
Journal of Behavioral and Brain Science, 2012, 2, 195-220 
http://dx.doi.org/10.4236/jbbs.2012.22024 Published Online May 2012 (http://www.SciRP.org/journal/jbbs) 

195

Mathematical Model of Embodied Symbols:  
Cognition and Perceptual Symbol System 

Leonid Perlovsky1,2, Roman Ilin2 
1Harvard University, Cambridge, USA 

2Air Force Research Laboratory, Wright-Patterson Air Force Base, Greene & Montgomery, Ohio, USA 
Email: leonid@seas.harvard.edu, roman.ilin@hanscom.af.mil 

 
Received June 5, 2011; revised October 3, 2011; accepted November 10, 2011 

ABSTRACT 

A mathematical model of perceptual symbol system is developed. This development requires new mathematical meth- 
ods of dynamic logic (DL), which have overcome limitations of classical artificial intelligence and connectionist ap- 
proaches. The paper discusses these past limitations, relates them to combinatorial complexity (exponential explosion) 
of algorithms in the past, and relates it further to the static nature of classical logic. DL is a process-logic; its salient 
property is evolution of vague representations into crisp. We first consider one aspect of PSS: situation learning from 
object perceptions. Next DL is related to PSS mechanisms of concepts, simulators, grounding, embodiment, productiv- 
ity, binding, recursion, and to the mechanisms relating embodied-grounded and amodal symbols. We discuss DL capa- 
bility for modeling cognition on multiple levels of abstraction. PSS is extended toward interaction between cognition 
and language. Experimental predictions of the theory are discussed. They might influence experimental psychology and 
impact future theoretical developments in cognitive science, including knowledge representation, and mechanisms of 
interaction between perception, cognition, and language. All mathematical equations are also discussed conceptually, so 
mathematical understanding is not required. Experimental evidence for DL and PSS in brain imaging is discussed as 
well as future research directions. 
 
Keywords: Perceptual Symbol System; Embodied Cognition; Perception; Knowledge Representation; Grounded  
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1. Perceptual Symbol System 

Barsalou [1] developed Perceptual symbol system (PSS) 
that embodies cognition and grounds it in perception. 
“Grounded cognition… rejects the standard view that 
amodal symbols represent knowledge in semantic mem- 
ory”. PSS emphasized the roles of simulation in cogni- 
tion. “Simulation is the reenactment of perceptual, motor, 
and introspective states acquired during experience with 
the world, body, and mind… when knowledge is needed 
to represent a category (e.g., chair), multimodal repre- 
sentations captured during experiences… are reactivated 
to simulate how the brain represented perception, action, 
and introspection associated with it”. Simulation is an 
essential computational mechanism in the brain. These 
simulation mechanisms are well known in case of mental 
imagery [2,3]. According to PSS cognition supports ac- 
tion. Although simulation is a central mechanism of PSS, 
yet rarely, if ever, they recreate full experiences. Based 
on the mechanism of simulators, which approximately 
correspond to concepts and types in amodal theories, PSS 
implements the standard symbolic functions of type-to- 
ken binding, inference, productivity, recursion, and pro- 

positions. Using these mechanisms PSS retains the sym- 
bolic functionality. “Thus, PSS is a synthetic approach 
that integrates traditional theories with grounded theo- 
ries.” [1,4,5]. 

During the Cognitive Revolution in the middle of the 
last century, according to Barsalou, cognitive scientists 
were inspired by new forms of representation “based on 
developments in logic, linguistics, statistics, and computer 
science.” Amodal representations were adopted, such as 
feature lists, semantic networks, and frames [6]. Virtually 
no empirical evidence supports amodal symbolic mecha- 
nisms [1]. The amodal symbols were adopted largely 
because they promised to provide “elegant and powerful 
formalisms for representing knowledge, because they 
captured important intuitions about the symbolic charac- 
ter of cognition, and because they could be implemented 
in artificial intelligence”. The next section discusses that 
these promises were unfulfilled due to fundamental mathe- 
matical difficulties. 

Past and ongoing developments of computational im- 
plementations of PSS include [7-9]. Yet, computational 
models for PSS require new mathematical methods dif- 
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ferent from traditional artificial intelligence, pattern rec- 
ognition, or connectionist methods. The reason is that the 
traditional methods encountered combinatorial complex- 
ity (CC), an irresolvable computational difficulty, when 
attempting to model complex systems. Cognitive model- 
ing requires learning combinations of perceptual features 
and objects or events [10-14].  

This article develops a realistic and scalable mathe- 
matical model of grounded symbols and formalization of 
PSS based on a new computational technique of dynamic 
logic, DL [15,16]. The developed mathematical formal- 
ism is quite general. We first concentrate on one example 
of PSS mechanism: a mathematical description of models 
and simulators for forming and enacting representations 
of situations (higher level symbols) from perceptions of 
objects (lower level symbols), and then we discuss its 
general applicability. In addition to simulators, we con- 
sider concepts, grounding, binding, dynamic aspect of 
PSS (DIPSS), abstract concepts, the mechanism of amo- 
dal symbols within PSS, and the role of logic. 

Past mathematical difficulties are considered in Sec- 
tion 2. They are related to classical logic, and a new com- 
putational technique of dynamic logic (DL) is introduced, 
which overcomes past computational limitations. Where- 
as classical logic is a static logic of statements (e.g., “if A 
then B”), DL describes a process capable of modeling the 
main components of PSS, including simulators. Section 3 
illustrates the important properties of DL. Section 4 il- 
lustrates how DL models essential mechanisms of PSS 
considering an example of learning situations from ob- 
jects (a difficult problem due to its inherent combinato- 
rial complexity). Section 5 discusses DL as a general 
mechanism of interacting bottom-up and top-down sig- 
nals, applicable to all levels of cognitive processing. Sec- 
tion 6 continues this discussion concentrating specifically 
on DL modeling amodal vs perceptual symbols. Section 
7 discusses experimental evidence confirming DL pre- 
dictions of the mind mechanism, and formulates further 
predictions that could be tested experimentally in the 
near future. Section 8 describes future theoretical research 
as well as proposed verifiable experimental predictions 
of DL. 

2. Past Mathematical Difficulties and Recent 
Development 

In modern neuroscience, a fundamental process in object 
perception is an interaction of bottom-up signals from 
sensory organs and top-down signals from internal mind’s 
representations (memories) of objects. During perception, 
the mind matches subsets of bottom-up signals corre- 
sponding to objects with representations of object in the 
mind (and top-down signals). This produces object rec- 
ognition; it activates brain signals leading to mental and 
behavioral responses [3,17-20]. This section briefly sum- 

marizes mathematical development in artificial intelli- 
gence, pattern recognition, and other computational meth- 
ods used in cognitive science for modeling brain-mind 
processes. The fundamental difficulties preventing mathe- 
matical modeling of perception, cognition, and PSS are 
discussed; then overcoming these difficulties using DL is 
discussed. 

2.1. Computational Complexity 

Mathematical modeling of the above recognition process 
has not been easy, a number of difficulties have been en- 
countered during the past fifty years. These difficulties 
were summarized under the notion of combinatorial com- 
plexity (CC) [21]. CC refers to multiple combinations of 
bottom-up and top-down signals, or more generally to 
combinations of various elements in a complex system; 
for example, recognition of a scene often requires con- 
current recognition of its multiple elements that could be 
encountered in various combinations. CC is computa- 
tionally prohibitive because the number of combinations 
is very large: for example, consider 100 elements (not 
too large a number); the number of combinations of 100 
elements is 100100, exceeding the number of all elemen- 
tary particle events in life of the Universe; no computer 
would ever be able to compute that many combinations. 

CC was first identified in pattern recognition and clas- 
sification research in the 1960s and was named “the curse 
of dimensionality” [22]. It seemed that adaptive self- 
learning algorithms and neural networks could learn so- 
lutions to any problem “on their own”, if provided with a 
sufficient number of training examples. However the 
following development of artificial intelligence led to a 
conclusion that the required number of training examples 
often was combinatorially large. This remains true about 
recent generation of algorithms and neural networks, 
which are much more powerful than those in the 1950s 
and 60s. Training had to include not only every object in 
its multiple variations, angles, etc., but also combinations 
of objects. Thus, learning approaches encountered CC of 
learning requirements. 

In the 1970’s rule systems were proposed to solve the 
problem of learning complexity [23,24]. Minsky suggested 
that learning was a premature step in artificial intelli- 
gence; Newton “learned” Newtonian laws, most of scien- 
tists read them in the books. Therefore Minsky has sug- 
gested, knowledge ought to be input in computers “ready 
made” for all situations and artificial intelligence would 
apply these known rules. Rules would capture the re- 
quired knowledge and eliminate a need for learning. 
Chomsky’s original ideas concerning mechanisms of lan- 
guage grammar related to deep structure [25] were also 
based on logical rules. Rule systems work well when all 
aspects of the problem can be predetermined. However in 
the presence of variability, the number of rules grew; 
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rules became contingent on other rules and combinations 
of rules had to be considered. The rule systems encoun- 
tered CC of rules. 

To overcome these difficulties model systems were 
proposed in the 1980s to combine advantages of learning 
and rules-models by using adaptive models [10,11,26-32]. 
Available knowledge was to be summarized in models 
and parameters of the models were to describe unknown 
aspects of concrete situations. Similar was the Chomsky 
idea [33] of principles and parameters. However, fitting 
models to data (top-down to bottom-up signals) required 
selecting data subsets corresponding to various models. 
The number of subsets is combinatorially large. A gen- 
eral popular algorithm for fitting models to the data, mul- 
tiple hypothesis testing [34] is known to face CC of com- 
putations. Model-based approaches encountered computa- 
tional CC (N and NP complete algorithms). 

2.2. CC, Amodal Symbols, and Logic 

Perceptual symbols and amodal symbols, as described by 
PSS, differ not only in their representations in the brain, 
but also in their properties that are mathematically mod- 
eled in this paper. This mathematically fundamental dif- 
ference and its relations to CC of matching bottom-up 
and top-down signals are discussed in this section. 

