
Int. J. Communications, Network and System Sciences, 2012, 5, 298-302
http://dx.doi.org/10.4236/ijcns.2012.55039 Published Online May 2012 (http://www.SciRP.org/journal/ijcns)

Testing and Analysis of VoIPv6 (Voice over Internet
Protocol V6) Performance Using FreeBSD

Asaad A. Abusin, M. D. Jahangir Alam, Junaidi Abdullah
Faculty of Computing and Informatics (FCI), Multimedia University, Cyberjaya, Malaysia

Email: asaadabusin@yahoo.com

Received February 27, 2012; revised March 23, 2012; accepted April 5, 2012

ABSTRACT

This study focuses on testing and quality measurement and analysis of VoIPv6 performance. A client, server codes were
developed using FreeBSD. This is a step before analyzing the Architectures of VoIPv6 in the current internet in order
for it to cope with IPv6 traffic transmission requirements in general and specifically voice traffic, which is being at-
tracting the efforts of research, bodes currently. These tests were conducted in the application level without looking into
the network level of the network. VoIPv6 performance tests were conducted in the current tunneled and native IPv6
aiming for better end-to-end VoIPv6 performance. The results obtained in this study were shown in deferent codec’s for
different bit rates in Kilo bits per second, which act as an indicator for the better performance of G.711 compared with
the rest of the tested codes.

Keywords: VoIPv6 (Voice over Internet Protocol V6) Performance; Voice over Internet Protocol V6 Performance

Testing; Voice over Internet Protocol V6 Performance Analysis; VoIPv6 Quality Testing in the Application
Level

1. Introduction

In this study the G.711 was the codec technique in the
VoIPv6 software that was used in both the VoIPv6 client
and server couples in both the source IP and destination
IP to investigate the voice packets traffic quality.

There are two main important and related considera-
tions in selecting Audio Codec:

The delay that a codec will be introduced.
The Digital Signal Processor (DSP) speed that is re-

quired.
The DSP is measured in millions instructions per sec-

ond (MIPS). Both factors affect the QoS of voice traffic,
in addition to all that is the effect of the protocol per-
formance [1,2].

2. Literature Review

With the great development of wireless communication
technology and Internet, VoIP over wireless network is
widely used. Providing QoS guarantees for VoIP appli-
cations is increasingly important, especially in mobile/
wireless networks due to their limited bandwidth and
mobility [3].

The main difference between our study and [3] is that
this study tests the VoIP performance in Mobile/Wireless
Networks where as our study target the IPv6 protocol per-
formance in wired networks, and as a holistic approach.

In addition, [3] focused on studying VoIPv6 performance
over Mobile networks whereas our study focus on the
VoIPv6 performance in wired links.

The latest development from Cisco Systems is redefin-
ing the way businesses communicate [4]. Traffic analysis
is essential to collect the statistical information about
IP/UDP/RTP VoIPv6 packets such information like the
arrival and inter arrival time of the voice packets, this
will lead to better understanding the network and proto-
col performance, so that VoIPv6 networks with better
QoS can be modeled. Our study encourages or pouch
towards performing traffic analysis in networking sys-
tems to study the protocol performance.

IPv6 is documented in several RFCs (or request for
comments) starting from RFC 2460. The IETF also pub-
lishes Experimental, Informational and Historic RFCs,
and Best Current Practices. These RFC’s specifies the
V0IPv6 standards as mandates governing the protocol
performance.

In [5], the main difference between this study and our
study is that the testing tool in this study is Asterisk which
is an open source/free software, whereas in our study the
testing tool is FreeBSD which involve no overhead.

In [6] we are missing a capable test framework that is
part of our main source tree.

With the stable release of FreeBSD 8.0 arriving last
week we finally were able to put it up on the test bench

Copyright © 2012 SciRes. IJCNS

A. A. ABUSIN ET AL. 299

and give it a thorough look over with the Phoronix Test
Suite. We compared the FreeBSD 8.0 performance be-
tween it and the earlier FreeBSD 7.2 release along with
Fedora 12 and Ubuntu 9.10 on the Linux side and then
the OpenSolaris 2010.02 b127 snapshot on the Sun OS
side [6].

