)
and f are given functions which will be ranked as
below. Following [3,12], suppose that the given function
a(--) satisfies

0<C,<a(x,u)<C, (1.2)

Vuell, and for almost all xe Q°, where two positive
constants C,,C, €ll , and

|a(x,u)—a(x,v)| <C Ju-v

, (1.3)

Yu,vell, and for almost all xe Q°, with a constant
C, >0. We also assume that da/ds, 0*a/ds® are con-
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tinuous. In the following, we suppose that the function
fel (QC) has compact support, i.e., there exists a con-
stant 4, >0, such that

supp f cQﬂOZ{XeD2||X|SyO}. (1.4)

We also assume that

Now, we introduce an elliptic artificial boundary
r,= {(,u,¢)|,u =4 > 1,059 < 27:}.

I, divide Q° into two regions, a bounded domain
Q;, and an unbounded domain €, with elliptic arti-
ficial boundary. Then the problem (1.1) can be rewritten

a(x,u)=a,(u), when |X| 2 Hy. (L.5) in the coupled form:
0 ou 0 ou || .
{ Sl g ) S sa00F ]| 1. e 10
u=0, onT,
0 ou 0 ou || .
_[&(aa(x,u)&j+5(ﬂa(x,u)5n =0, inQ,, (17

when |X| — 0,

u(x) and aa, (u)nXZ—i+ﬂa0 (u)ny% are continuous on T, . (1.8)

where n= (nx,n ) is the unit exterior normal vector on
I, . Particularly, when a(x,u):C which is indepen-
dent of X and u, [13-15] have obtained the natural in-
tegral equation. We introduce the so-called Kirichhoff
transformation [16]

w(x)=["a,(¢)d¢, forxeQ,,  (1.9)
then we have
Vw=a,(u)Vu. (1.10)
and
ow _ow
e
ox a; ] (1.11)
= au o
—[aao(U)aX,ﬂao(U)ay)

From equation (1.7) we have that w satisfies the fol-
lowing problem

2 2
- aa\;erﬁa—vzv =0,
OX oy

w(x)=0(1),

The rest of the paper is organized as follows. In Sec-
tion 2, we obtain the natural integral equation for elliptic
unbounded domain cases. In Section 3, we give the equi-
valent variational problems and the finite element appro-
ximations. The reduced problem’s well-posedness, the
convergence results and error estimate are also discussed.
At last, in Section 4, we present some numerical exam-

in Q_,
¢ (1.12)

when |X| — o0,

Copyright © 2012 SciRes.

ples to illuminate the efficiency and feasibility of our
method.

2. Natural Boundary Reduction

In this section, by virtue of the Poisson integral formula
and natural integral equation for the linear problem, we
shall obtain the corresponding results for the quasilinear
problem in Q°. For this purpose, we need to discuss
some properties between elliptic coordinates ( y,¢) and
Cartesian coordinates (X,y) first. The relationship bet-
ween the two coordinates can be expressed as below

{X = f, 09sh,u clos¢, @)
y = f, sinh y sing,
where f,=+a’-b>, a=f, coshy, , b=f, sinhy, .
Following from [15], we have

Theorem 2.1 The transformation between elliptic
coordinates and Cartesian coordinates (2.1) possesses the
following property.

1) The Jacobi determinant of Equation (2.1) is

J = f; cosh’tsin’p+ f; sinh’u C0S°¢

22)

=f; (coshz,u—cosz¢),

J=0 ifandonlyif (X,y)=(%f,,0);
2)

2 2 2 2
A iy 23)

o 0¢ oxX° oy
AJCM
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for ueC?(D 2) ;
3) For the exterior domain Q,

- = (2.4)

where v refers to the unit exterior normal vector on
', (regarded as the inner boundary of €, ).

Proof The conclusions 1 and 2 can be obtained by
direct computation. And 3 follows from the property

v= —L( f, sinh cosg, f, coshu sing).

NAl

2.1. Natural Integral Equation fora=g=1

Assume that w(x) is the solution of the problem (1.12),

and the value W|\/thf is given, namely
B!