It has been demonstrated that CC is related to the use 
of formal logic in algorithms and neural networks [11,12, 
35]. Logic serves as a foundation for many approaches to 
cognition and linguistics; it underlies most of computa- 
tional algorithms. But its influence extends far beyond, 
affecting cognitive scientists, psychologists, and linguists, 
including those not using complex mathematical algo- 
rithms for modeling the mind. Formal logic is more than 
2000 years old, it influences the entire science. Most 
psychologists make a more or less conscious assumption 
that the mechanisms of logic serve as the basis of cogni- 
tion. As discussed in Section 7, our minds are unconscious 
about its illogical foundations. Only approximately logi- 
cal part of the mind mechanisms is accessible to con- 
sciousness. Although this is a minor part of the mind 
operations it fundamentally influences scientific intuition. 
It is unconsciously affected by the bias toward logic. 
Even when the laboratory data drive our thinking away 
from logical mechanisms it is difficult to overcome the 
logical bias [11,12,16,18,19,36-41]. 

Relationships between cognition and logic have been a 
source of longstanding myth. The widely accepted story 
is that Aristotle founded logic as a fundamental mind 
mechanism, and only during the recent decades science 
overcame this influence. I would like to emphasize the 
opposite side of this story. Aristotle assumed a close re- 
lationship between logic and language. He emphasized 
that logical statements should not be formulated too 
strictly and language inherently contains the necessary 

degree of precision. According to Aristotle, logic serves 
not for thinking but to communicate already made deci- 
sions [42,43]. The mechanism of the mind relating lan- 
guage, cognition, and the world Aristotle [44] described 
as forms. Today we call these mechanisms mental repre- 
sentations, or concepts, or simulators in the mind. Aris-
totelian forms are similar to Plato’s ideas with a marked 
distinction, forms are dynamic: their initial states, before 
learning, are different from their final states of concepts. 
Aristotle emphasized that initial states of forms, forms- 
as-potentialities, are not logical (i.e. vague), but their 
final forms, forms-as-actualities, attained in the result of 
learning, are logical. This fundamental idea that forms 
are processes evolving from illogical to logical was lost 
during millennia of philosophical arguments. As dis- 
cussed below this Aristotelian process of dynamic forms 
corresponds to Barsalou idea of PSS simulators, and the 
mathematical model, DL, for this process described in 
this paper. 

A contradiction between logic and language was em- 
phasized by the founders of formal logic. In the 19th cen- 
tury George Boole and the great logicians following him, 
including Gottlob Frege, Georg Cantor, David Hilbert, 
and Bertrand Russell (see [45] and references therein) 
eliminated the uncertainty of language from mathematics, 
and founded formal mathematical logic, the foundation 
of the current classical logic. Hilbert developed an ap- 
proach named formalism, which rejected intuition as a 
matter of scientific investigation and formally defined 
scientific objects in terms of axioms or rules. In 1900 he 
formulated famous Entscheidungs problem: to define a 
set of logical rules sufficient to prove all past and future 
mathematical theorems. This was a part of “Hilbert’s 
program”, which entailed formalization of the entire hu- 
man thinking and language. Formal logic ignored the 
dynamic nature of Aristotelian forms and rejected the 
uncertainty of language. Hilbert was convinced that his 
logical theory described the mind mechanisms. “The 
fundamental idea of my proof theory is none other than 
to describe the activity of our understanding, to make a 
protocol of the rules according to which our thinking 
actually proceeds.” (see [46]). However, Hilbert’s vision 
of formalism explaining mysteries of the human mind 
came to an end in the 1930s, when Gödel [47] proved 
internal inconsistency of formal logic. This development 
called Gödel theory is considered among most funda- 
mental mathematical results of the previous century. It 
demonstrated that logic, that was believed to be a sure 
way to derive truths, turned out to be basically flawed. 
This is a reason why theories of cognition and language 
based on formal logic did not work.  

Logic is fundamentally related to CC. CC turned out to 
be a finite-system manifestation of the Gödel’s theory 
[48-50]. If Gödelian theory is applied to finite systems 
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(such as computers and brain-mind), CC is the result, 
instead of the fundamental inconsistency. Algorithms 
matching bottom-up and top-down signals based on for- 
mal logic have to evaluate every variation in signals and 
their combinations as separate logical statements. Com- 
binations of these variations cause CC.  

This property of logic manifests in various algorithms 
in different ways. Rule systems are logical in a straight- 
forward way, and the number of rules grows combinato- 
rially. Pattern recognition algorithms and neural net- 
works are related to logic in learning procedures: every 
training sample is treated as a logical statement (“this is a 
chair”) resulting in CC of learning. Multivalued logic and 
fuzzy logic were proposed to overcome limitations re- 
lated to logic [51,52]. Yet the mathematics of multival- 
ued logic is no different in principle from formal logic 
[15,16]. Fuzzy logic uses logic to set a degree of fuzzi- 
ness. Correspondingly, it encounters a difficulty related 
to the degree of fuzziness: if too much fuzziness is speci- 
fied, the solution does not achieve a needed accuracy, 
and if too little, it becomes similar to formal logic. If 
logic is used to find the appropriate fuzziness for every 
model at every processing step, then the result is CC. The 
mind has to make concrete decisions, for example one 
either enters a room or does not; this requires a computa- 
tional procedure to move from a fuzzy state to a concrete 
one. But fuzzy logic does not have a formal procedure 
for this purpose; fuzzy systems treat this decision on an 
ad-hoc logical basis.  

Is logic still possible after Gödel’s proof of its income- 
pleteness? The contemporary state of this field was re- 
viewed in [35]. It appears that logic after Gödel is much 
more complicated and much less logical than was as- 
sumed by founders of artificial intelligence. CC cannot 
be solved within logic. Penrose argued that Gödel’s re- 
sults imply incomputability of the mind processes and 
testify for a need for new physics “correct quantum 
gravitation”, which would resolve difficulties in logic 
and physics [53]. An opposite view in [12,15,16,54] is 
that incomputability of logic is not related to incomputa- 
bility of the mind. These publications add mathematical 
arguments to the Aristotelian view that logic is not the 
basic mechanism of the mind. 

To summarize, various manifestations of CC are all 
related to formal logic and Gödel theory. Rule systems 
rely on formal logic in a most direct way. Even mathe- 
matical approaches specifically designed to counter limi- 
tations of logic, such as fuzzy logic and the second wave 
of neural networks (developed after the 1980s) rely on 
logic at some algorithmic steps. Self-learning algorithms 
and neural networks rely on logic in their training or 
learning procedures: every training example is treated as 
a separate logical statement. Fuzzy logic systems rely on 
logic for setting degrees of fuzziness. CC of mathemati- 

cal approaches to the mind is related to the fundamental 
inconsistency of logic. Therefore logical intuitions, lead- 
ing early cognitive scientists to amodal brain mecha- 
nisms, could not realize their hopes for mathematical 
models of the brain-mind. 

The outstanding mathematicians of the 19th and early 
20th c. believed that logic is the foundation of the mind, 
why? Even more surprising is that after Gödel. Gödelian 
theory was long recognized among most fundamental 
mathematical results of the 20th c. How is it possible that 
outstanding minds, including founders of artificial intel- 
ligence, and many cognitive scientists and philosophers 
of mind insisted that logic and amodal symbols imple- 
menting logic in the mind are adequate and sufficient? 
The answer is in the “conscious bias”. As we have men- 
tioned above and discuss in details in Section 7, non-logi- 
cal operations represent more than 99.9% of the mind 
functioning, but they are not accessible to consciousness 
[19]. However, our consciousness functions in a way that 
makes us unaware of this. In subjective consciousness we 
usually experience perception and cognition as logical. 
Our intuitions are “consciously biased”. This is why 
amodal logical symbols, which describe a tiny fraction of 
the mind mechanisms, have seemed to many the founda- 
tion of the mind [11,12,14-16,18,19,36-41]. 

We have already mentioned another aspect of logic 
relevant to PSS, logic lacks dynamics; it is about static 
statements such as “this is a chair”. Classical logic is 
good at modeling structured statements and relations, yet 
it misses the dynamics of the mind and faces CC, when 
attempts to match bottom-up and top-down signals. The 
essentially dynamic nature of the mind is not represented 
in mathematical foundations of logic. Dynamic logic is a 
logic-process. It overcomes CC by automatically choos- 
ing the appropriate degree of fuzziness-vagueness for 
every mind’s concept at every moment. DL combines ad- 
vantages of logical structure and connectionist dynamo- 
ics. This dynamics mathematically represents the process 
of Aristotelian forms, different from classical logic, and 
serves as a foundation for PSS concepts and simulators. 

2.3. DL, a Logic-Process 

DL models perception and cognition as an interaction 
between bottom-up and top-down signals [12,15,16,35, 
38,39,41,42,55-62]. This section concentrates on the ba- 
sic relationship between the brain processes and the 
mathematics of DL. To concentrate on this relationship, 
we much simplify the discussion of the brain structures. 
We discuss visual recognition of objects as if the retina 
and the visual cortex each consists of a single processing 
layer of neurons where recognition occurs (which is not 
true, detailed relationship of the DL process to brain is 
considered in given references). Perception consists of 
the association-matching of bottom-up and top-down 
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signals. Sources of top-down signals are mental repre- 
sentations, memories of objects created by previous simu- 
lators [1]; these representations model the patterns of 
bottom-up signals. In this way they are concepts (of ob- 
jects), symbols of a higher order than bottom-up signals; 
we call them concepts or models. In perception processes 
the models are modified by learning and new models are 
formed; since an object is never encountered exactly the 
same as previously, perception is always a learning proc- 
ess. 

The DL processes along with concept-representations 
are mathematical models of the PSS simulators. The 
bottom-up signals, in this simplified discussion, are a 
field of neuronal synapse activations in visual cortex. 
Sources of top-down signals are mental representation- 
concepts or, equivalently, model-simulators (for short, 
models; please notice this dual use of the word model, 
we use “models” for mental representation-simulators, 
which match-model patterns in bottom-up signals; and 
we use “models” for mathematical modeling of these 
mental processes). Each mental model-simulator projects 
a set of priming, top-down signals, representing the bot- 
tom-up signals expected from a particular object. Mathe- 
matical models of mental models-simulators characterize 
these mental models by parameters. Parameters describe 
object position, angles, lightings, etc. (In case of learning 
situations considered later, parameters characterize ob- 
jects and relations making up a situation). To summarize 
this highly simplified description of a visual system, the 
learning-perception process “matches” top-down and bot- 
tom-up activations by selecting “best” mental models- 
simulators and their parameters and fitting them to the 
corresponding sets of bottom-up signals. This DL proc- 
ess mathematically models multiple simulators running 
in parallel, each producing a set of priming signals for 
various expected objects. 