FreeBSD 8.0 introduced support for a TTY layer re-
write, network stack virtualization, improved support for
the Sun ZFS file-system, the ULE kernel scheduler by
default, a new USB stack, binary compatibility against
Fedora 10, and improvements to its 64-bit kernel will
allow a NVIDIA 64-bit FreeBSD driver by year’s end,
among a plethora of other changes. With today’s bench-
marking—compared to our initial Ubuntu 9.10 vs Free
BSD 8.0 benchmarks from September—we are using the
official build of FreeBSD 8.0 without any debugging
options and we are also delivering a greater number of
test results in this article, along with a greater number of
operating systems being compared.

In recent years, Internet Protocol (IP) telephony has
been a real alternative to the traditional Public Switched
Telephone Networks (PSTN). IP telephony offers more
flexibility in the implementation of new features and
services. The Session Initiation Protocol (SIP) is becom-
ing a popular signalling protocol for Voice over IP (VoIP)
based applications. The SIP proxy server is a software
application that provides call routing services by parsing
and forwarding all the incoming SIP packets in an IP
telephony network. The efficiency of this process can
create large scale, highly reliable packet voice networks
for service providers and enterprises. We established that
the efficient design and implementation of the SIP proxy
server architecture can enhance the performance charac-
teristics of a SIP proxy server significantly. Since SIP
proxy server performance can be characterised by its
transaction states of each SIP session, we emulated the
performance model of the SIP proxy server and studied
some of the key performance benchmarks such as aver-
age response time to process the SIP calls, and mean
number of SIP calls in the system. We showed its limita-
tions, and then studied an alternative based SIP proxy
server performance model with enhanced performance
model and studied additional key performance character-
istics such as server utilisation, queue size and memory
utilization. In [7], they provided the comparative results
between the predicted results with the experimental re-
sults conducted in a lab environment. The slit difference
between this study in [7] and our study is that this study
is a study of performance and scalability metrics of a SIP
proxy server as a practical approach where as our study
focus on the VoIPv6 performance in application level of
IPv6 networks.

In [8], Mahani et al. study the effects of concurrent voice
connections on the performance metrics of communica-

tion network such as queue length, waiting time, packets
service time and is very important. Mathematical analy-
sis of such network especially with long-tail traffic help
for a good capacity planning and also lead to an accurate
admission control algorithms.

In this study a mathematical model of a communica-
tion network supporting VoIP and back-ground traffic
with long-tail service time is considered. Some problems
of previous mathematical models are identified and a
new queueing system is proposed in which specifically
the coexisting of heavy-tail and voice flows is addressed.
The long-tail service time is approximated via hyper-
Erlang distribution and also to achieving an accurate
performance model a Markov reward model is intro-
duced. The available bandwidth for long-tail distribution
varies according to the Markov chain, describing the
utilisation factor of voice connection. Numerical results
show a comparison between exponential and heavy-tail
service time and finally the effects of concurrent voice
connections on the service time of heavy-tailed back-
ground packets is shown.

This study [9] focus on the effects of concurrent voice
connections on the performance metrics of communica-
tion network such as queue length, waiting time, packets
service time and is very important. Mathematical analy-
sis of such network especially with long-tail traffic will
help us for a good capacity planning and also lead to an
accurate admission control algorithms. In this study a
mathematical model of a communication network sup-
porting VoIP and back-ground traffic with long-tail ser-
vice time is considered. Some problems of previous
mathematical models are identified and a new queueing
system is proposed in which specifically the coexisting
of heavy-tail and voice flows is addressed. We are miss-
ing a capable test framework that is part of our main
source tree.

This means that building-in testing when working on
FreeBSD’s base system requires extra steps, and so is
harder than should be.

We currently keep our unit tests and regression test
cases under/usr/src/tools/regression/. These tests use ad-
hoc ways to build and execute their test cases. Test case
reporting is alsonot standardized though some tests use
the Perl Test Anything Protoco. Running these tests in an
automated way (a test “tinderbox”) is not always possible.