W, = W0 (4)-

Then based on the natural boundary reduction, there
are the Poisson integral formulas

w(u9)
e —e™ o w, (¢') '
= d¢’, (2.5
2n '[0 e +e™ —2e"" cos(¢—¢') 72
M= iy,
or
1& ”1 "
w(u)- ;z [Feosn(9-¢)w ()
= (2.6)
IWO )de', 1> .
And the natural integral equation
ow 1
AL S xW, (8) |, 1=, (2.7
on \/‘]—0 4TEs1nZg
or
8W
J—o;”f cosn(g—¢ ) (m4)dh:
H= 1,

the definition of J,can be found in the following. The
Poisson integral formulas (2.5) and (2.6) and the natural
integral Equations (2.7) and (2.8) can also be expressed
in the Fourier series forms

W(ILI,¢) _ 2 ane\n|(#|*#)+i”¢’ 4>, (29)
n=-o0
ow

= 2.1
an \/—0 nz |n|a e 9/” /’115 ( O)

=—0
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|=\/——1 and

where a,

1 2n 1\ .—ing’ ’
:ZL w, (¢')e™™dg’,
J,= foz((coshz,u1 sin’@+sinh * g, cosz¢)
= foz(cosh 1, —cosz¢).
From (1.10), we obtain
ow ou
n 3 (u )an

Combining (1.9), (2.10) and (2.11), we get the exact
artificial boundary conditionof u on I', ,

2O - S

\/_OZnJ- cosn(¢p— ¢)(I

n=1

= Kl(u(ﬂ1a¢))’

where a, ——I (IU(MM (y)dy)e*‘”¢'d¢', i=v-1,

J, = f2 (cosh 11, ~c0s’¢) . Then by (1.6)-(1.8) and (2.12),
the original problem with o=/ =1 confines in Q,
can be defined as follows

@.11)

a,(y )dy)d¢ (2.12)

-V-(a(x.u)vu)=f, inQ,
u=0, onl,

(2.13)
2 () 5= K, (u(4.9) on T,

Therefore, the solution of problem (2.13) is the so-
lution of the problem (1.1) with @ = =1 confining in
the bounded domain €3, .

2.2. Natural Integral Equation for f>a >0

Now we assume that I', can be expressed in the form:

r, :{(x,y)|px2+qy2 = Rz} , with fg>ap>0. We
also assume that w(x) is the solution of the problem

(1.12), and the value W|\ﬂ\jﬂ1 is given, namely

Wi, = W0 (4):

Let x= \/Ef , ¥y= \/En , then the boundary I', is
changed by the elliptic boundary

={(&n)|ape’ +pay’ =R},

the unit exterior normal vectoron I' is

= —(\/ﬁ cosﬁ,\/ﬂ sin@)/\/ap cos’@+ Aq sin’0
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By the above transformation, the problem (1.12) changes

into
2 2
oW, oWy, in 6,
o2 Yo (2.14)
w(x)=0(1), when |x| —> 0,

This is the right problem we talked in Section 2.1. Si-
milar with Equation (2.1), we let

&= f, coshu cosg,nn = f, sinhu sing,

|pa-ap,
o appq

" :,n(—x/%h/aip}

where

VBAa-ap

Then just the same as the problem discussed in Section
2.1, we have the natural integral equationon I,
ow

+ﬁ’n 'y

(2.15)

w, (4) |-

:_\/ appq 1
p cos’¢+(q sin’¢ 47R sz¢

where n= (nx,ny) (x/R,y/R) is the unit exterior nor-

mal vectoron I', . From (1.11), we obtain

ow
+,Bn 6y
ou

—+ n u)—.
Combining (1.9), (2.15) and (2.16), we obtain the exact
artificial boundary conditionof u on I', ,

(an 3 (u ) +ﬂnyao( )Z;j

(2.16)
— an,a, (u)

a=py

__ appq
p cos’@+q sin’g

1

v ([ a0 (v)ey) 2.17)

4nR sin "~
2

_ apfd__&n
p cos’g+(q sin’g i 7R

j cosn(¢— ¢)(_[ U1 (y)dy)d¢
:Kl(u(ﬂ1»¢))'
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Then by (1.6)-(1.8) and (2.17), the original problem
with f>a>0 confines in €; can be defined as

follows
0 ou), o0 ou | _ .
_K&(aa(x,u)&))a(ﬂa(x,U)ED =f, inQ,
u=0, onTl,
0 0
an,a, (u) 5+ A2, (u)au K, (u(s.4)). onT,.