The “best” fit criteria between bottom-up and top-down 
signals were given in [12,15,16,35,62]. They are similar 
to probabilistic or informatic measures. In the first case 
they represent likelihood that the given (observed) data 
or bottom-up signals corresponds to representations-mo- 
dels (top-down signals) of particular objects. In the sec- 
ond case they represent information contained in repre- 
sentations-models about the observed data (in other 
words, information in top-down signals about bottom-up 
signals). These similarities are maximized over the model 
parameters. Results can be interpreted correspondingly as 
a maximum likelihood that models-representations fit 
sensory signals, or as maximum information in models- 
representations about the bottom-up signals. Both simi- 
larity measures account for all expected models and for 
all combinations of signals and models. Correspondingly, 
a similarity contains a large number of items, a total of 
MN, where M is a number of models and N is a number 

of signals; this huge number is the cause for the previ- 
ously discussed combinatorial complexity. 

Maximization of a similarity measure mathematically 
models a cognitive mechanism of an unconditional drive 
to improve the correspondence between bottom-up and 
top-down signals (representations-models). In biology 
and psychology it was discussed as curiosity, cognitive 
dissonance, or a need for knowledge since the 1950s 
[63,64]. This process involves knowledge-related emo- 
tions evaluating satisfaction of this drive for knowledge 
[12,15,16,36,38,41,56,60-62,65-67]. In computational intel- 
ligence it is even more ubiquitous, every mathematical 
learning procedure, algorithm, or neural network maxi- 
mizes some similarity measure. In the process of learning, 
mental concept-models are constantly modified.  

The DL learning process, let us repeat, consists in es- 
timating parameters of concept-models (mental repre-
sentations) and associating subsets of bottom-up signals 
with top-down signals originating from these models- 
concepts by maximizing a similarity. Although a similar- 
ity contains combinatorially many items, DL maximizes 
it without combinatorial complexity [11,12,15,16,35,38, 
39,48] as follows. First, vague-fuzzy association variables 
are defined, which give a measure of correspondence be- 
tween each signal and each model. They are defined 
similarly to the a posteriori Bayes probabilities, they 
range between 0 and 1, and as a result of learning they 
converge to the probabilities, under certain conditions. 
This mathematical breakthrough led to solving many 
problems that could not have been solved previously 
[68-80]. 

After giving a short mathematical description of the DL 
process, we summarize it conceptually, so that under- 
standing of mathematics is not essential. DL is defined by 
a set of differential equations given in the above refer- 
ences; together with models discussed later it gives a 
mathematical description of the PSS simulators. Here we 
summarize these equations simplifying the visual system, 
as if there is just one neural layer between the visual cor- 
tex and object recognition. Bottom-up signals {X(n)} is a 
field of neuronal synapse activations in visual cortex. 
Here and below curve brackets {…} denote multiple 
signals, a field. Index n = 1,… N, enumerates neurons 
and X(n) are the activation levels. Sources of top-down 
signals are representations or models {Mm(n)} indexed 
by m = 1,… M. Each model m Mm(n) projects a set of 
priming, top-down signals, representing the bottom-up 
signals X(n) expected from a particular object, m. Mod- 
els depend on parameters {Sm}, Mm(Sm,n). Parameters 
characterize object position, angles, lightings, etc. (In case 
of learning situations considered in Section 3, parameters 
characterize objects and relations making up a situation). 
We use n to enumerate the visual cortex neurons, X(n) 
are the “bottom-up” activation levels of these neurons 
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( )

coming from the retina, and Mm(n) are the “top-down” 
activation levels (priming) of the visual cortex neurons. 
The learning-perception process “matches” these top-down 
and bottom-up activations by selecting “best” models and 
their parameters and the corresponding sets of bottom-up 
signals. This “best” fit is given by maximizing a similar- 
ity measure between bottom-up and top-down signals; it 
is designed so that it treats each object-model as a poten- 
tial alternative for each subset of signals [12,13,15,16,35] 

DL process is defined by the following set of different- 
tial equations, as the Equation (3) below. 

{ } { }( ) ( ) ( )( )mn nX M

The principles of DL can be adequately understood 
from the following conceptual description and examples. 
As a mathematical model of perception-cognitive proc- 
esses, DL is a process described by differential equations 
given above; in particular, fuzzy association variables f 
associate bottom-up signals and top-down models-rep- 
resentations. Among unique DL properties is an autono- 
mous dependence of association variables on models- 
representations: in the processes of perception and cogni- 
tion, as models improve and become similar to patterns 
in the bottom-up signals, the association variables be- 
come more selective, more similar to delta-functions. 
Whereas initial association variables are vague and asso- 
ciate near all bottom-up signals with virtually any top- 
down model-representations, in the processes of percep- 
tion and cognition association variables are becoming 
specific, “crisp”, and associate only appropriate signals. 
This we call a process “from vague to crisp”. (The exact 
mathematical definition of crisp corresponds to values of 
f = 0 or 1; values of f in between 0 and 1 correspond to 
various degrees of vagueness). 

m Mn N

L X , M r m l
∈∈

= ∏ ;   (1) 

Here, l(X(n)|Mm(n)) (or simply l(n|m)) is called a condi- 
tional similarity between one signal X(n) and one model 
Mm(n). Parameters r(m) are proportional to the number 
of objects described by the model m. Expression (1) ac- 
counts for all combinations of signals and models in the 
following way. Sum ∑ ensures that any of the object-mod- 
els can be considered (by the mind) as a source of signal 
X(n). Product ∏ ensures that all signals have a chance to 
be considered (even if one signal is not considered, the 
entire product is zero, and similarity L is 0; so for good 
similarity all signals have to be accounted for. This does 
not assume exorbitant amount of attention to each minute 
detail: among models there is a vague simple model for 
“everything else”). In a simple case, when all objects are 
perfectly recognized and separated from each other, there 
is just one object-model corresponding to each signal 
(other l(n|m) = 0). In this simple case expression (1) con- 
tains just 1 item, a product of all non-zero l(n|m). In the 
general case, before objects are recognized, L contains a 
large number of combinations of models and signals; a 
product over N signals is taken of the sums over M mod- 
els; this results in a total of MN items; this huge number 
is the cause for the combinatorial complexity discussed 
previously. 

DL processes mathematically model PSS simulators 
and not static amodal signals. Another unique aspect of 
DL is that it explains how logic appears in the human 
mind; how illogical dynamic PSS simulators give rise of 
classical logic, and what is the role of amodal symbols. 
This is discussed throughout the paper, and also in spe- 
cific details in Section 6. 

An essential aspect of DL, mentioned above, is that as- 
sociations between models and data (top-down and bot- 
tom-up signals) are uncertain and dynamic; their uncer- 
tainty matches uncertainty of parameters of the models 
and both change in time during perception and cognition 
processes. As the model parameters improve, the associa- 
tions become crisp. In this way the DL model of simula- 
tor-processes avoids combinatorial complexity because 
there is no need to consider separately various combina-
tions of bottom-up and top-down signals. Instead, all com- 
binations are accounted for in the DL simulator-processes. 
Let us repeat, that initially, the models do not match the 
data. The association variables are not the narrow logical 
variables 0, or 1, or nearly logical, instead they are wide 
functions (across top-down and bottom-up signals). In 
other words, they are vague, initially they take near ho- 
mogeneous values across the data (across bottom-up and 
top-down signals); they associate all the representation- 
models (through simulator processes) with all the input 
signals [12,16,39]. 

The DL learning process consists in estimating model 
parameters Sm and associating subsets of signals with 
concepts by maximizing the similarity (1). Although (1) 
contains combinatorially many items, DL maximizes it 
without combinatorial complexity [11,12,48,49]. First, 
fuzzy association variables f(m|n) are defined, 

( ) ( ) ( ) ( ) ( )r m l n m′ ′
m M

f m n r m l n m
′∈

=  .    (2) 

These variables give a measure of correspondence 
between signal X(n) and model Mm relative to all other 
models, m’. They are defined similarly to the a posteriori 
Bayes probabilities, they range between 0 and 1, and as a 
result of learning they converge to the probabilities under 
certain conditions. 

  
( ) ( ) { ( ) ( ) ( )mm m m m m

m M

df m n dt f m n f m n ln l n m M M S dS dtδ ′ ′ ′ ′ ′
′∈

   ′ ′= − ∂ ∂ ∂ ∂     

( ) ( )m m m m mm
n N

dS dt f m n ln l n m M M S , 1 if m m , 0 otherwiseδ ′
∈

  ′= ∂ ∂ ∂ ∂ = =              (3)
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Here we conceptually describe the DL process as ap- 

plicable to visual perception, taking approximately 160 
m ng to the reference below. Gradually, the DL 
si

esses, modeling multiple 
ribed above. In this 
 noise. Finding pat- 

osition, curvature, signal strength, and 
nu

mber of models 
is

M = 5 models should be fit to the da  
fits best. The complexity of logical c  
is MN = 105000; this combinatorially large number is 

t in mathe- 
m

blem of 
cognition has 
nition this is 

s, accordi
mulator-processes improve matching, models better fit 

data, the errors become smaller, the bell-shapes concen- 
trate around relevant patterns in the data (objects), and 
the association variables tend to 1 for correctly matched 
signal patterns and models, and 0 for others. These 0 or 1 
associations are logical decisions. In this way classical 
logic appears from vague states and illogical processes. 
Thus certain representations get associated with certain 
subsets of signals (objects are recognized and concepts 
formed logically or approximately logically) [81]. This 
process “from vague-to-crisp” that matches bottom-up and 
top-down signals has been independently conceived and 
demonstrated in brain imaging research to take place in 
human visual system [19,82]. Various neural mechanisms 
of dynamic logic in the brain is discussed in [62]. Thus 
DL models PSS simulators, describes how logic appears 
from illogical processes, and actually models perception 
mechanisms of the brain-mind. 

2.4. Object Perception in Noise 

Here we illustrate the DL proc
simulators running in parallel as desc
example, DL searches for patterns in
terns below noise can be an exceedingly complex prob- 
lem. If an exact pattern shape is not known and depends 
on unknown parameters, these parameters should be 
found by fitting the pattern model to the data. However, 
when the locations and orientations of patterns are not 
known, it is not clear which subset of the data points 
should be selected for fitting. A standard approach for 
solving this kind of problem, which has already been 
mentioned, is multiple hypotheses testing [34]; this algo- 
rithm exhaustively searches all logical combinations of 
subsets and models and faces combinatorial complexity. 
In the current example, we are looking for “smile” and 
“frown” patterns in noise shown in Figure 1(a) without 
noise, and in Figure 1(b) with noise, as actually meas- 
ured (object signals are about 2 - 3 times below noise and 
cannot be seen). 

