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ABSTRACT 

Sun observations provide a robust way for determining the geodetic or true azimuth at a location. Azimuth is generally 
defined as the angle in the plane measured from the meridian’s north (or south) to the location of the line of interest. It 
is common to use the north azimuth; also referred to as “azimuth”, especially in civilian surveying applications. The 
astronomic meridian is obtained through astronomic observations of the Sun or North Star (Polaris) and it is important 
since it provides one instance of the geodetic or true meridian. There are two methods for determining the sun azimuth; 
the first is known as the hour angle method and the other is called the altitude method. The hour angle method requires 
the determination of accurate time while altitude method requires accurate vertical angle. The hour angle method is 
more popular because it is more accurate, can be performed at any time of day and is applicable to the sun, Polaris and 
other stars. In this article, an error modeling framework for the errors result in the process of determining the sun azi- 
muth using the hour angle method; namely random errors, is presented. A Gauss-Markov model is used to represent the 
errors in the true azimuth estimation process. Six sets of sun observation for azimuth data; three with telescope direct 
and three reverse, including horizontal circle’s readings and time were collected and used in order to estimate the true 
azimuth of a line in a study area in central Orlando, Florida, United States.  
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1. Introduction 

Finding the locations of points often depends on angular 
measurements and directions of lines [1]. Determination 
of the directions of lines is crucial in many engineering 
applications. In order to determine the direction of a line, 
three requirements need to be met including a reference 
line, direction of angular measurement, and the value of 
the angle. The direction of a line is described by the hori- 
zontal angle between the reference line commonly known 
as meridian and the line of interest. If this angle is meas- 
ured between the meridian’s north or south directions, 
the angle is then referred to as the north or south azi- 
muth. 

Azimuth is generally defined as the angle in the hori- 
zontal plane measured from the meridian’s north (or 
south) to the location of the line in question. It is com- 
mon however to refer to the north azimuth as “azimuth” 
without saying north or south azimuth. There are several 
types of meridians in use including true or geodetic, as- 
tronomic, magnetic, grid, record, assumed, etc. The true 
or geodetic meridian is the line that passes through a 
mean position between the earth’s geographic north and 
south poles. The astronomic meridian is obtained through 

astronomic observations of the Sun or North Star (Polaris) 
and it is one instance of the true or geodetic meridian. 
The astronomic meridian’s location is a function of the 
direction of gravity and the axis of rotation of the Earth 
and it determined from a mathematical approximation of 
the Earth’s shape [2]. Although the magnetic azimuth of 
a line can be obtained easily in the field by using a com- 
pass, it’s desired to prepare engineering maps and plans 
based on true/geodetic meridian. It’s not unusual to con- 
duct mapping surveys based on magnetic meridian and 
convert the lines directions to true/geodetic azimuths 
given the magnetic declination at the time of the survey. 
The magnetic declination at a location is the horizontal 
angle measured to the east or west of the true/geodetic 
meridian’ north (or south) to the location of the magnetic 
meridian’s north (or south).  

It is naturally common that measurements are subject 
to variations especially we tend to repeat measurement to 
improve the precision of the measurement process. These 
variations from a so-called “true value” of the measure- 
ment are known as errors, but because the true value is 
never known, we use the most probable value of the 
measurements, which is equivalent to the arithmetic mean, 
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but the errors are then called residuals. Errors are com- 
monly classified into three categories: personal, system- 
atic, and random errors. Personal errors result due to 
carelessness of the surveyor when collecting surveying 
data in the field. This type of errors can be eliminated by 
implementing field procedures that are designed to re- 
duce mistakes. Systematic errors take place due to in- 
strumental faults or due to a natural causes for example; 
changes in temperature, pressure, humidity, etc. This type 
of errors can be eliminated by the adopting calibration 
procedures that check and identify the values of the in- 
strumental errors and/or applying corrections to the meas- 
urements that are influenced by the natural conditions in 
the field. Random errors are the errors that remain in the 
measurement after both of personal and systematic errors 
are corrected. Unlike personal and systematic errors, ran- 
dom errors have random behavior because they have 
unknown deterministic nature, and therefore can only be 
modeled [3]. In this study, an error modeling framework 
for random errors result in the process of determining the 
sun azimuth using the hour angle method is presented.  

Following Buckner [4], the azimuth of the sun;  
measured clockwise from astronomic north is given by: 

1tan  u                 (1) 

where: 
sin

u
cos tan sin cos


  




 
,  is the local hour  

angle of the sun,  is the declination of the sun, and  is 
the latitude of the observer.  

The azimuth of the sun;  is normalized from 0˚ to 
360˚ by adding algebraically a correction from Table 1 
shown below. 