At this point of time we do not archive test logs. Even
if we did so, analysis of historical test data would be te-
dious due to the ad-hoc nature of the test reports.

The desirables from a FreeBSD test framework
 The ability to write tests that cover all the functional-

ity of the base system.
 The ability to manage multi-machine tests (i.e., dis-

tributed testing).
 A small, C-based test writing API that is easy to learn.

Copyright © 2012 SciRes. IJCNS

A. A. ABUSIN ET AL. 300

 Be capable of testing parts of the system that use
threads.

 Integration with <bsd.*.mk>.
 Test logs should be easy to parse.
 Be available as open-source, and under a BSD-com-

patible license.
The rapid growth [1] of the Internet has led to the an-

ticipated depletion of addresses in the current version of
the Internet Protocol (IP), i.e., IPv4. This depletion has
given rise to a newer version of the IP, i.e., IP version 6
(IPv6). IPv6 provides sufficient address space to meet the
predicted increase of the Internet. Since IPv4 has already
widely been deployed, it is required that the existing
IPv4 and the newly added IPv6 can coexist and interop-
erate. Due to the incompatibility of the IPv4 and IPv6
headers, various mechanisms have been proposed to
support the interoperability between IPv4 and IPv6.
However, they are mostly designed for a static environ-
ment. Mobility support of mobile terminals in a mixed
IPv4/IPv6 environment remains largely unexplored. It
introduces additional overhead and delay to communica-
tions. In this paper, we analyze various handoff scenarios
for a dual-stack mobile node with a predominant IPv6
home address roaming in a mixed IPv4/IPv6 environ-
ment. We investigate how handoffs can be supported and
derive the handoff procedures for all scenarios. In addi-
tion, we analyze the impact of mobility support on the
system performance in terms of handoff-signaling cost,
handoff delay, and handoff-failure probability using our
designed analytical models. Different traffic and mobility
patterns are taken into account in the performance analy-
sis. Numerical results are provided to demonstrate the
performance of all handoff scenarios. Conclusions from
this study can give great in-depth understanding and in-
sights into designing new cost-effective mobility support
mechanisms for IPv4/IPv6 transition and interoperability.

3. Experiments

Depending on the above two considerations in the Intro-
ductions above, Tests were conducted on the audio co-
dec’s (G.711, G.721, G.723, and G.729) in two machines
with different processor speed. An audio file of nine
seconds duration time was used to test the encode and
decode files of all the above mentioned audio codec
standards. These tests were meant to know the execution
time for the different codec’s codes as a performance
testing trial. These tests were conducted in machines with
two different processor speeds, 200 MHz and 450 MHz,
to examine the effect of the processor speed on the proc-
essing time of the codes.

The following PC specifications (comparatively old
machines) were used to conduct the Codec tests:

Pentium 200 MHz MMX Processor 64 Mbytes 100 MHz
Random Access Memory. FreeBSD 4.5 Release operat-

ing system. KAME version 2001OS28\FreeBSD [2,10,11].

4. Results

Figures 1(a) and (b) show the time required to execute
both G.711 encode and decode files in a PC with the
above specifications. Figures 2(a) and (b) show the time
required to execute both G.721 encode and decode files.
Figures 3(a) and (b) show the time required to execute
both G.723 encode and decode files, and Figures 4(a)
and (b) show the time required to execute both G.729
encode and decode files.

From the above Figures 1-4 the best average execu-
tion time for both the encode and decode files is that of
G.711, which act as an indicator for the better perform-
ance of G.711 compared with the rest of the tested co-
dec’s [2,10,11].

5. Quantifying Voice Quality

The voice quality was quantified and measured using a
standardized ranking system called the Mean Opinion
Score (MOS), which is a five-point scale described in
ITU-T Recommendations P-800. On the surface, this
system does not seem too scientific. The base of the
MOS test is a matter of people listing to voice samples.