Several types of models are used in this example: para- 
bolic models describing “smiles” and “frown” patterns 
(unknown size, p

mber of models), circular-blob models describing ap- 
proximate patterns (unknown size, position, signal strength, 
and number of models), and noise model (unknown 
strength). Exact mathematical description of these mod- 
els is given in the reference cited above. 

We consider the image size of 100 × 100 points (N = 
10,000 bottom-up signals, corresponding to the number of 
receptors in an eye retina), and the true nu

 4 (3 + noise), which is not known. Therefore, at least 

much larger than the size of the Universe and the prob- 
lem was considered unsolvable. Figure 1 illustrates DL 
operations: (a) true “smile” and “frown” patterns without 
noise; (b) actual image available for recognition; (c) 
through (h) illustrates the DL process, they show im- 
proved models at various steps of solving DL Equations 
(A3), total of 22 steps (noise model is not shown; Fig- 
ures (c) through (h) show association variables, (f), for 
blob and parabolic models). By comparing (h) to (a) one 
can see that the final states of the models match patterns 
in the signal. Of course, DL does not guarantee finding 
any pattern in noise of any strength. For example, if the 
amount and strength of noise would increase ten-fold, 
most likely the patterns would not be found (this would 
provide an example of “falsifiability” of DL; however 
more accurate mathematical description of potential fail- 
ures of DL algorithms is considered later). DL reduced 
the required number of computations from combinatorial 
105000 to about 109. By solving the CC problem DL was 
able to find patterns under the strong noise. In terms of 
signal-to-noise ratio this example gives 10,000% im- 
provement over the previous state-of-the-art (In this ex- 
ample DL actually works better than human visual sys- 
tem; the reason is that human brain is not optimized for 
recognizing these types of patterns in noise). 

The main point of this example is that DL simulator- 
perception is a process “from vague-to-crisp”, similar to 
visual system processes demonstrated in [19]. We would 
also like to take this moment to continue the arguments 
from Sections 2.1, 2.2, and to emphasize that DL is a 
fundamental and revolutionary improvemen

ta, to decide that 4
ombinatorial search

atics [41,43,83]; it was recognized as such in mathe- 
matical and engineering communities; it is the only mathe- 
matical theory that have suggested vague initial states; it 
has been developed for over 20 years; yet it might not be 
well known in cognitive science community. A large 
number of mathematical and engineering applications of 
DL is given in references and references therein. 

3. Relations between DL and PSS 

The previous section illustrated DL for recognition of 
simple objects in noise, a case complex and unsolvable 
for prior state-of-the-art algorithms, still too simple to be 
directly relevant for PSS. Here we consider a pro
situation learning, assuming that object re
been solved. In computational image recog
called “situational awareness” and it is a long-standing 
unsolved problem. The principled difficulty is that every 
situation includes many objects that are not essential for 
recognition of this specific situation; in fact there are 
many more “irrelevant” or “clutter” objects than relevant  
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(a)                                                         (b) 

 
(c)                                                          (d) 

 
(e)                                                          (f) 
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(g)                                                 (h) 

Figure 1. Finding “smile” and “frown” patterns in noise, an example of dynamic logic operation: (a) True “smile” and 
“frown” patterns are shown without noise; (b) Actual image available for recognition (signals are below noise, signal-to-noise 
ratio is between 1/2 and 1/4, 100 times lower than usually considered necessary); (c) An initial fuzzy blob-model, the vague- 
ness corresponds to uncertainty of knowledge; (d) Through (h) show improved models at various steps of DL (Equation (3) 
are solved in 22 steps). Between stages (d) and (e) the algorithm tried to fit the data with more than one model and decided, 
that it needs three blob-models to “understand” the content of the data. There are several types of models: one uniform 
model describing noise (it is not shown) and a variable number of blob-models and parabolic models, which number, location, 
and curvature are estimated from the data. Until about stage (g) the algorithm “thought” in terms of simple blob models, at 
(g) and beyond, the algorithm decided that it needs more complex parabolic models to describe the data. Iterations stopped at 
(h), when similarity (1) stopped increasing. 
 

ones. Let us dwell on this for a bit. Objects are spatially- 
limited material things perceptible by senses. A situation 
is a collection of contextually related objects that tend to 
appear together and are perceived as meaningful, e.g., an 
office, a dining room. The requirement for contextual 
relations and meanings makes the problem mathematically 
difficult. Learning contexts com
situations; it reminds of the probl

ld of mundane 

to-crisp.” Concrete crisp models-representations of situa-
tions are formed from vague models in the process of 
learning (or cognition-perception). We illustrate below 
how complex symbols, situations, are formed by situa- 
tion-simulators from simpler perceptions, objects, which 
are simpler perceptual symbols, being formed by sim

he mind, comparative to “highe  
ation-simulators operate on PSS 

bles these bits into situations attempting to match those 

es along with learning 
em of a chicken and egg. 

lators at “lower” levels of t
situation-simulators. Situ

We subliminally perceive many objects, most of which 
are irrelevant, e.g. a tiny scratch on a wall, which we learn 
to ignore. Combinations of even a limited number of ob- 
jects exceed what is possible to learn in a single lifetime 
as meaningful situations and contexts (e.g. books on a 
shelf) from random sets of irrelevant objects (e.g. a 
scratch on a wall, a book, and a pattern of tree branches 
in a window). Presence of hundreds (or even dozens) ir- 
elevant objects makes learning by a chi

representations of situations, which are dynamic and 
vague assemblages of situations from imagery (and other 
modalities), bits and pieces along with some relations 
among them perceived at lower levels. These pieces and 
relations may come from different past perceptions, not 
necessarily from a single perceptual mode, and not nec- 
essarily stored in a contiguous parts of the brain. The 
dynamic process of DL-PSS-simulation, which assem- 

r
situations a mathematical mystery. In addition, a human 
constantly perceives large numbers of different objects 
and their combinations, which do not correspond to any- 
thing worth learning; the human mind successfully learn 
to ignore them. 

A most difficult part of learning-cognition for mathe- 
matical modeling is to learn which sets of objects are 
important for which situations (contexts). The key mathe- 
matical property of DL that made this solution possible, 
same as in the previous section, is a process “from vague- 

before the eyes, is mostly unconscious. We will discuss 
in details in section 6 that these are perceptual symbols 
as described in [1]. DL mathematically models PSS 
simulators [1], processes that match bottom-up percep- 
tions with top-down signals, assemble symbols in cogni- 
tion-perception, and assemble conceptual representations 
by recreating patterns of activation in sensorimotor brain 
areas (as discussed later in the paper). An essential mecha- 
nism of DL cognition is a process of simulation of per- 
ceptual imagination-cognitions; these situation-symbols 

u- 
r”
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are simulated from simpler perceptions-objects. The same 
mechanism can simulate plans and more complex ab- 
stract thoughts, as discussed in later sections. 

3.

mi is the 
e situation m. Thus 
wn parameters. Es- 

tical formulation can use 

dy

conditional probability of observing vector 
X

1. DL for Learning Situations 

Here we consider a problem, where an intelligent agent 
(a child) is learning to recognize certain situations in the 
environment; while it is assumed that a child has learned 
to recognize objects. In real life a child learns to recog- 
nize situations, to some extent, in parallel with recognizing 
objects. But for simplicity of the illustration examples 
and discussions below, we consider a case of objects 
being already known. For example, situation “office” is 
characterized by the presence of a chair, a desk, a com- 
puter, a book, a book shelf. Situation “playground” is 
characterized by the presence of a slide, a sandbox, etc. 
The principal difficulty is that many irrelevant objects 
are present in every situation.  

We use Do to denote the total number of objects that 
the child can recognize in the world (it is a large number). 
In every situation he or she perceives Dp objects. This is 
a much smaller number compared to Do. Each situation is 
also characterized by the presence of Ds objects essential 
for this situation (Ds < Dp). Normally nonessential ob- 
jects are present and Ds is therefore less than Dp. The sets 
of essential objects for different situations may overlap, 
with some objects being essential to more than one situa- 
tion. We assume that each object is encountered in the 
scene only once. This is a minor and nonessential simpli- 
fication, e.g. we may consider a set of similar objects as a 
new object.  

A situation can be mathematically represented as a vec- 
tor in the space of all objects, Xn = (xn1, … xni, … xnDo) 
[84,85]. If the value of xni is one the object i is present in 
the situation n and if xni is zero, the corresponding object 
is not present. Since Do is a large number, Xn is a large 
binary vector with most of its elements equal to zero. A 
situation model is characterized by parameters, a vector 
of probabilities, pm = (pm1,… pmi,... pmDo). Here p
probability of object i being part of th
a situation model contains D  unknoo

timating these parameters constitutes learning. We would 
like to emphasize that although notations like xni, pmi 

might look like amodal symbols, such an interpretation 
would be erroneous. Correct interpretation of notations in 
a mathematical model depends on what actual physical 
entities are referred to by the notations. These notations 
refer to neural signals, elements from which simulator- 
processes assemble symbols of a higher level. As dis- 
cussed, for simplicity of presentation of the results, we 
assume that lower-level simulator-processes responsible 
for object recognition have already run their course, and 
objects have been recognized at a lower level, therefore 
xni are 0 or 1. Given mathema

namic signals xni, parts of object-recognition simula- 
tors. We remind that simulators of interest in this exam- 
ple are situations; in addition to xni these simulators in- 
volve dynamic neural signals referred by pmi. These are 
constituent signals of the ongoing simulator processes at 
the considered level of situations, which learn to recog- 
nize situations, symbols at a higher level (relative to ob- 
jects). 

The elements of vector pm are modeled as independent 
(this is not essential, if presence of various objects in a 
situation actually is correlated, this would simplify learn- 
ing, e.g. perfect correlation would make it trivial). Cor- 
respondingly, 

n in a situation m is then given by the standard formula  

( ) ( )( ) ( )

ditional probabilities (1). The association vari- 
ab

( )nini
Do

1 xx
m mi mi

1

l n n p 1 p
i

−

=
= −∏X M       (4) 

Consider N perceptions a child was exposed to (N in- 
cludes real “situations” and “irrelevant” random ones); 
among them most perceptions were “irrelevant” corre- 
sponding to observing random sets of objects, and M-1 
“real” situations, in which Ds objects were repeatedly 
present. All random observations we model by 1 model 
(“noise”); assuming that every object has an equal chance 
of being randomly observed in noise (which again is not 
essential) the probabilities for this noise model, m = 1, 
are p1i = 0.5 for all i. Thus we define M possible sources 
for each of the N observed situations. 