In the field, the horizontal angles from a line to the sun 
are obtained from direct and reverse (face left and face 
right or face I and face II pointing taken on the back- 
sight mark and the sun). It is suggested that repeating the 
odolites be used as directional instruments with one of 
two general measuring procedures being followed, which 
are: 1) A single foresight pointing on the sun for each 
pointing on the back-sight mark: here the sighting se- 
quence is: direct on mark, direct on sun, reverse on sun, 
and reverse on mark, with times being recorded for each 
pointing on the sun. The two times and four horizontal 
circle readings constitute one set of data. An observation 
consists of one or more sets. A minimum of 3 sets is 
recommended. This procedure is similar to that of meas-  

Table 1. Corrections for the normalized azimuth of the sun. 

Correction 
When  is 

If  is positive If  is negative 

0˚ to 180˚ 

180˚ to 360˚ 

180˚ 

0 

360˚ 

180˚ 

uring an angle at a traverse station using a directional 
theodolite. This procedure is based on the assumption 
that pointings on the sun are of approximately the same 
accuracy as pointings on the back-sight mark. The single 
foresight procedure imparts itself to proper procedure for 
incrementing the horizontal circle and micrometer set- 
tings on the back-sight. 2) Multiple foresights pointing 
on the sun for each pointing on the back-sight mark: here, 
the sighting sequence is: direct on mark, several direct on 
the sun, an equal number reverse on sun, reverse on mark, 
with times being recorded for each pointing on the sun. A 
minimum of 6 pointing (3D and 3R) on the sun is rec- 
ommended. The multiple times, multiple horizontal cir- 
cle readings on the sun and the two horizontal circle 
readings on the back-sight mark constitute one observa- 
tion. The multiple foresight procedure is based on the 
assumption that pointings on the sun are significantly less 
accurate than back-sight pointings. The multiple fore- 
sight procedure allows for a greater number of pointings 
on the sun during a shorter time span [5]. 

Since a large difference usually exists between the 
vertical angle to the back-sight mark and the vertical an- 
gle to the sun, it is imperative that an equal number of 
both direct and reverse pointings be taken. This is even 
more important when using an objective lens filter. Also, 
the filter should not be removed or rotated between direct 
and reverse pointings on the sun. When reducing the data 
to compute the horizontal angles, the direct reading on 
the back-sight mark should always be subtracted from 
the direct foresight reading on the sun. Likewise, the re- 
verse back-sight reading should always be subtracted 
from the reverse foresight reading, and add 360˚ if the 
resulting angle is negative. The vertical angle to the sun 
is usually larger than for typical surveying work. This 
increases the importance of accurately leveling the in- 
strument. Because of this and other errors, it is recom- 
mended that observations not be made when the altitude 
of the sun is greater than approximately 45˚ [6]. 

2. Field Procedure and Data Collection 

A Sun observation for azimuth field work was carried out 
on April 17, 2007 in a study area located in the Univer- 
sity of Central Florida campus in Orlando, Florida (Fig- 
ure 1). The geodetic coordinates of Station Rogers that 
marks the beginning of the line Rogers-P as shown in the 
figure are (E(): 82˚22′16.82717″, N(Φ):  
36˚18′00.43217″). The multiple foresight field procedure 
described below was used and three sets of data were 
collected with the telescope direct and reversed for the 
line in question (Table 2).  

The field procedure started by switching the power of 
the shortwave receiver on. The correction DUT is en- 
oded over the WWV station by using double clicks after  c      
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Rogers

 

Figure 1. Study area—UCF main campus, Orlando, FL. 

Table 2. Sun observation for azimuth data: stopwatch readings and horizontal Circle’s readings. 

Time Information (WWV)  
UTC: 21:48:10  
DUT: –0.1 sec (stopwatch = 00:00:00) 

Instrument Location Information:  
Latitude (): 28˚36′42″N  
Latitude (): 81˚11′36″W 

Observation Stopwatch reading Horizontal circle readings 

Target: Direct  00˚00′00″ 

First-Telescope: Direct 0:18:06.30 295˚58′40″ 

Second-Telescope: Direct 0:19:30.21 296˚10′50″ 

Third-Telescope: Direct 0:21:01.50 296˚22′20″ 

First-Telescope: Reverse 0:23:38.05 116˚42′40″ 

Second-Telescope: Reverse 0:24:42.43 116˚51′10″ 

Third-Telescope: Reverse 0:25:14.93 116˚55′40″ 

Target: Reverse  179˚59′50″ 

 
the start of each minute. If one hears double clicks for the 
1st, 2nd and 3rd second, for example, the DUT correc- 
tion is +0.3 seconds. Up to the 8th second, each double 
c1ick represents a correction of +0.1 seconds. To assign a 
negative sign to the correction, the code is to note what is 
heard starting with the 9th second. If no double clicks are 
heard during the first 8 seconds, one must count the dou- 
ble clicks, if any, from the 9th second onward to deter- 
mine negative DUT and the amount. For example, if the 
9th, 10th, 11th and 12th clicks are doubled, the DUT cor- 
rection is –0.4 seconds, each double-click representing 
–0.l seconds correction.  