(2.18)

Therefore, the solution of problem (2.18) is the solu-
tion of the problem (1.1) with f>a >0 confining in
the bounded domain €, .

3. Variational Problem and Finite Element
Approximation

3.1. The Equivalent Variational Problems

Now we consider the problems (2.13) and (2.18). We
shall use W™P denoting the standard Sobolev spaces,
|| || and || referring to the corresponding norms and
semi-norms. Especially, we define H™(Q)=W™(Q),
Hoo ~Huso 00 Hy =Hsg - Let us intoduce the
space

V={veH'(@) M, =0}, G.1)
and the corresponding norms

W, =l M0 M, =L, (194

The boundary value problems (2.13) and (2.18) are
equivalent to the following variational problem

Find u €V, such that 35
D(u;u,v)+D(uu,v)=F(v), WeV, (32)
where
e war, ouay
D(w;u,v) jﬂia(x W)[a X ox + By ayjdx, (3.3)
(W’u’v z\/_J-ZnIZN ﬂl’
(1.8 20(1.9) oY
u(u, " ,
S L H8) cosn (¢ - 4)dg'dg,

op o¢
where Ij(W;u,V) is
and (2.8) with ds=

otten from Green’s formula, (2.7)
Jod¢ and (2.17) with

ds=l pcos’g+qsin’ ¢dg .

Jpg
V)= jQif (X)v(x)dx. (3.5)
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For any real number s>0, we let

He(r,)={f el (r, Ifls, <]

with |f[L, = =3 (1em )R

Im=0

and Fm=gjo f(u.4)e™dg. F,=F,

(3.6)

147
[D(w:u.v)<Cluf, g, V], o, - D(usuu) = Cy uf, .
Yuv,weV.

In practice, we need to truncate the series in (2.12) and
(2.17) for some nonnegative integer N , that is

(omxa0 (u)2—2+/3nya0 (u)a—u]

V) (3.7)
Lemma 3.1 There exists a constant C >0 which has — KN (u (# ¢))
different meaning in different place and is related to « ! pre
and /£, such that with
#)
K (u(24.)) = =3[ “cosn(9- ) [ ", (v)dy |, (3.8)
0 n=1
when a=/f=1,and
KN (u(,0))= __apf9 cosn ( e ) d )d , 3.9
Y (u(.9)) ,/pcos p QS 2 TR = [ "cosn(g-¢)([) "2y (v)dy ) do (3.9)
when f>a>0. So we only use the summation of the following approximate problem
first N terms in (2.13) and (2.18). We will consider the
—V.(a(x,uN)VuN)= f, in Q,
uM =0, onT,, (3.10)
nyou” 2 WARY
ao( ) on K (u (ﬂ1»¢)), on Fﬂl
N N
| = oca(x,uN )— L0 ﬁa(x,u”)aL =f, nQ,
0 oy oy
u" =0 onT,, (3.11)
nyou” wyou” N[N
anxao(u ) +,Bnya0(u ) o =K, (u (,ul,¢)), onl,.
Both (3.10) and (3.11) are equivalent to the following Lemma 3.2 There exists a constant C >0 which has

variational problem

Find u™ eV, such that
D(u";u",v)+ Dy (uM;uM,v)=F(v), weV, (312)
where
Dy (w;u,v)
_ N \/@ 2n p2n (,u19¢’)
; ne -[0 .[0 aO(W( 1’¢)) a¢r (313)
3V(,ul,¢)
o6 ——"cosn(¢' —¢)dg'dg.