The total similarity for the above M models (M-1 “real” 
and 1 noise) is given by the same equation as similarity 
in the previous example [16]. And the same DL equa- 
tions maximize it over the parameters, which in this case 
are the probabilities of objects constituting various situa- 
tions. Specifics of this case of situations are given by 
models, which exact form is given by Equation (4). The 
general DL equations in Section 2.3 can be significantly 
simplified in this case [84] and we will describe them 
now in details. The DL is an iterative process, it involves 
a sequence of interactions between bottom-up and top- 
down signals; this sequence involves first, association 
variables connecting these signals, and second, parameter 
update equations, which improve parameter values in this 
interaction-learning. We use shorthand notations l(n|m) 
for con

les connecting bottom-up signals n with top-down pro- 
jections-simulators m are given by the general equation, 
as in Section 2.3, 

( ) ( ) ( ) ( ) ( )f m n r m l m n r m l n m
m M′∈

′ ′=       (5) 

For intuitive understanding we point out that these as- 
sociation variables are different from Equation
they are normalized by the denominator, the sum of l(m|n) 
fo

 (1) in that 

r a given bottom-up signal over all active simulators m. 
Whereas l(m|n) could vary greatly in their values, f(m|n) 
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vary between 0 and 1. Also, Equation (5) contain parame- 
ters r(m), which are needed for the following reason: it is 
convenient to define conditional probabilities (1) assum- 
ing the simulator m actually is present and active; there- 
fore r(m) are needed to define the actual probability of 
the simulator m in the current process. These association 
variables (5) are defined similarly to the a posteriori 
Bayesian probabilities that a bottom-up signal n comes 
from a situation-simulator m. Yet they are not probabilities 
as long as parameters pmi have wrong values. In the proc- 
ess of learning, these parameters attain their correct val- 
ues and, at the end of the DL-simulator processes, the 
association variables can be interpreted as probabilities.  

These association variables are used to update pa- 
rameter values, which is the second part of the DL proc- 
ess. In this case parameter update equations are simple, 

( ) ( )mi ni
n N n N

p f m n x f m n
′∈ ∈

′=             (6) 

These equations have very simple interpretations: they 
estimate parameters pmi of the m-th simulator as weighted 
averages of the bottom-up signals, xni. Note, the bottom- 
up signals “do not know” which situation they came from. 
The weights (f/Σf) are normalized association variables, 
associating data n with simulator m. These equations are 
easy to understand: if the object i never appears in a situa- 
tion m, at the end of the DL-simulator learning process, 
f(m|n) = 0, and pmi = 0, as it should be, even if xni are not 
0 because object i appears in other situations. The role of 
the normalizing denominator (Σf) is easy to un
for example, if object i is actually present in situation m, 
th

to” might require knowledge of human 
the world is organized. Prerequisites to some of this 

kn

co

derstand; 

en xni = 1 for each set of bottom up signal n, whenever 
situation m is observed. In this case, at the end of 
DL-simulator process, f(m|n) = 1 for all n, and Equation (3) 
yields pmi = 1, as it should be. 

We did not mention modeling relations among objects. 
Spatial, temporal, or structural connections, such as “to 
the left,” “on top,” or “connected” can be easily added to 
the above DL formalism. Relations and corresponding 
markers (indicating which objects are related) are no 
different mathematically than objects, and can be consid- 
ered as included in the above formulation. This mecha- 
nism is “flat” in the hierarchical structure of the brain, 
meaning that relations “reside” at the same level as enti- 
ties they relate. Alternatively, some relations are realized 
in the brain hierarchically: relations could “reside” at a 
higher level, with markers being implemented similar to 
parametric models. Experimental data might help to find 
out, which relations are “flat” and which are “hierarchi- 
cal”. Other types of relations are principally hierarchical, 
e.g. objects-features, situations-objects, etc. We would also 
add that some relations are not “directly observable”, as 
objects; say to differentiate between “glued to” or “stack 

actions or how 

owledge might be inborn [86,87]. We suggest that di- 
rectly observable relations are learned as parts of a situa- 
tion, similar to objects, and this learning is modeled by 
the DL formalism described above. Relations that require 
human cultural knowledge may be learned with the help 
of language, as discussed later, and inborn mechanisms 
should be further elucidated experimentally. This discus- 
sion implies several predictions that could be experiment- 
tally tested: existence of two types of relation mechanisms, 
flat and hierarchical; suggestions of which types of mecha- 
nisms are likely to be used in the brain for which types of 
relations; and suggestions of mechanisms conditioned by 
culture and language. 

The above formulation, let us repeat, assumes that all 
the objects have already been recognized, still the above 
formulation can be applied without any change to real, 

ntinuously working brain with multiplicity of concur- 
rently running simulators at many levels, feeding each 
other. Also modality of objects (various sensorial or mo- 
tor mechanisms) requires no modifications; emotions can 
be included as well, some emotions are reducible to rep- 
resentations and learned to be a part of a situation similar 
to objects; other involve entirely different mechanisms 
discussed later [60,88-92]). The bottom up signals do not 
have to be definitely recognized objects, these signals 
can be sent before objects are fully recognized, while ob- 
ject simulators are still running and object representations 
are vague; this would be represented by xni values between 
0 and 1. The bottom up signals do not have to correspond 
to complete objects, but could recreate patterns of active- 
tions in sensorimotor brain areas associated with percep- 
tion of objects; similarly, top-down signals correspond- 
ing to situations, pm, correspond to patterns of activations 
recreating experience of this situation. The presented 
formalization therefore is a general mechanism of simu- 
lators. A fundamental experimentally testable prediction 
of the developed theory is that top-down signals originate 
from vague representations, and the vagueness is deter- 
mined by degrees of uncertainty of association between 
bottom-up signals and various higher-level representations. 

3.2. Learning Symbol-Situations 

This example considers the total number of recognizable 
objects equal to 1000 (Do = 1000). The total number of 
objects perceived in a situation is set to 50 (Dp = 50). The 
number of essential objects is set to 10 (Ds = 10). The 
number of situations to learn (M-1) is set to 10. Note that 
the true identities of the objects are not important in this 
simulation so we simply use object indexes varying from 1 
to 1000 (this index points to neural signals corresponding 
to a specific object-simulators). The situation names are 
also not important and we use situation indexes (this in- 
dex points to neural signals corresponding to a specific 
situation-simulators). We would emphasize that the use 
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 and as discussed, 
cts are fully recog- 

 groups- 
si

of numbers for objects and situation, while may seem 
consistent with amodal symbols, in fact is nothing but 
notations. We repeat that the principled differences be- 
tween PSS and amodal systems are mechanisms in the 
brain and their modeling, not mathematical notations. 
Among these mechanisms are simulators, mathematically 
described by DL.  

Let us repeat, amodal symbols are governed by classi- 
cal logic, which is static and faces CC. DL is a process 
and overcomes CC. DL operates on PSS representations 
(models pm), which are vague collections of objects 
(some of these objects could also be vague, not completely 
assembled yet representations). Another principled differ- 
ence is interaction between perceptual-based bottom-up 
and top-down neural fields Xn and Mm; indexes n and m 
are just mathematical shorthand for corresponding neural 
connections. In this paper we consider object perception 
and situation perception in different sections, but of course 
the real mind-brain operates continuously, “objects” in this 
section are neural signals sent to situation-recognition 
brain area (and corresponding simulators) by excited neu- 
ron fields corresponding to models of recognized-objects 

This example uses simulated data generated by first 
randomly selecting Ds = 10 specific objects for each of 
the 10 groups of objects, allowing some overlap between 
the groups (in terms of specific objects). This selection is 
accomplished by setting the corresponding probabilities 
pmi = 1. Next we add 40 more randomly selected objects 
to each group (corresponding to Dp = 50). We also gen- 
erate 10 more random groups of 50 objects to model situa- 
tions without specific objects (noise); this is of course 
equivalent to 1 group of 500 random objects. We generate 
N’ = 800 perceptions for each situation resulting in N = 
16000 perceptions (data samples, n = 1… 16000) each 
represented by 1000-dimensional vector Xn. These data 
are shown in Figure 2 sorted by situations. 

Then the samples are randomly permuted, according to 
randomness of real life perceptual situations, in Figure 3. 
The horizontal lines disappear; the identification of repeat- 
ed objects becomes nontrivial. An attempt to learn

tuations (the horizontal lines) by inspecting various 
horizontal sortings (until horizontal lines would become 
detectable) would require MN = 1016000 inspections, 
which is of course impossible. This CC is the reason why 
the problem of learning situations has been standing un- 
solved for decades. By overcoming CC, DL can solve 
this problem as illustrated below. 

(partially, as described in Section 2;
these signals are being sent before obje
nized, while object simulators are still running). 

 

 

rceptions (data samples) 
jects. 

Figure 2. Generated data; object index is along vertical axes and situation index is horizontal. The pe
are sorted by situation index (horizontal axis); this makes visible the horizontal lines for repeated ob
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Figure 3. Data, same as Figure 2, randomly sorted by situations (horizontal axis), as available to the DL algorithm for learn-
ing. 

 
The DL algorithm is initiated similarly to Section 2 by 

defining 20 situational models (an arbitrary selection, 
given actual 10 situations) and one random noise model 
to give a total of M = 21 models (in Section 2.4, Figure 1 
models were automatically added by DL as required; 
here we have not done this (because it would be too 
cumbersome to present results). The models are initial- 
ized by assigning random probability values to the ele- 
ments of the models. These are the initial vague percep- 
tual models, which assign all objects to all situations.  

The initialization and the iterations of the DL algo- 
rithm (the first 3 steps of solving DL equations) are illus- 
trated in Figure 4. Each subfigure displays the probabil- 
ity vector pm for each of the 20 models. The vectors have 
1000 elements corresponding to objects (vertical axes). 
The values of each vector element are shown in gray scale. 
The initial models assign nearly uniformly distributed 
probabilities to all objects. The horizontal axes are the 
model index changing from 1 to 20. The noise model is 
not shown. As the algorithm progresses, situation group- 
ing improves, and only the elements corresponding to 
repeating objects in “real” situations keep their high val- 
ues, the other elements take low values. By the third it- 
eration the 10 situations are identified by their corre- 

sponding models. The other 10 models converge to more 
or less random low-probability vectors. 