The stop watch was started at the tone of the WWV 
station and the “start time” was recorded. A Trimble® 
M3 total station with a sun filter was set up at station P 
which was in clear view of the sun. Then, a backsight 
(BS) was taken on station Rogers and the Horizontal An- 
gle (HA) were set to 00˚00′00″. The telescope was turned 
to the sun and while it is in direct (D) position, the trail-

ing edge of the sun was pointed by allowing it to move 
into the vertical cross hair. Pointings are made with the 
vertical portion of the vertical cross hair without regard 
to the location of the horizontal cross hair. The HA was 
recorded as well as the time when readings are recorded 
as soon as the vertical cross hair becomes tangent to the 
trailing edge of the sun. To record the time that corre- 
sponds to the HA reading when the vertical hair is tan- 
gent to the trailing edge of the sun, the “split push but- 
ton” of the stopwatch was used (three readings with tele- 
scope direct were taken). Then with the telescope is in 
this reverse (R) position, the trailing edge of the sun was 
pointed by allowing it to move into the vertical cross hair. 
The HA and the times when the readings were taken 
were recorded as soon as the vertical cross hair becomes 
tangent to the trailing edge of the sun (three readings 
with telescope reverse were taken). Then, a Foresight (FS) 
was taken at the target and the HA reading was recorded 
in order to be used to compute error in the total station  
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horizontal circle. 

3. Field Data Manipulation and Azimuth 
Computation  

Below is the computations performed on the data of Ta- 
ble 2 in order to compute the azimuth of sun and further 
azimuth of the line Rogers-P shown in Figure 1 above. 
The summary of the computed values of the Sun’s local 
hour angle (), declination (), and azimuth () at the 
observation latitude () for the field data in Table 2 is 
shown in Table 3. 

Correction to stopwatch equals UT1 when stopwatch 
was started: 

UTC = 21 h 48 m 10.0 s  
DUT= –0.1 s 
UT1= 21 h 48 m 9.9 s (at stopwatch = 0:00:00) 
From Table 5 (Appendix A), which shows Sun and 

Polaris ephemeris on the day Sun observation was be 
performed: 

GHA 0 h = 180˚03′32.8″  
GHA 24 h = 180˚06′59.4″ 
Decl 0 h = 10˚15′55″  
Decl 24 h = 10˚37′03.5″  
Sun’ semi-diameter = 0˚15′56.1″. 

3.1. First Pointing with Telescope Direct 

UT1 = 18 m 6.3 s + 21 h 48 m 9.9 s = 22 h 6 m 16.2 s 
GHA = GHA 0 h + (GHA 24 h – GHA 0 h + 360) 

(UT1/24) = 180˚03′32.8″ + (180˚06′59.4″ – 180˚03′32.8″ 
+ 360) (22 h 6 m 16.2 s/24) = 511˚40′46.08″ = 151˚40′ 
46.08″ 

LHA = GHA – w = 151˚40′46.08″ – 81˚11′36″ = 70˚ 
29′10.08″ 

Decl = Decl 0 h + (Decl 24 h – Decl 0 h) (UT1/24) + 
(0.0000395) (Decl 0 h) sin(7.5 UT1) = 10˚15′55″ + (10˚ 
37′03.5″ – 10˚15′55″) (22 h 6 m 16.2 s/24) + (0.0000395) 
× (10˚15′ 55″) × sin(7.5 × 22 h 6 m 16.2 s) = 10˚35′23.67″ 

 

AZsun = 1 sin 70 29 10.08
tan

cos 28 36 42 tan10 35 23.67 sin 28 36 42 cos 70 29 10.08
  

       


   
 = –89˚44′46.98″ 

 

Since LHA is between 0˚ to 180˚, and AZsun is nega- 
tive, the normalized correction equals 360˚. 

AZsun = 270˚15′13.02″  
D Ang Rt = 295˚58′40″ – 0˚00′00.0″ = 295′58′40″ 
h = sin–1(sin28˚36′42″sin10˚35′23.67″cos28˚36′42″cos 

10˚35′23.67″cos70˚29′10.08″) = 22˚06′7.03″ 
dH = (sun’s semi-diameter)/cosh = (0˚15′56.1″)/22˚06′ 

7.03″ = 0˚17′11.93″ 
Left edge pointed D & R; therefore the correction dH 

is positive. 
Ang Rt = R Ang Rt + dH= 295˚58′40″ + 0˚17′11.93″ = 

296˚15′51.93″ 
AZL = AZsun + 360 – Ang Rt = 270˚15′13.02″ + 360 –  

296˚15′51.93″ = 333˚59′21.09″. 