Similar with Lemma 3.1, we have

Copyright © 2012 SciRes.

different meaning in different place, such that
1Dy (wiuv)| <Clul g V],

D, (u;u,u)> C0|u|12’Oi ,Yu,v,weV.

3.2. Finite Element Approximation

Divide the arc I, into M parts and take a finite ele-
ment subdivision in €; such that their nodes on I' “
are coincident. That is, we make a regular and quasi-
uniform triangulation T, on €, such that

Q= UK,

KeTy

(3.14)

with K is a (curved) triangle; h the maximum side of
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the triangles. Let

V, =
(3.15)

{Vh eV |v|K is a linear polynomial, VK €T }h .

Then the approximate problem of (3.12) can be written
as
Find u)' €V, , such that
{D(U;‘\‘;Ur"\l,vh)-i- D, (ur?‘;ur?',vh): F(v,), 7V, €V,.
(3.16)

Some existence and uniqueness results for this type of
problem are given in [12,17,18] under some conditions
on the coefficients a, so by the constraint conditions

veV NC(Q;), there exists {v, } :v, th,”V—Vh”m_ —0,ash—0,

<C(v) for any h, (3.19)

”Vh ||1,2+g,Qi

where C(v)>0 isindependent of h.

The continuous piecewise polynomial spaces, such as
(3.15), satisfy the condition (3.17). And if we let
v, =I1,v, where II,:V =V, is the interpolation ope-

2
N
"]
1.9

IA

gc["f"mi o, +[B (s

For uM eV , we assume that

N o +o0 o
wV (/ua¢,) _ J‘(:N (r¢ )a0 (y)dy _ Zane\n\(uo—;z)ﬂnqb Nu> Ly,
n=—ow
u" (u.4)= fune‘”"’,
n=-o0

with

C[D(u”;u”,uN)Jr Ij(uN;uN,uN)J

[
=4
o
=4
S —
|
O
z
—_
[
2
c
=4
c
=4
P

i@

(1.2) and (1.3) we have
Lemma 3.3 Problems (3.2), (3.12) and (3.16) have uni-
que solvability.

3.2.1. Convergence Theorems

In this section, we obtain the convergence result of the
problems discussed above. We let u,u™ e H*(€;) and
u) €V, be the solution of problems (3.2), (3.12), (3.16)
respectively. We also assume that

V, ©V nW"** for some ¢ (0,1). (3.17)

And we require that {V,}  ~is a family of finite-
dimensional subspaces of V NC(Q;), which satisfies
for any

(3.18)

rator, then by (3.19), we have
”Vh ||l,2+g,Qi < ”Hhv _V||],2+€,Qi + ||V||1,2+g,gi <C (V)

And we can also obtain the following result.
Lemma3.4 lim ||u —u" ||1 L, =0.

N —

Proof From the (1.2), (3.12) and Lemma 3.2, we have

C[F(u”)+ Ij(uN;uN,uN)—ﬁN (uN;uN,uN)J

1 2n u( ’¢’) —ing’ ’
&=, (L i ao(y)dyje Ydg,
and
u :LJZRU ¢ e-in¢d¢
n 27_[ 0 (Il'lla ) .

Then we have

‘f)(u“;u”,u”)—f)N (u”;u“,u”)‘=

n=|N+]|

< CeHN +|(s0—44) [

< e ) [y |

JAZn.[Zn a\N(,u] ,¢') 8V(,U] ,¢))
o Jo a¢'

n=|N-+1| nm

2 +Zw e‘”‘(ﬂo ~#)

[n[=N+1

cosn (¢’ —¢)dg'dg

o

n|a,m, |

1

> <1+n2>i-|wnrf( 5 (ool |

In=N+1

N N+ — NI
o™, = et ut ],
V2r, 2r, 1,0

From g > u,, we obtain that {UN} is bounded in V . Therefore, there exists a subsequence {UN"} such

Copyright © 2012 SciRes. AJCM
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that U™ —oT €V . Then similar with the proof of Lem-
ma 3.4 of [3], we obtain

hm”U u || =0.