This fast and accurate convergence can be seen from 
Figures 5 and 6. We measure the fitness of the models to 
the data by computing the sum-squared error, using the 
following equation. 

( )
{ }

Do 2Ture
mi mi

1

E p p
m B i∈ =

= −   

In this equation the first summation is over the subset 
{B} containing top 10 models that provide the lowest 
error (and correspondingly, the best fit to the 10 true 
models). In the real brain, of course, the best models 
would be added as needed, and the random samples 
would accumulate in the noise model automatically; as 
mentioned, DL can model this process and the reason we 
did not model it, is that it would be too cumbersome to 
present results. Figure 5 shows how the sum squared 
error changes over the iterations of the DL algorithm. It 
takes only a few iterations for the DL algorithm to con- 
verge. Each of the best models contains 10 large and 990 
low probabilities. Iterations stop, when average error of 
probabilities reached a low value of 0.05 resulting in the 
final error E(10) = 1000*(0.05^2 )*10 = 25. 
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Figure 4. DL situation learning. Situation-model parameters converge close to true values in 3 steps. 
 

 

ps, iterations continue until average error reached predeter- Figure 5. Errors of DL learning are quickly reduced in 3 - 4 
mined threshold of 0.05 (10 steps). 

ste
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Figure 6. Correct associations are near 1 (diagonal, except noise) and incorrect associations are near 0 (off-diagonal). 
 
Figure 6 shows average associations, A (m,m’) among 

true (m) and computed models (m’); this is an 11 × 11 
matrix according to the true number of different models 
(it is computed using association variables between mod- 
els and data, f(m|n)) 

( ) ( ) ( ) ( ) { }n ,  m B′ ′∈ , 
N

n 1

A m, m 1 N f m n f m
=

′ ′= ∗

( ) ( ) ( ) ( ) { }n ,  m B′∉  

Here, f(m|n) for true 10 models m is either 1 (for N’ data 
samples from this model) or 0 (for others), f(m’|n) are 
computed associations, in the second line all 10 computed 
noise models are averaged together, corresponding to one 
true (random) noise model. The correct associations on 
the main diagonal in Figure 6 are 1 (except noise model, 
which is spread among 10 computed noise models, and 
therefore equals 0.1) and off-diagonal elements are near 
0 (incorrect associations, corresponding to small errors 
shown in Figure 5).  

Errors in Figure 5 have not converged exactly to 0. 

 0 value, since expres- 

sions 00 are numerically non-defined, therefore all values 
have been bounded from below by 0.05 (a somewhat arbi- 
trary limit). Figure 6 demonstrates that nevertheless, con- 
vergence to the global maximum was achieved (the ex- 
actly known solution in terms of learning the correct 
situations). 

Similar to Section 2, learning of perceptual situation- 
symbols has been accomplished due to the DL proc- 
ess-simulator, which simulated internal model-represent- 
tations of situations, M, to match patterns in bottom-up 
signals X (sets of lower-level perceptual object-symbols). 

4. Concepts, Simulators, Embodiment, and 
Binding 

PSS grounds perception, cognition, and high-level symbol 
operation in modal symbols, which are ultimately ground- 
ed in the corresponding brain systems. Previous section 
provides an initial development of formal mathematical 
description suitable for PSS: the DL process “from vague- 
to-crisp” models PSS simulators. We have considered just 
one subsystem of PSS, a mechanism of learning, forma- 

the situations. (More generally, the formalized mecha-

{ }

N

m B n 1

A m,11 1 10 N f m n f m
′∉ =

′ ′= ∗ ∗ 

The reason is numerical, p and x variables in Equation (4) 
cannot be allowed to take exactly

tion, and recognition of situations from objects making up 
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nism of simulators includes recognition of situations by 
recreating patterns of activations in sensorimotor brain 
areas, from objects, relations, and actions making up the 
situations). The mind’s representations of situations are 
symbol-concepts of a higher level of abstractness than 
symbol-objects making them up. The proposed mathe- 
matical formalism can be advanced to “higher” levels of 
more and more abstract concepts. Such an application to 
more abstract ideas, however, may require an additional 
grounding in language [42,90,92,93,96-101] as we briefly 
consider in the next section.  

The proposed mathematical formalism can be similarly 
applied at a lower level of recognizing objects as con- 
structed from their parts; mathematical techniques of Sec- 
tions 2 and 3 can be combined to implement this PSS 
object recognition idea as described in [1]. Specific mod- 
els considered in Section 2 are likely to be based on in- 
born mechanisms specific to certain aspects of various 
sensor and motor modalities; general models of Section 3 
can learn to represent and recognize objects as collections 
of multi-modal perceptual features and relations among 
them. In both cases principal mechanisms of object per- 
ception such as discussed in [102] can be modeled, either 
as properties of object models, or as relations between 
perceptual features. Since relations specific to object rec- 
ognition, according to this reference are learned in infancy, 
the mechanism of Section 3 seems appropriate (it models 
learning of relations, whereas models in Section 2 do not 
readily contain mechanisms of learning of all their struc- 
tural aspects and are more appropriate to modeling inborn 
mec
B salou are not similar to photographs of specific ob- 
je

odels productivity of the mind con- 
cept-simulator system. The simulated situations and other 
concepts are used not only in the process of matc  
bottom-up and top-down signals for learning and recog- 
nizing representations, but also in the motor actions, and
in the processes of imagination and planning. 

prediction of the DL theory that could be tested experi- 
mentally. 

Now we discuss other relationships between the mathe- 
matical DL procedures of previous sections and the fun-
damental ideas of PSS. Section 2 concentrated on the prin- 
cipal mathematical difficulty experienced by all previous 
attempts to solve the problem of complex symbol forma- 
tion from less complex symbols, the combinatorial com- 
plexity (CC). CC was resolved by using DL, a mathe- 
matical theory, in which learning begins with vague (non- 
specific) symbol-concepts, and in the process of learning 
symbol-concepts become concrete and specific. Learning 
could refer to a child’s learning, which might take days 
or months or an everyday perception and cognition, tak- 
ing approximately 1/6th of a second (in the later case 
learning refers to the fact that every specific realization of 
a concept in the world is different in some respects from 
any previous occurrences, therefore learning-adaptation 
is always required; in terms of PSS, a simulator always 
have to re-assemble the concept). In the case of learning 
situations as compositions of objects, the initial vague 
state of each situation-symbol is a nearly random and 
vague collection of objects, while the final learned situa- 
tion consists of a crisp collection of few objects specific 
to this situation. This specific of the DL process “from 
vague-to-crisp” is a prediction that can be experimentally 
tested, and we return to this later. In the learning process 
random irrelevant objects are “filtered out,” their prob- 
ability of belonging to a concept-situation is reduced to 

p a 
specific situation is increased to a value characteristic of 

ns using image content as basic building 
bl

As objects are perceptual entities-symbols in the brain, 
s. 

In t uations are perceptual symbols of a higher 

hanisms). Object representations, as described by zero, while probabilities of relevant objects, making u

ar
cts, but similar to models in Figure 4 are more or less 

loose and distributed (among modalities) collections of 
features and relations.  

The developed DL theory, by modeling the simulators, 
also mathematically m

hing

 

Presented examples are steps toward general solution 
of the binding problem discussed in [103]. That publica- 
tion discusses the role of context similar to the DL scene 
modeling. DL is a general approach to solving the bind- 
ing problem. Here we would emphasize two mechanisms 
of binding modeled in the developed theory. First, bind- 
ing is accomplished hierarchically: e.g. object representa- 
tions-simulators bind features into objects, similarly situa- 
tion representations-simulators bind objects into situations, 
etc. Second, binding is accomplished by relations that are 
learned similarly to objects and “reside” at the same level 
in the hierarchy of the mind with the bound entities. 
These two types of binding mechanisms is another novel 

this object being actually present in this situation. Rela- 
tion of this DL process to PSS is now considered. First 
we address concepts and their development in the brain. 
According to [1], “The central innovation of PSS theory 
is its ability to implement concepts and their interpreta- 
tive functio

ocks”. 
DL implements this aspect of PSS theory in a most 

straightforward way. Concept-situations in DL are collec- 
tions of objects (symbol-models at lower levels, which 
are neurally connected to neural fields of object-images). 

concept-situations are collections of perceptual symbol
his way sit

order complexity than object-symbols, they are grounded 
in perceptual object-symbols (images), and in addition, 
their learning is grounded in perception of images of 
situations. A PSS mathematical formalization of abstract 
concepts [104], not grounded in direct perceptions, is 
considered in the next section. Here we just mention that 
the proposed model is applicable to higher levels, “beyond” 
object-situations; it is applicable to modeling interactions 
between bottom-up and top-down signals at every level. 
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According to PSS, concepts are developed in the brain 
by forming collections of correlated features [105,106]. 
This is explicitly implemented in the DL process de- 
scribed in Section 3. The developed mathematical repre-
sentation corresponds to multimodal and distributed rep- 
resentation in the brain. It has been suggested that a 
mathematical set or collection is implemented in the brain 
by a population of conjunctive neurons [9]. 

DL processes are mathematical models of PSS simu- 
lators. DL symbol-situations are not static collections of 
objects but dynamic processes. In the process of learning 
they “interpret individuals as tokens of the type” [105]. 
They model multi-modal distributed representations (in- 
cluding motor programs) as described in the reference.  

The same DL mathematical procedure can apply to 
perception of a real situation in the world as well as an 
imagined situation in the mind. This is the essence of 
imagination. Models of situations (probabilities of vari- 
ous objects belonging to a situation, and objects attrib- 
utes, such as their locations) can depend on time, in this 
way they are parts of simulators accomplishing cognition 
of situations evolving in time. If “situations” and “time” 
pertain to the mind’s imaginations, the simulators im- 
plement imagination-thinking process, or planning.  