3.2. Second Pointing with Telescope Direct 

UT1 = 19 m 30.21 s + 21 h 48 m 9.9 s = 22 h 7 m 40.11 s 
GHA = GHA 0 h + (GHA 24 h – GHA 0 h + 360) 

(UT1/24) = 180˚03′32.8″ + (180˚06′59.4″ – 180˚03′32.8″ 
+ 360) (22 h 6 m 16.2 s/24) = 512˚01′44.93″ = 152˚01′ 
44.93″ 

LHA = GHA – w = 152˚01′44.93″ – 81˚11′36″ = 70˚ 
50′8.93″ 

Decl = Decl 0 h + (Decl 24 h – Decl 0 h) (UT1/24) + 
(0.0000395) (Decl 0 h) sin(7.5 UT1) = 10˚15′55″ + (10˚ 
37′03.5″ – 10˚15′55″) (22 h 7 m 40.11 s/24) + (0.0000395) 
× (10˚15′55″) × sin(7.5 × 22 h 7 m 40.11 s) = 10˚35′24.9″  

 

AZsun = 1 sin 70 50 8.93
tan

cos 28 36 42 tan10 35 24.9 sin 28 36 42 cos 70 50 8.93
  

       


   
 = –89˚34′45.59″ 

Table 3. Summary of the computed values of the sun’s local hour angle (), declination (), and azimuth () at the observation 
latitude () for the field data in Table 1. 

 Latitude () Sun Declination () Local Hour Angle () Normalized Sun Azimuth ()

Observation deg min sec deg min sec deg min sec deg min sec 

First-Telescope: Direct 28 36 42 10 35 23.67 70 29 10.08 270 15 30.02 

Second-Telescope: Direct 28 36 42 10 35 24.90 70 50 8.93 270 25 14.41 

Third-Telescope: Direct 28 36 42 10 35 26.24 71 12 58.50 270 36 07.33 

First-Telescope: Reverse 28 36 42 10 35 28.53 71 52 7.13 270 54 43.63 

Second-Telescope: Reverse 28 36 42 10 35 29.47 72 8 12.98 271 02 21.57 

Third-Telescope: Reverse 28 36 42 10 35 29.95 72 16 20.56 271 06 12.51 

Initial Values 28 36 42 10 35 27.13 71 28 9.7 270 43 20.89 
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Since LHA is between 0˚ to 180˚, and AZsun is nega- 

tive, the normalized correction equals 360˚. 
AZsun = 270˚25′14.41″  
D Ang Rt = 296˚10′50″ – 0˚00′00.0″ = 296˚10′50″ 
h = sin–1(sin28˚36′42″sin10˚35′24.9″cos28˚36′42″cos 

10˚35′24.9″cos70˚50′8.93″) = 21˚47′42.48″ 
dH = (sun’s semi-diameter)/cosh = (0˚15′56.1″)/21˚47′ 

42.48″ = 0˚17′9.71″ 
Left edge pointed D & R; therefore the correction dH 

is positive. 
Ang Rt = R Ang Rt + dH= 296˚10′50″ + 0˚17′9.71″ = 

296˚27′59.71″ 
AZL= AZsun + 360 – Ang Rt = 270˚25′14.41″ + 360 –  

296˚27′59.71″ = 333˚57′14.7″. 

3.3. Third Pointing with Telescope Direct 

UT1 = 21 m 1.5 s + 21 h 48 m 9.9 s = 22 h 9 m 11.4 s 
GHA = GHA 0 h + (GHA 24 h – GHA 0 h + 360) 

(UT1/24) = 180˚03′32.8″ + (180˚06′59.4″ – 180˚03′32.8″ 
+ 360) (22 h 9 m 11.4 s/24) = 512˚24′34.5″ = 152˚24′34.5″ 

LHA = GHA – w = 152˚24′34.5″ – 81˚11′36″ = 71˚ 
12′58.5″ 

Decl = Decl 0 h + (Decl 24 h – Decl 0 h) (UT1/24) + 
(0.0000395) (Decl 0 h) sin(7.5 UT1) = 10˚15′55″ + (10˚ 
37′03.5″ – 10˚15′55″) (22 h 9 m 11.4 s/24) + (0.0000395) 
× (10˚15′55″) × sin(7.5 × 22 h 9 m 11.4 s) = 10˚35′26.24″ 

 

AZsun = 1 sin 7112 58.5
tan

cos 28 36 42 tan10 35 26.24 sin 28 36 42 cos 7112 58.5
  

       


   
 = –89˚23′52.71″ 

  

Since LHA is between 0˚ to 180˚, and AZsun is nega-
tive, the normalized correction equals 360˚. 