N—o0

By the above lemmas, we get the following conver-
gence result.

Theorem 3.1 Let ueH?(;), and the assumptions
(3.17)-( 3.19) be satisfied, then we have

lim [u-u[,, =0 (3.20)

h—0,N -0
3.2.2. Error Analysis
In the following, we shall get error estimates for the ap-

proximate solution obtained from a FEM-NBEM discrete
scheme in the cases a = £ =1. We assume that the so-

A'(u;v,z)

J-an-Zn 6a au (

[

A’(uN v, z) = '[Q' @(x,u’“ )vVuN -Vzdx+jﬂ_a(x,uN

TR
+I§"J§"ao(u“)$< 1

Let V' be the dual space of V . By (1.2) and con-
tinuity of ?(-, ()) we obtain that A'(u;-,-) is bounded
S

in ;. Then there exists an operator T :V —V' such
that

(Tv,z)=A'(u;v,2),Vv,zeV. (3.21)

Similar with the proof of [10], we have the lemma as
follows

Lemma 3.5 The bilinear form (Tv,v) defined by
A'(u;v,v) satisfies the following inequality

(2 KM+, 2 G, Yvey, 22

where K >0 is a sufficient large constantand C >0.

We assume that
A'(u;v,2)=0,VzeV =v=0. (3.23)

Let 1:V >V’ be the canonical injection. Since V
is compactly embedded in L*(€;), we have that the
operator J:V —>V' defined by J(v)=(1(v),0) is

Copyright © 2012 SciRes.

I —(x,u)vwu- Vzdx+.|'

ﬂ1»¢)

' %(#la¢)§

Iution u of problem (1.1) satisfies
ul, eV AW e (Q),e>0,k22.
For simplicity let us define the following notation

A(u;u,v)=D(u;u,v)+D(u;u,v);
A, (u”;u“,v): D(u“;u”,v)+ D, (u“;u“,v);

N N N N N N N N
Ay (un'sup v, ) = D(upsup' v, )+ Dy (uf'sul v, ).

Then (3.2), (3.12), (3.16) can be replaced by the cor-
responding simple forms respectively.

Now we introduce the bilinear form A’(u;--) and

A, (u N ;-,~) defined by

x u Vv Vzdx

hd )g(#n¢)§wd¢'d¢

o¢

oz & cosn(¢' —¢) .
649( ¢);Td¢d¢,

)Vv -Vzdx

¢')2—;(M,¢)§Wd¢'d¢

n(¢'~¢)
nrzx

0z = cos

dg'dg.

also compact. By (3.21) and (3.23) and T satisfies the
property of J, we obtain that T:V —V' is an iso-
morphism.

By the conditions (3.2), (3.22), (3.23) and Theorem
10.1.2 of [20], one can get that there exists h, e(O,l] ,
such that the following inequality is satisfied

A( uvz)
sup —r———

2o ||
xeVh " "19

VveV, (3.24)

2
1.9;

for some constant ¢, independent of h(h<h)).
We define the Galerkin projection with respect to
A'(u;~,~), B,:V oV,
A'(u;Rv,z)=A'(u;v,2),VzeV,.
Then the operator P, satisfies
V=R, 5., <Cinf [v—vi]
VheVh

1,p.Q; 1,p.Q;

(3.25)
<Ch?,2<p<w,0<o<1.

We define the set
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B, = {veY, [v—Ry],., <cn’}.

Lemma 3.6 u) €V, is a solution of (3.14) if and

only if the following equation

A, (uN;uN —uhN,v): R(UN;UN,V),VV eV,

holds, where

R(u”;u“,v):jﬁi[jo{zsa(x W )thNVv}(l—t)dtJ(dL“ )2 dx
+2jﬂ£j{2§(x W, )th’\'Vv}(l—t)dtjdﬁdx

nz

) "[J L\S (w )a;; jﬁ“’“@ "”}( )dtJ(dh“)quﬁ'dqé

AT e G

with w) =uN+t(u|:“ —uN), dY =uy —u".
Proof. Let 7(t )_ZN (Wr'f;wt:“, ) then by

n(1)=n 0)+ 7" (t)(

ltdt

and
AN(uh,uh ,v) AN(uh,uh ,v) F(v),VveV,.