Usually we perceive-understand a surrounding situation, 
while at the same time thinking and planning future ac- 
tions and imagine consequences. This corresponds to 
running multiple simulators in parallel. Some simulators 
support perception-cognition of the surrounding situa- 
tions as well as ongoing actions, they are mathematically 
modeled by DL processes that converged to matching 
internal representations (types) to specific subsets in ex- 
ternal sensor signals (tokens). Other simulators simulate 
imagined situations and actions related to perceptions, 
co

, which evolves-simulates representation of a 
co

he DL modeling suggests that this aspect of the 
PS

 

gnitions, and actions, produce plans, etc. 
Described here DL mathematical models corresponds 

to what [104] called dynamic interpretation of PSS 
(DIPSS). DIPSS is fundamental to modeling abstraction 
processes in PSS. Three central properties of these ab- 
stractions are type-token interpretation; structured rep- 
resentation; and dynamic realization. Traditional theories 
of representation based on logic model interpretation and 
structure well but are not sufficiently dynamical. Con- 
versely, connectionist theories are dynamic but are in- 
adequate at modeling structure. PSS addresses all three 
properties. Similarly, the DL mathematical process devel- 
oped here addresses all three properties. In type-token 
relations “propositions are abstractions for properties, 
objects, events, relations and so forth. After a concept 
has been abstracted from experience, its summary repre- 
sentation supports the later interpretation of experience”. 
Correspondingly in the developed mathematical approach, 
DL models a situation as a loose collection of objects and 
relations. Its summary representation (the initial model) 

is a vague and loose collection of property and relation 
simulators

ncrete situation in the process of perception of this 
concrete situation according to DL. This DL process in- 
volves structure (initial vague models) and dynamics (the 
DL process). 

5. Extension of DL beyond PSS: Abstract 
Concepts, Language, the Mind Hierarchy, 
and Emotions 

DL is a general model of interacting bottom-up and top- 
down signals throughout the hierarchy-heterarchy of the 
mind-brain, including abstract concepts. The DL mathe- 
matical analysis suggests that modeling the process of 
learning abstract concepts has to go beyond PSS analysis 
in [1]. In particular, we discuss the role of language in 
learning abstract concepts [90,93,96,99,106-112] and 
connect it to the PSS mechanisms. The mind-brain is not 
a strict hierarchy, interactions across layers are present 
and this is some times addressed as heterarchy [18]. To 
simplify discussion we would use a term hierarchy. 

In Section 3 situation representations have been assem- 
bled from object representations. This addresses interac- 
tion between top-down and bottom-up signals in two 
adjacent layers of the mind hierarchy. The mathematical 
description in Section 3 addresses top-down and bottom-up 
signals and representations without explicit emphasis on 
their referring to objects or situations. Accordingly, we 
would emphasize here that the mathematical formulation 
in Section 3 equally addresses interaction between any 
two adjacent layers in the entire hierarchy of the mind- 
brain, including high-level abstract concepts. A fundamen- 
tal question of embodiment is discussed now.  

Barsalou assumed that higher level abstract concepts 
remain grounded-embodied in PSS since they are based 
on lower level grounded concepts, and down the hierar- 
chy to perceptions directly grounded in sensory-motor 
signals. T

S theory has to be revisited. First, each higher level is 
vaguer than a lower level. Several levels on top of each 
other would result in representations too vaguely related 
to sensory-motor signals to be grounded in them with any 
reliability. Second, the Section 3 example is impressive 
in its numerical complexity, which significantly exceeds 
anything that has been computationally demonstrated 
previously. We would like to emphasize again that this is 
due to overcoming difficulty of CC. Still statistically, 
learning of situations was based on these situations being 
present among the data with statistically sufficient in- 
formation to distinguish them among each other and 
from noise. In real life however, human learn complex 
abstract concepts, such as “system”, “rationality”, “sur- 
vival”, and many other abstract concepts, without statistic- 
cally sufficient information been experienced. This is

Copyright © 2012 SciRes.                                                                                 JBBS 



L. PERLOVSKY, R. ILIN 

Copyright © 2 JBBS 

212 

po

abstract ideas, 
w

 
en

tailed theory of interaction between cogni- 
tion and language is considered in [16,37,43,83,93,94, 

eri- 
fia
Se mechanism of interaction between 

ssible due to language.  
Language is learned at all levels of the hierarchy of the 

mind-brain and cultural knowledge from surrounding 
language. This is possible because language models exist 
“ready made” in the surrounding language. Language can 
be learned without real life experience, therefore kids can 
talk about much of cultural contents by the age of five or 
seven. At this age kids can talk about many 

is embodiment-grounding. Let us repeat, language is 
grounded in direct experience (of talking, reading) at all 
levels of the hierarchy, whereas cognition is grounded in 
direct perceptions only at the bottom of the hierarchy. 
Higher abstract levels of cognition are grounded in lan- 
guage. The de

100-108,107,110,112-117]. It leads to a number of v
ble experimental predictions, which we summarize in 
ction 8. The main 

hich they cannot yet adequately use in real life. This 
corresponds to a significant difference in language and 
cognitive representations, and their different locations in 
the brain. Language concepts are grounded in surround- 
ing language at all hierarchical levels. But learning cor- 
responding cognitive concepts grounded in life experi-

language and cognition is the dual model, which suggests 
that every mental model-representation has two neurally 
connected parts, language model and cognitive model. 
Language models are learned by simulator processes, 
similar to PSS simulators, however, “perception” in case 
of language refers to perception of language facts. Through 
neural connections between the two parts of each model, 
the early acquired abstract language models guide the de- 
velopment of abstract cognitive models in correspondence 
with cultural experience stored in language. The dual 
model leads to the dual hierarchy illustrated in Figure 7. 

ce takes entire life. Learning language, like learning 
cognition can be modeled by DL. Linguists consider 
words to be learned by memorizing them [87]. Learning 
meaningful phrases and syntax is similar to learning situa- 
tions and relations among objects in Section 3. Morphol- 
ogy is not unlike object composition.  

A fundamental difference of language from cognition 
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The dual model mechanism explains how language af- 

fe

no
tu s over millennia, like Magen David, Swastika, Cross, 
or Crescent? Let us compare in this regard opinions of 
two founders of contemporary semio cs, Charles Peirce 
[122] and Ferdinand De Saussure [123]. Peirce classified 
signs into symbols, indexes, and icons. Icons have mean- 
ings due to resemblance to the signified (objects, situations, 
etc.), indexes have meanings by direct connection to the 
signified, and symbols have meaning due to arbitrary 
conventional agreements. Saussure used different termi- 
nology, he emphasized that signs receive meanings due 
to arbitrary conventions, whereas symbol implies moti- 
vation. It was important for him that motivation contra- 
dicted arbitrariness. Peirce concentrated on the process of 
sign interpretation, which he conceived as a triadic rela- 
tionship of sign, object, and interpretant. Interpretant is 
similar to what we call today a representation of the ob- 
ject in the mind. However, this emphasis on interpreta- 
tion was lost in the following generation of scientists. 
This process of “interpretation” is close to the DL proc- 
esses and PSS simulators. We therefore follow Saus- 
surean designation of symbol as a motivated process. 
Motivationally loaded interpretation of symbols was also 
proposed by Jung [124]. He considered symbols as proc- 
esses bringing unconscious contents to consciousness. 
Similar are roles of PSS simulators and DL processes.  

In scientific understanding of symbols and semiotics, 
the two functions, understanding the language and under- 
standing the world, have often been perceived as identical. 
This tendency was strengthened by considering logical 
rules to be the mechanism of both, language and cogni- 
tion. According to Russell [125], language is equivalent to 

ed 
is amenable to interpreting them as amodal symbols- 
signs. Yet, we have to remember that these are but final 
states of previous simulator processes, perceptual sym- 
bols. Every perceptual symbol-simulator has a finite dy- 
namic life, and then it becomes a static symbol-sign. It 
could be stored in memory, or participate in initiating 
new dynamical perceptual symbols-simulators. This infi- 
nite ongoing dynamics of the mind-brain ties together 
static signs and dynamic symbols. It grounds symbol 
processes in perceptual signals that originate them; in turn, 
when symbol-processes reach their finite static states-signs, 
these become perceptually grounded in symbols that cre- 
ated them. We become consciously aware of static sign- 
states, express them in language and operate with them 
logically. Then, outside of the mind-brain dynamics, they 
could be transformed into amodal logical signs, like 
marks on a paper. Dynamic processes-symbols-simu- 
lators are usually not available to consciousness. These 
PSS processes involving static and dynamic states are 
mathematically modeled by DL in Section 3 and further 
discussed in Section 4. 

To summarize, in this paper we follow a tradition us- 
ing a word sign for an arbitrary, amodal, static, unmoti- 
vated notation (unmotivated means unemotional, in par- 
ticular). We use a word symbol for the PSS and DL proc- 
esses-simulators, these are dynamic processes, connect- 
ing unconscious t  conscious; they are motivationally 
loaded with emotions. As discussed in Section 2, DL 
processes are motivated toward increasing knowledge, 
and they are loaded with knowledge-related emotions, 
even in absence of any other motivation and emotion. 

cts cognition. It follows that language affects culture 
and its evolution [56,88,108,118,119]. 

6. Mathematical Models and Perceptual vs 
Amodal Symbols 

Any mathematical notation may look like an amodal 
symbol, so in this section we discuss the roles of amodal 
vs perceptual symbols in DL. This would require clari- 
fication of the word symbol. We touch on related phi- 
losophical and semiotic discussions and relate them to 
mathematics of DL and to PSS. For the sake of brevity 
within this paper we limit discussions to the general in- 
terest, emphasizing connections between DL, perceptual, 
and amodal symbols; extended discussions of symbols 
can be found in [16,43,83,120]. We also summarize here 
related discussions scattered throughout the paper. 

“Symbol is the most misused word in our culture” [121]. 
Why the word “symbol” is used in such a different way: to 
denote trivial objects, like traffic signs or mathematical 

ations, and also to denote objects affecting entire cul- 

it is merely part of the symbolism by which we express 
our thought”. Hilbert [46] was sure that his logical theory 
also describes mechanisms of the mind, “The fundamen- 
tal idea of my proof theory is none other than to describe 
the activity of our understanding, to make a protocol of 
the rules according to which our thinking actually pro- 
ceeds”. Similarly, logical positivism centered on “the 
elimination of metaphysics through the logical analysis of 
language”—according to Carnap [126] logic was suffi- 
cient for the analysis of language. As discussed in Section 
2.2, this belief in logic is related to functioning of human 
mind, which is conscious about the final states of DL 
processes and PSS simulators; these final states are per- 
ceived by our minds as approximately logical amodal 
symbols. Therefore we identify amodal symbols with 
these final static logical states, signs. 