AZsun = 270˚36′7.33″  
D Ang Rt = 296˚22′20″– 0˚00′00.0″ = 296˚22′20″ 
h = sin–1(sin28˚36′42″sin10˚35′24.9″cos8˚36′42″cos10˚ 

35′24.9″cos70˚50′8.93″) = 21˚27′40.8″ 
dH = (sun’s semi-diameter)/cosh = (0˚15′56.1″)/21˚27′ 

40.8″ = 0˚17′7.33″ 
Left edge pointed D & R; therefore the correction dH 

is positive. 
Ang Rt = R Ang Rt + dH = 296˚22′20″ + 0˚17′7.33″ = 

296˚39′27.33″ 
AZL = AZsun + 360 – Ang Rt = 270˚25′14.41″ + 360 – 

296˚39′27.33″ = 333˚56′21.09″ 

3.4. First Pointing with Telescope Reverse 

UT1 = 23 m 38.05 s +21 h 48 m 9.9 s= 22 h 11 m 49.95 s 
GHA = GHA 0 h + (GHA 24 h – GHA 0 h + 360) 

(UT1/24) = 180˚03′32.8″ + (180˚06′59.4″ – 180˚03′32.8″ 
+ 360) (22 h 11 m 49.95 s/24) = 513˚03′43.13″ = 153˚03′ 
43.13″ 

LHA = GHA – w = 153˚03′43.13″ – 81˚11′36″ = 71˚ 
52′7.13″ 

Decl = Decl 0 h + (Decl 24 h – Decl 0 h) (UT1/24) + 
(0.0000395) (Decl 0 h) sin(7.5 UT1) = 10˚15′55″ + (10˚ 
37′03.5″ – 10˚15′55″) (22 h 11 m 49.95 s/24) + (0.0000395) 
× (10˚15′55″) × sin(7.5 × 22 h 11 m 49.95 s) = 10˚35′ 
28.53″ 

 

AZsun = 1 sin 71 52 7.13
tan

cos 28 36 42 tan10 35 28.53 sin 28 36 42 cos 71 52 7.13
  

       


   
 = –89˚5′16.37″ 

 

Since LHA is between 0˚ to 180˚, and AZsun is nega- 
tive, the normalized correction equals 360˚. 

AZsun = 270˚54′43.63″ 
R Ang Rt = 116˚42′40″ – 179˚59′58″ = –63˚17′18″ = 

296˚42′42″ 
h = sin–1(sin28˚36′42″sin10˚35′28.53″ + cos28˚36′42″ 

cos10˚35′28.53″cos71˚52′7.13″) = 20˚53′20.1″ 
dH = (sun’s semi-diameter)/cosh = (0˚15′56.1″)/cos20˚ 

53′20.1″ = 0˚17′3.36″ 
Left edge pointed D & R; therefore the correction dH 

is positive. 
Ang Rt = R Ang Rt + dH = 296˚42′42″+ 0˚17′3.36″ = 

296˚59′45.36″ 
AZL = AZsun + 360 – Ang Rt = 270˚54′43.63″ + 360 – 

296˚59′45.36″ = 333˚54′58.27″ 

3.5. Second Pointing with Telescope Reverse 

UT1 = 24 m 42.43 s +21 h 48 m 9.9 s = 22 h 12 m 52.33 
s 

GHA = GHA 0 h + (GHA 24 h – GHA 0 h + 360) 
(UT1/24) = 180˚03′32.8″ + (180˚06′59.4″ – 180˚03′32.8″ 
+ 360) (22 h 12 m 52.33 s/24) = 513˚19′48.02″ = 153˚ 
19′48.98″ 

LHA = GHA – w = 153˚19′48.98″ – 81˚11′36″ = 72˚ 
08′12.98″ 

Decl = Decl 0 h + (Decl 24 h – Decl 0 h) (UT1/24) + 
(0.0000395) (Decl 0 h) sin(7.5 UT1) = 10˚15′55″ + (10˚ 
37′03.5″ – 10˚15′55″) (22 h 12 m 52.33 s/24) + (0.0000395) 
× (10˚15′55″) × sin(7.5 × 22 h 12 m 52.33 s) = 10˚35′ 
29.47″ 

 

AZsun = 1 sin 72 08 12.98
tan

cos 28 36 42 tan10 35 29.47 sin 28 36 42 cos72 08 12.98
  

       


   
 = –88˚57′38.43″ 
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Since LHA is between 0˚ to 180˚, and AZsun is nega- 

tive, the normalized correction equals 360˚. 
AZsun = 271˚2′21.57″  
R Ang Rt = 116˚51′1″ – 179˚59′58″ = –63˚08′48″ = 

296˚05′12″ 
h = sin–1(sin28˚36′42″sin10˚35′29.47″ + cos28˚36′42″ 

cos10˚35′29.47″cos72˚08′12.98″) = 20˚39′12.83″ 
dH = (sun’s semi-diameter)/cosh = (0˚15′56.1″)/20˚39′ 

12.83″ = 0˚17′1.77″ 
Left edge pointed D & R; therefore the correction dH 

is positive. 
Ang Rt = R Ang Rt + dH = 296˚51′12″ + 0˚17′1.77″ = 

297˚08′13.77″ 
AZL = AZsun + 360 – Ang Rt = 271˚2′21.57″ + 360 – 

297˚08′13.77″ = 333˚54′7.8″. 