We can get the desired result.
Let M, = {v eV, (Mo <1+[] } . Then fol-

lowing [10,11], we have
Lemma 3.7 There exists a positive constant C inde-
pendent of h, such that

Ru vz = (o v, o v, ik,
vveM,,VzeV,.

We also have the following result.

Lemma3.8 B, cM,.

Proof For any veB,, we only need to show that
veM,.

||V||1,30,Qi S ||U " _V||1,oo,Qi + ||U " ||1,00,Qi >

o v, o, <l =R, o, +[Ru" |

10,0 10,03 10,02 7

‘[3(UN;UN,V)—[3N (UN;UN,v)‘ +w n_IszAzn
=N+ N7
CelN (ko)
<z
- (N +l)k71 [
< Ce‘N“‘(#o*#l)

Copyright © 2012 SciRes.

N cosn(g—g¢') ,
Z P :|( )dtJdr’:‘d¢ d¢
Ju =R, <[u -],

N N
+||Hhu -Ru ||

Loy

Since T, is regular and quasi-uniform, referring to
[19], we obtain the following inverse inequality
1

.., <C( g | [, WV,

Combining the above inequalities with the definition
of B, and (3.26), we obtain

bl <1

1,00,0;

By the definition of M, , we get the desired result.
Theorem 3.2 Assume ueV NW****(Q;) be the so-
lution of (1), with £>0, k>2, and we also assume

that u[. eH*"? (F )andu satisfies (3.23). With suf-
l"ﬂo Hy

ficiently small h, the finite element Equation (3.16) has
the approximate solution u) €V, such that

Jul :
k=121,

where C is a constant independent of h and N.
Proof Firstly, for any u" eV , we have

e("‘”)(ﬂo*#l)

-], gC[h" S

M, N (. 9)

—+00

=N+

N N
R i P
k=121 v2r,

cosn(¢'—¢)dg'dg

o¢

1 1
1 2 4w 1 2
(1+n2)k 2 .|Wn|2j (HZN“H(an)z .|vn|2]

Ce\N (ko—44)

W" ”k 12T, " ”19 :
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Then by (3.12), we have
K(u“;u“,v):D(uN;uN,v)+ f)(u”;u“,v)
=F(v)+D(u":u".v)- Dy (u";u",v).
Let 7(t)= K(u +t(uN —u);u +t(uN —u),v),we have
I;A’(u+t(u’“ —u);uN —u,v)dt
:K(UN;UN,V)—K(U;U,V).
From (3.2), (3.22), (3.23) and [20], we obtain

Ju—u]
1L.O;

1 N N ). N
SCSVI:\? WJOA (u+t(u u)su u,v)dtJ

) i (3.26)
D(u";u".v)-D, (u”;u”,v)‘

!
M.,

< Ce(N+1)(yo-/11) "u"k—%,r#l .

We denote a nonlinear mapping ¢:V, =V, , which
satisfies that for any given veV,, ¢(V) is the unique
solution of

A(u,p(v),z)= A (u,u,z)-R(u,v,z),VzeV,. (327)
Therefore, we have
A(u.o(v)-o(v,).2)=R(U,v,,2)-R(u,v,2).

Combining the above equation with (3.25), we obtain
the operator ¢ is continuous, i.e.,

3iil}/¢(vn) =¢(v).

Next, we assume that v e B, , then by Lemma 3.8, we
have that v e M, . By the definition of P,, (3.27) can be
rewritten as

A’(u”,(p(v)—PhuN,z):—R(uN,v,z),v zeV,.

Then, from (3.24), Lemma 3.6 and Lemma 3.7, we
have

' _pyN
||¢)(v)_PhuN||1,gi SCSup‘A (U,(p(v) Ru ,Z)‘

zeVh ”2”1,9i

2
<c(fu [, +Jo* -, )
1,9 1,9

2 2
sC{”uN—PhuN" <Ry~
1.O; 1,9

u-ru] - +|Rut] }
1.9 L9y

<Ch°.