DL and PSS explain how the mind constructs symbols, 
which have psychological values and are not reducible to 
arbitrary logical amodal signs, yet are intimately related 
to them. In Section 3 we have considered objects as 
learned and fixed. This way of modeling objects indet

re

ti

o

axiomatic logic, “[a word-name] merely to indicate what 
we are speaking about; [it] is no part of the fact asserted… 

These knowledge-related emotions are called aesthetic 
emotions since Kant. They are foundations of higher 
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co

1-13,15,16,36,38, 
40-42,54, 66,83,88,89,93,95,96,100,101,126-138]. 

ti- 
cal e taken for amodal symbols. 

of

e brain predicts expected percep- 
tio

gnitive abilities, including abilities for the beautiful, 
sublime, and they are related to musical emotions. More 
detailed discussions can be found in [1

DL mathematical models (in Section 3) use mathema
 notations, which could b

Such an interpretation would be erroneous. Meanings and 
interpretations of mathematical notations in a model de- 
pends not on the appearance, but on what is modeled. Let 
us repeat, any mathematical notation taken out of the 
modeling context, is a notation, a static sign. In DL 
model-processes these signs are used to designate neuronal 
signals, dynamic entities evolving “from vague to crisp” 
and mathematically modeling processes of PSS simula- 
tors-symbols. Upon convergence of DL-PSS simulator 
processes, the results are approximately static entities, 
approximately logical, less grounded and more amodal. 

Grounded dynamic symbol-processes as well as amo- 
dal static symbols governed by classical logic can both 
be modeled by DL. DL operates on a non-logical type of 
PSS representations, which are vague combinations of 
lower-level representations. These lower-level represen- 
tations are not necessarily complete images or events in 
their entirety, but could include bits and pieces of various 
sensor-motor modalities, memory states, as well as vague 
dynamic states from concurrently running simulators— 
DL processes of the on-going perception-cognition (in 
Section 3, for simplicity of presentation, we assumed that 
the lower-level object-simulators have already run their 
course and reached static states; however, the same 
mathematical formalism can model simulators running in 
parallel on multiple hierarchical levels). The mind-brain 
is not a strict hierarchy, the same-level and higher-level 
representations could be involved along with lower levels. 
DL models processes-simulators, which operate on PSS 
representations. These representations are vague and in- 
complete, and DL processes are assembling and concre- 
tizing these representations. As described in several ref- 
erences by Barsalou, bits and pieces from which these 
representations are assembled could include mental im- 
agery as well as other components, including multiple 
sensor, motor, and emotional modalities; these bits and 
pieces are mostly inaccessible to consciousness during 
the process dynamics. 

DL also explains how logic and ability to operate amo- 
dal symbols originate in the mind from illogical operations 

 PSS: mental states approximating amodal symbols and 
classical logic appear as the end of the DL process- 
simulators. At this moment they become conscious static 
representations and loose that component of their emo- 
tional-motivational modality, which is associated with 
the need for knowledge (to qualify as amodal, these mental 
states should have no sources of modality, including emo- 
tional modality). The developed DL formalization of PSS, 

therefore suggests using a word signs for amodal mental 
states as well as for amodal static logical constructs out- 
side of the mind, including mathematical notations; and 
to reserve symbols for perceptually grounded motivational 
cognitive processes in the mind-brain. Memory states, to 
the extent they are static entities, are signs in this termi- 
nology. Logical statements and mathematical signs are 
perceived and cognized due to PSS simulator symbol- 
processes and become signs after being understood. Per- 
ceptual symbols, through simulator processes, tie together 
static and dynamic states in the mind. Dynamic states are 
mostly outside of consciousness, while static states might 
be available to consciousness. 

7. Experimental Evidence 

Neuroimaging experiments demonstrated that DL is a 
valid model for visual perception [19]. Experimental pro- 
cedures in this reference used functional Magnetic Reso- 
nance Imaging (fMRI) to obtain high-spatial resolution 
of processes in the brain, which they combined with mag- 
neto-encephalography (MEG), measurements of the mag- 
netic field next to the head, which provided high tempo- 
ral resolution of the brain activity. Combining these two 
techniques the experimenters were able to receive high 
resolution of cognitive processes in space and time. Bar 
et al. concentrated on three brain areas: early visual cor- 
tex, object recognition area (fusiform gyrus), and object- 
information semantic processing area (OFC). They dem- 
onstrated that OFC is activated 130 ms after the visual 
cortex, but 50 ms before object recognition area. Their 
conclusion has been that OFC represents the cortical 
source of top-down facilitation in visual object recogni- 
tion. This top-down facilitation is unconscious. They dem- 
onstrated that the imagined image generated by top-down 
signals facilitated from OFC to cortex is vague (the au- 
thors in this publication refer to low spatial-frequency con- 
tent images), confirming the essential mechanism of DL. 
Conscious perception of an object occurs when vague 
projections become crisp and match the crisp and clear 
image from the retina, and an object recognition area is 
activated.  

From sensory data th
n and cognition. This includes predictions of complex 

information, such as situations and social interactions 
[139,140]. Predictions are initiated by gist information 
rapidly extracted from sensory data. At the “lower”-ob- 
ject level this gist information is a vague image of an 
object. At higher levels “the representation of gist infor- 
mation is yet to be defined”. The model presented here 
defines this higher-level gist information as vague col- 
lections of vague objects, with relevant objects for a spe- 
cific situation having just slightly higher probabilities 
than irrelevant ones. The model is also consistent with 
the hypothesis in [139] that cognition at higher levels 
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relies on mental simulations. Mathematical predictions in 
this paper suggest specific properties of these higher- 
level simulators (vagueness of top-down representations 
is represented by their associations with bottom-up sig- 
na

of higher-level simulators will be 
ad

uch as “before”, “after” 
ns-objects into mod- 

ental approach will be 

perience increases with age. These make a 
fr

ls). 

8. Future Research 

The DL mathematical description of PSS should be ad- 
dressed throughout the mind hierarchy; from features and 
objects “below situations” in the hierarchy to abstract 
models and simulators at higher levels “above situa- 
tions”. Modeling across the mind modalities will be ad- 
dressed including diverse modalities, symbolic functions, 
conceptual combinations, predication. Modeling features 
and objects would have to account for suggestions that 
perception of sensory features are partly inborn [1]. The 
developed DL formalization of PSS corresponds to ob- 
servations in [141] and it will be used for generating 
more detailed experimentally verifiable predictions. A 
number of predictions have been made in this paper, in- 
cluding influence of perception on cognition [142].  

The developed theory provides solutions to classical 
problems of conceptual relations, binding, and recursion. 
Binding is a mechanism connecting events into meaning- 
ful “whole” (or larger-scale events). The DL model de-
veloped here specifies two types of binding mechanisms 
“flat” and “hierarchical”, and suggests which mechanisms 
are likely to be used for various relations. Our model also 
suggests existence of binding mechanisms conditioned 
by culture and language. Recursion has been postulated 
to be a fundamental mechanism in cognition and lan- 
guage [103], however, that reference has not proposed 
specific mechanisms of how recursion creates represen- 
tations, nor how it maps representations into the sen- 
sory-motor or conceptual-intentional interfaces. In our 
opinion this is an erroneous assumption, and the error is 
similar to mistaking logical signs for symbol-processes 
(recursion is an important logical operation). According 
to the developed theory recursion is not a fundamental 
mechanism, instead the hierarchy is proposed as a mecha- 
nism of recursion. Successive hierarchical levels accom- 
plish recursive cognitive and linguistic functions. These 
predictions will be experimentally tested. 

Predicted properties 
dressed in experimental research [19,139]. These in- 

clude a prediction that early predictive stages of situation 
simulations are vague. Whereas vague predictions of ob- 
jects resemble low-spatial frequency of object imagery 
[19], “the representation of gist information on higher 
levels of analysis is yet to be defined” [139]. According 
to the developed model, vague predictions of situations 
should contain many less-relevant (and likely vague) ob- 
jects with lower probabilities. Since the mathematical model 
proposed here is applicable to higher levels (“above” ob- 

ject-situations), this hypothesis should be relevant to the 
nature of information of higher-level gists: initial repre- 
sentation of abstract concepts are vague in terms of asso- 
ciations with constituent bottom-up signals (these asso- 
ciations are not exact, but vague; probabilistically, they 
are not close to zeroes and ones).  

Another topic discussed in [139], “how the brain inte-
grates and holds simultaneously information from multi-
ple points in time” also can be represented by the present 
model. Two different mechanisms will be explored: first, 
explicit incorporation of time into models (so that model 
parameters-probabilities depend on time), and second, 
categorized temporal relations, s
can be included as any other relatio
els. A joint mathematical-experim
appropriate. 

Experimental and theoretical future research will ad- 
dress interaction between language and cognition. Lan- 
guage is acquired from surrounding language, rather than 
from embodied experience; language therefore is closer 
aligned with amodal symbols than with perceptual sym- 
bols. According to the developed theory, higher abstract 
concepts could be stronger grounded in language than in 
perception; using language the mind may operate with 
abstract concepts as with amodal symbols, and therefore 
have limited embodied understanding grounded in ex- 
perience of how abstract concepts relate to the world. 
Higher-level concepts may be less grounded in percep- 
tion and experience than in language. The developed 
theory suggests several testable hypotheses: (i) the dual 
model, postulating separate cognitive and language men- 
tal representations; (ii) neural connections between cog- 
nitive and language mental representations; (iii) language 
mental representations guiding acquisition of cognitive 
representations in ontological development; (iv) abstract 
concepts being more grounded in language than in ex- 
perience; and (v) this shift from grounding in perception 
and experience to grounding in language progresses up 
the hierarchy of abstractness; while grounding in percep- 
tion and ex

uitful field for future experimental research. 
The suggested dual model of interaction between lan- 

guage and cognition bears on language evolution, and 
future research should address theoretical and experi- 
mental tests of this connection between evolution of lan- 
guages, cognition, and cultures [42,61,88,97,112-117,134, 
143-148]. 

Emotions in language and cognition have been ad- 
dressed in [88,149]. Future research would explore roles 
of emotions (i) in language-cognition interaction), (ii) in 
symbol grounding, (iii) the role of aesthetic and musical 
emotions in cognition [36,54,128,131,134-136,150], and 
(iv) emotions of cognitive dissonances [151,152]. 
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