3.6. Third Pointing with Telescope Reverse 

UT1 = 25 m 14.93 s +21 h 48 m 9.9 s = 22 h 13 m 24.83 
s 

GHA = GHA 0 h + (GHA 24 h – GHA 0 h + 360) 
(UT1/24) = 180˚03′32.8″ + (180˚06′59.4″ – 180˚03′32.8″ 
+ 360) (22 h 13 m 24.83 s/24) = 513˚27′56.56″ = 153˚27′ 
56.56″ 

LHA = GHA – w = 153˚27′56.56″ – 81˚11′36″ = 72˚ 
16′20.56″ 

Decl = Decl 0 h + (Decl 24 h – Decl 0 h) (UT1/24) + 
(0.0000395) (Decl 0 h) sin(7.5 UT1) = 10˚15′55″ + (10˚ 
37′03.5″ – 10˚15′55″) (22 h 13 m 24.83 s/24) + (0.0000395) 
× (10˚15′55″) × sin(7.5 × 22 h 13 m 24.83 s) = 10˚35′ 
29.95″. 

 

AZsun = 1 sin 72 16 20.56
tan

cos 28 36 42 tan10 35 29.95 sin 28 36 42 cos 72 16 20.56
  

       


   
 = –88˚53′47.49″ 

 

Since LHA is between 0˚ to 180˚, and AZsun is nega- 
tive, the normalized correction equals 360˚. 

Zsun = 271˚6′12.51″  
R Ang Rt = 116˚55′40″ – 179˚59′58″ = –63˚04′18″ = 

296˚55′42″ 
h = sin–1(sin28˚36′42″sin10˚35′9.95″cos 28˚36′42″cos 

10˚35′9.95″cos 72˚16′20.56″) = 20˚32′5.08″ 
dH = (sun’s semi-diameter)/cosh = (0˚15′56.1″)/20˚32′ 

5.08″ = 0˚17′0.97″ 
Left edge pointed D & R; therefore the correction dH 

is positive. 
Ang Rt = R Ang Rt + dH= 296˚55′42″ + 0˚17′0.97″ = 

297˚12′42.97″ 
AZL = AZsun + 360 – Ang Rt = 271˚6′12.51″ + 360 – 

297˚12′42.97″ = 333˚53′29.54″. 

4. Adjustment of Measurements and Error 
Modeling  

Like all types of measurements in surveying, errors in 
azimuth determination are three types: systematic, mis- 
takes, and random errors. In this study, only random er- 
rors in azimuth determination using the hour angle are 
addressed through modeling. Suppose we have a non- 
linear function written as: 

 Y a  e  2 1
00,e   P,         (2) 

Before we continue to solve this problem, we need to 
transform Equation (2) into linear form. A common way 
to perform this transformation is a linearization using 
Taylor’s series expansion. Equation (2) can be linearized 
in the form shown below: 

   
0

0 0

a
Y a



         
 e      (3) 

where: 

 0a  : Value of the function  evaluated from pa-
rameter approximations 

Y
 0 , 

 0  : vector of the differences between value of 
unknowns parameters and there approximation. 

0

a



 
  

: Jacobian matrix, which represents the partial  

derivatives of all functions in  with respect to each of 
the unknown variables. 

Y

The higher-order term in Equation (3) can be dropped 
because it is very small and, therefore, the Equation (3) 
can be re-written as: 

   
0

0

a
Y a e



 
0       

       (4) 

Equation (4) can be rewritten in the form of Gauss- 
Markov model, which is: 

e y A ,          (5)  2
00,e   1P

where: 
y :  0Y a  , which is s vector, 

A: 
0

a



 
  

, which is a matrix, 

 :  0  , which is a vector. 
The least-squares solution for Equation (5), whose the 

number of observations is larger than that of the un- 
known parameters, can be obtained by forming an  

TA PA  matrix and calculating its inverse and multiply-
ing by TA Py  vector. This solution can be written as:  

  11ˆ N c APA APy              (6) 

However, this solution requires that the inverse;  
  1TA PA


 exists, which means that the rank of TA PA  

matrix must be greater or equal to the number of un- 
known parameters. The variance of each unknown pa- 
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rameter is given in the form of variance/covariance ma- 
trix, which can be computed as: 

   12 1 2 1
0 0

ˆD N A P  
   A         (7) 

where 2
0  is the variance of unit weight, and its residual 

vector is: 

1ˆ T
ne y A I AN A P     y



           (8) 

where:                (9)   2 1
0

TD e P AN A  

The variance of the whole adjustment is an unbiased 
estimate of the error of the fit can be written as follows; 
given that the observations are statistically independent: 

2
0ˆ

Te P

n m
 

e


 

               (10) 

Since the Sun azimuth shown in Equation (1) is non- 
linear, it needs to be linearlized using Taylor’s series 
expansion as shown below [7]: 

 

   
o

o o

1

1
o

u u

1 1

u u u u

tan u
tan u

tan u tan u
      




 
 






 

 


   



 
   

 

 (11) 

where  is value of  at ,  1
otan u

 o

1tan u
ou u

    ,  o     and  o      

Since 1
2

d 1
tan

d 1
x

x x
 


, then:  

1
2

1
2

1
2

u

tan u ,
1 u

u

tan u
1 u

u

and tan u
1 u


 