Copyright © 2012 SciRes.

This implies that ¢:B, — B,. And since ¢ is also
continuous, following from Brouwer’s fixed theorem,
one can obtain that there exists u, €V, , such that
(p(ur:\' ) =u, . From Lemma 3.6, we deduce that u,' is
the solution of (3.16). What’s more, by (3.25) and the
fact u) e B,, we obtain

||uN _uhN"LQi s”uN _ PhUN"mi +||PhuN -u ||1,Qi (3.28)
<Ch®,0<o<l.

Combining (3.26) with (3.28), one can obtain
Ju-ui] g, <lu-vlg, e -l

(N+1)(so=14)

e
<C|h?+ k-1 "u"k—%,r

(N +1)

This completes the proof.

Ho

4. Numerical Examples

In this section, we shall give some examples to confirm
our theoretical results. In the following, we choose the
finite element space as given in (3.16). For simplicity, we
let

Ar=1/m, A6 =2n/M ,eo(h,N)=||u—uﬁ‘ ||L2(Q_).

Example 4.1 We assume the exterior domain Q°
with elliptical boundary

ru= (o9

r, ={(,uo,¢)‘,ul >,uo,0£¢s21t}.

4, :0.8,0s¢g2n},

Now we consider the problem

-V-(a(x,u)vu)=f, in Q,,
u=0, onT,, (4.1)
ou
ao(u)%=Kl(u(ul,¢)), onl,,

1

when a(X,U) :W
+

, =0 and f,=1.25.
The exact solution of Example 4.1 is
u = tan (2sinh ysin ¢/ f, (cosh 24+ cos 24)) .

The numerical results are given in Figures 1 and 2 and
Table 1.

Example 4.2 Similar with Example 4.1, T, and
a(x,u) are replaced by

Ty ={(t4,9)| 1y =0.5,0< < 2n}

and a(x,u)= l/ V1-u? respectively.
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0.0251

0.02 !

0.015¢ !

0.01r

0.005

- —+--m=4

m=16 |

Figure 1. Example 4.1 with N =16, u; = 1.7.

x10°
83

8.2r

8.1r

mesh=8 X32

sl 4

791

78F

77

76
0

10 15
Trunction terms N

20

Figure 2. Example 4.1 with different V.

Table 1. The errors with N = 16 for Example 4.1.

(m,M)

n e,(h,N) ratio
(4,16) 2.9888E-02 -
1.5 (8,32) 7.1183E-03 4.1987
(16,64) 1.9991E-03 3.5607
(4,16) 3.1917E-02 -
1.7 (8,32) 7.8255E-03 4.0786
(16,64) 2.1387E-03 3.6591
(4,16) 3.5553E-02 -
2.0 (8,32) 9.0701E-03 3.9198
(16,64) 2.4284E-03 3.7351

The exact solution of Example 4.2 is

U =sin(2cosh zcos ¢/ f, (cosh 2 +cos 2¢)) :

The numerical results are given in Figure 3, Figure 4
and Table 2.

Copyright © 2012 SciRes.
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Figure 3. Example 4.2 with N =6, g; = 1.0.
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Figure 4. Example 4.2 with different V.

Table 2. The errors with N = 6 for Example 4.2.

(m,M)

" e,(h,N) ratio
2.,8) 3.0471E-02 .
0.8 (4,16) 1.0654E-02 2.8601
(8,32) 3.1506E-03 3.3816
2.8) 4.5002E-02 -
1.0 (4,16) 1.2723E-02 3.5370
(8,32) 3.1711E-03 4.0122
2.8) 8.7937E-02 -
1.5 (4,16) 2.2960E-02 3.8299
(8,32) 5.5786E-03 4.1157

Example 4.3 We assume the exterior domain Q°
with elliptical boundary

Ty ={(#4,4) | =0.8,0< g <2m},
T, ={(t4.4)| 1 =150<gp<2m}.
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Now we consider the problem

—(i(ga(x,u)a—uj+i(a(x,u)a—un =f, inQ,
ox ox ) oy oy
u=0, onTl,
gnxao(u)a—u+ nyao(u)a—u= K, (u(z4.¢)), onT,,
ox oy !
4.2)

when a(x,u)=1/1+u*, f,=1.25 and
2(1-&)sinh gsin ¢(3cosh2,ucosz¢ - sinhzﬂsin2¢)
(cosh2,u+cos2¢)3

The exact solution of Example 4.3 is
u= tan(Z sinh zsin ¢/ f, (cosh 2 +cos 2¢)) .

The numerical results are given in Figures 5 and 6 and

Table 3.
Example 4.4 Similar with Example 4.3, T, and

a(x,u) are replaced by

Ty ={(4o-8)| 1o = 0.5,0< g < 2}

and a(x,u)= 1/ V1-u® respectively. And we take

2(1-&)cosh pcos ¢(cosh2ﬂcos2¢ - 3sinh2,usin2¢)
(cosh 2+ cos 2¢)3

f=

The exact solution of Example 4.3 is
U =sin (2 cosh zcos ¢/ f, (cosh 24+ cos 2¢)) )

The numerical results are given in Figures 7 and 8 and
Table 4.

From the numerical results, one obtains that the nu-
merical errors can be affected by the order of artificial
boundary condition, the mesh of the domain and the lo-
cation of the artificial boundary, and it can be reduced by
increasing the order of the artificial boundary condition
and refining the mesh. What’s more, the convergence rate
of anisotropic problems can also be affected by the choice
of ¢ as it is shown in Tables 3 and 4. The numerical re-
sults are in agreement with the error analysis we obtain
and show the efficiency of the coupling method.

Table 3. The errors with V=10 for Example 4.3.

0.14 T
- =+--m=4
—¥— m=8
Ui I I m=16/ {
\ |’"
01f

Figure 5. Example 4.3 with N = 10, & = 0.005.
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Trunction terms N

Figure 6. Example 4.3 with different V.

Copyright © 2012 SciRes.

& (m,M) e, (h,N) ratio
(4,16) 3.4114E-02 -
0.5 (8,32) 8.9808E-03 3.7985
(16,64) 2.3296E-03 3.8550
(4,16) 9.1725E-02 -
0.025 (8,32) 2.2626E-02 4.0539
(16,64) 5.8604E-03 3.8609
(4,16) 1.0129E-01 -
0.005 (8,32) 2.8020E-02 3.6149
(16,64) 1.0173E-02 2.7543
0.08 T T T T
/t - - -m=4
7 O m=8
007t i / e |
g U g U
0.06 0 4§
— 1 1 Il '
7 £ noogb
< 005t Nl Nl
ZT-f 0 G 7 \ 7 % g \
2 oot r ‘ r \
& W i g ‘\ I ‘\ ! “
0.03 \\,I 5 2 \+/ \\’1 : S
o + 0 o o0 + 0o 6 ©
Q Q
o02f © .0 o %R 0
5 00 0 90
0.01 B O o . .. '
0 st . R -
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)

Figure 7. Example 4.4 with N =5, £ = 0.05.
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0.15 . . :
014
0.13
Uk —O6— mesh=8 X32
g 0.11
5
0.1
0.09f
0.08}
0.07f
0.06 . : '
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Trunction terms N
Figure 8. Example 4.4 with different V.
Table 4. The errors with ¥V =10 for Example 4.4.
£ (m,M) e, (h,N) ratio
(4,16) 4.5556E-02 -
0.5 (8,32) 1.1454E-02 3.9772
(16,64) 2.9414E-03 3.8942
(4,16) 1.6183E-01 -
0.05 (8,32) 6.7805E-02 2.3867
(16,64) 1.8030E-02 3.7606
(4,16) 2.8137E-01 -
(8,32) 1.4554E-01 1.9332
0.025
(16,64) 4.4792E-02 3.2493
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