 


 








   
  


   
  


   
  

       (12) 

The partial derivatives of the function  
sin

u
cos tan sin cos


   





 with respect to the variables  

,  and  are shown below:  

 

2

2

u sin sin cos cos tan sin cos cos

cos tan sin cos

      
    
  


 


 

(13a) 

 

 2
u sin sin tan sin cos cos

cos tan sin cos

    
    
  


 


      (13c) 

Accordingly, we can obtain the following partial de- 
rivatives of  with respect to ,  and  respec- 
tively: 

1tan u

 

 

 

1

2

2

2

2

2

2 2

tan u
  

sin sin cos cos tan sin cos cos

cos tan sin cos

sin
1

cos tan sin cos

sin sin cos cos tan sin cos cos

cos tan sin cos sin

 
      

   


   



      
    

 


 

 







 


 



 (14a) 

 

 

 

1

22

2

2

22 2

tan u
  

sin cos

cos cos tan sin cos

sin
1

cos tan sin cos

sin cos

cos cos tan sin cos sin cos

 
 

    


   
 

2     

 


 








  

 (14b) 

 

 

 

1

2

2

2

2 2

tan u
   

sin sin tan sin cos cos

cos tan sin cos

sin
1

cos tan sin cos

sin sin tan sin cos cos

cos tan sin cos sin

 
     

   


   
     
    

 


 
 







 


 

          (14c) 

The values of and the partial derivatives in Equation 
(14) at are as follows: 

 

 

 

o

o

o

o

1
o u u

1

u u

1

u u

1

u u

tan u 270.72247

tan u
0.27218

tan u
0.95810

tan u
0.38863








































,

,

,

.

         (15) 

22

u sin cos

cos cos tan sin cos

 
    



  

        (13b) 
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Table 4. Values of the d(  tan–1u)/d, d(  tan–1u)/d, and d(  tan–1u)/d for the data shown in Table 2. 

sin cos tan sin cos tan sin cos tan d(  tan–1u)/d d(  tan–1u)/d d(  tan–1u)/d

–0.33097 –0.94364 0.350739 –0.91884 –0.39463 2.328353 0.980126 0.198377 4.940732 0.106655519 –0.236611501 0.788639017

–0.33097 –0.94364 0.350739 –0.91897 –0.39432 2.330549 0.988774 –0.14942 –6.61752 –0.644447814 –0.172408964 0.73958178 

–0.33097 –0.94364 0.350739 –0.91912 –0.39397 2.332945 0.862597 –0.50589 –1.7051 –1.335109018 –2.671843567 0.601254349

–0.33097 –0.94364 0.350739 –0.91937 –0.39339 2.337049 0.378323 –0.92567 –0.4087 –2.043982031 –2.505103241 0.241410555

–0.33097 –0.94364 0.350739 –0.91947 –0.39315 2.338738 0.119407 –0.99285 –0.12027 –2.147731626 –0.735702059 0.075064601

–0.33097 –0.94364 0.350739 –0.91953 –0.39303 2.3396 –0.01575 –0.99988 0.015748 –2.159098582 0.0962064 –0.009887712

 
Table 4 shows the values of the d(tan–1u)/d,  

d(  tan–1u)/d, and d(  tan–1u)/d for the data shown in 
Table 2. 

This is translated into the following most probable 
value of the true/astronomic azimuth of the Rogers-P line 
in the study area: AZ = 333.93206 ± 0.20137 degrees. 

Re-writing Equation (11) after substituting the values 
obtained in (15) yields: 5. Conclusion  

270.72247 0.27218 0.38863 0.95810        
 (16) 

The linear error model derived in this study can be used 
to assess the quality of the computed sun azimuth, which 
is needed to determine the astronomic/true azimuth of a 
line at a location using the hour angle method. The error 
modeling framework presented in this article is essential 
for those seeking an improved accuracy of the estimated 
value of the sun azimuth. Although the model is data 
driven and that a little data analysis and manipulation is 
required to arrive at the model, the robustness of the 
outcome worth the efforts put forth in the process. 

Note that Equation (16) resembles the Gauss-Markov 
model presented earlier in Equation (4). Therefore it pre- 
sents a linear model of the sun azimuth (Λ) derived from 
the data collected in the study area. The data model in- 
troduces the sun azimuth as a function of the random 
errors in the longitude and latitude of the geographic lo- 
cation along with that in the sun declination angle. Those 
errors are essential and need to be determined anyway 
before using them. Then the corrected value of the sun 
azimuth (Λ) that can be obtained using Equation (16) 
should be used to get the azimuth of the line in question 
using the procedure outlined and adopted in the calcula- 
tions of the line azimuth in our study area (refer to the 
Field Data Manipulation and Azimuth Computation sec- 
tion). The errors in  ,   and  , which are  , 
  and   can then be substituted in Equation (16) 

to compute an adjusted value of the sun azimuth (Λ) and 
further use that to compute corrected value of the astro- 
nomic/true azimuth of the line in question as shown in 
the study area.  
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Appendix A 

Table 5. April 2007 sun and Polaris ephemeris (Source: http://www.cadastral.com). 

SUN ------------------------------------ For 0 h Universal Time  Polaris --------------------------------- 0 h UTC 

Declination GHA     Declination GHA TUC 2007 date Day 

d m s d m s m s m s d m s d m s h m s 

Apr 1 SU 4 18 35.7 178 58 3.7 –4 7.76 16 0.5 89 17 59.8 149 25 7.3 14 0 1.5

Apr 2 MO 4 41 45 179 2 32.8 –3 49.81 16 0.3 89 17 59.5 150 24 29 13 56 4.7

Apr 3 TU 5 4 49.3 179 7 0.2 –3 31.98 16 0 89 17 59.1 151 23 49 13 52 8 

Apr 4 WE 5 27 48.2 179 11 25.6 –3 14.29 15 59.7 89 17 58.8 152 23 7.1 13 48 11.5

Apr 5 TH 5 50 41.4 179 15 48.6 –2 56.76 15 59.4 89 17 58.5 153 22 23.4 13 44 15 

Apr 6 FR 6 13 28.6 179 20 9 –2 39.4 15 59.2 89 17 58.2 154 21 38.1 13 40 18.7

Apr 7 SA 6 36 9.5 179 24 26.4 –2 22.24 15 58.9 89 17 57.9 155 20 51.8 13 36 22.4

Apr 8 SU 6 58 43.7 179 28 40.4 –2 5.3 15 58.6 89 17 57.6 156 20 4.9 13 32 26.2

Apr 9 MO 7 21 10.9 179 32 50.9 –1 48.61 15 58.3 89 17 57.3 157 19 18.2 13 28 30 

Apr 10 TU 7 43 30.7 179 36 57.5 –1 32.17 15 58 89 17 57 158 18 32.2 13 24 33.7

Apr 11 WE 8 5 42.9 179 40 59.9 –1 16.01 15 57.8 89 17 56.8 159 17 47.2 13 20 37.3

Apr 12 TH 8 27 47.1 179 44 57.8 –1 0.14 15 57.5 89 17 56.5 160 17 3.6 13 16 40.9

Apr 13 FR 8 49 42.9 179 48 51.1 0 44.59 15 57.2 89 17 56.3 161 16 21.2 13 12 44.4

Apr 14 SA 9 11 29.9 179 52 39.4 0 29.37 15 56.9 89 17 56 162 15 39.1 13 8 47.8

Apr 15 SU 9 33 7.8 179 56 22.6 0 14.49 15 56.7 89 17 55.7 163 14 56.4 13 4 51.3

Apr 16 MO 9 54 36.3 180 0 0.5 0 0.03 15 56.4 89 17 55.3 164 14 11.7 13 0 54.9

Apr 17 TU 10 15 55 180 3 32.8 0 14.19 15 56.1 89 17 55 165 13 24 12 56 58.8

Apr 18 WE 10 37 3.5 180 6 59.4 0 27.96 15 55.9 89 17 54.6 166 12 33 12 53 2.8

Apr 19 TH 10 58 1.4 180 10 20.3 0 41.35 15 55.6 89 17 54.3 167 11 39.3 12 49 7 

Apr 20 FR 11 18 48.4 180 13 35.2 0 54.35 15 55.3 89 17 54 168 10 44.2 12 45 11.3

Apr 21 SA 11 39 24.2 180 16 44.1 1 6.94 15 55.1 89 17 53.7 169 9 49.2 12 41 15.7

Apr 22 SU 11 59 48.4 180 19 46.7 1 19.11 15 54.8 89 17 53.4 170 8 55.3 12 37 19.9

Apr 23 MO 12 20 0.6 180 22 43 1 30.87 15 54.6 89 17 53.2 171 8 3 12 33 24 

Apr 24 TU 12 40 0.4 180 25 32.7 1 42.18 15 54.3 89 17 52.9 172 7 12.3 12 29 28.1

Apr 25 WE 12 59 47.7 180 28 15.7 1 53.05 15 54.1 89 17 52.6 173 6 22.6 12 25 32 

Apr 26 TH 13 19 22 180 30 51.9 2 3.46 15 53.8 89 17 52.3 174 5 33.6 12 21 35.9

Apr 27 FR 13 38 43 180 33 20.9 2 13.39 15 53.6 89 17 52 175 4 44.3 12 17 39.9

Apr 28 SA 13 57 50.5 180 35 42.7 2 22.85 15 53.3 89 17 51.7 176 3 54.3 12 13 43.8

Apr 29 SU 14 16 44.1 180 37 57.1 2 31.81 15 53.1 89 17 51.4 177 3 2.9 12 9 47.9

Apr 30 MO 14 35 23.5 180 40 3.9 2 40.26 15 52.8 89 17 51 178 2 9.9 12 5 52.1
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