ITU-T P.800 makes number of recommendations re-
garding the selection of participants, the test environment,

(a)

(b)

Figure 1. (a) G.711 encode file execution time average exe-
cution time is 5.065732; (b) G.711 decode file execution time
average execution time is 4.126231 seconds.

Copyright © 2012 SciRes. IJCNS

A. A. ABUSIN ET AL. 301

(a)

(b)

Figure 2. (a) G.721 encode file execution time average exe-
cution time is 5.267821 seconds; (b) G.721 decode file exe-
cution time average execution time is 5.709349 seconds.

(a)

(b)

Figure 3. (a) G.723 encode file execution time average exe-
cution time is 5.338188 seconds; (b) G.723 decode file exe-
cution time average execution time is 5.421187 seconds.

(a)

(b)

Figure 4. (a) G.729 encode file execution time average exe-
cution time is 4.617461 seconds; (b) G.729 decode file exe-
cution time average execution time is 4.309092 seconds.

explanations to listeners, analysis of results. Different
MOS tests performed on the same coding algorithm tend
to give roughly similar results (Table 1).

Test results of the MOS values for different Codec.
The MOS tests conclusion is coinciding with the result of
Free BSD tests [11-13].

IPv6 is documented in several RFCs (or request for
comments) starting from RFC 2460. The IETF also pub-
lishes Experimental, Informational and Historic RFCs,
and Best Current Practices (Table 2).

The text of this document about the RFC Editor func-
tion is based upon the proposal that USC ISI submitted to
the Internet Society in 2006. This proposal was to pro-
vide RFC Editor services during 2007-2008, with an op-
tional extension to 2009 (this option was approved). Note
that the proposal was written during the summer of 2006;
many of the proposed tasks have in fact been completed
[15].

Table 1. Test results of the MOS values for different Codec.

Speech Coder Bit Rate (Kbps) MOS Value

G.711 64 4.3

G.726 32 4.0

G.723 63 3.8

G.728 16 3.9

G.729 8 4.0

GSM Full Rate (RPE_LTP) 13 3.7

Copyright © 2012 SciRes. IJCNS

A. A. ABUSIN ET AL.

Copyright © 2012 SciRes. IJCNS

302

Table 2. These RFC’s specifies the VoIPv6 standards as
mandates governing the protocol performance [14].

Protocol Acronym Purpose RFC

Internet Protocol IP Physical network RFC-791

Internet Control
Message Protocol

ICMP Status messaging RFC-792

Transmission Control
Protocol

TCP Guaranteed delivery RFC-793

User Datagram
Protocol

UDP Coordination, Audio RFC-768

Telnet Protocol TELNET Remote login RFC-764

File Transfer
Protocol

FTP Network utility RFC-765

Simple Mail
Transfer Protocol

SMTP Email servers RFC-788

Network News
Transfer Protocol

NNTP Usenet RFC-977

Hypertext Transfer
Protocol

HTTP Web RFC-2068

6. Conclusions and Future Works

From the above Figures 1-4 we conclude the following:
 The best average execution time for both the Encode

and decode files is that of G.711, which act as an in-
dicator for the better performance of G.711 compared
with the rest of the tested codes.

 Fluctuation and the degree of Uncertainty are high
enough to affect the Quality of VoIPv6 performance.

 Any enhancement or quality improvement that could
be made to the network infrastructure will lead di-
rectly to improvement in the VoIPv6 quality, Brood
Band Internet is the best example of such improve-
ment, this Brood Band Internet is been implemented
in few countries in the world and Malaysia is ex-
pected to finalize this project by the beginning of the
year 2012.

 Any enhancement or upgrading in the machines qual-
ity is expected to increase the overall quality of
VoIPv6.

 As future work these tests could be done in different
platforms other than KAME for FreeBSD such as
USAGI which is IPv6 implementation in Linux ker-
nel, and Microsoft IPv6 stack implementation.

REFERENCES
[1] J. Xie, “Performance Analysis of Mobility Support in

IPv4/IPv6 Mixed Wireless Networks,” IEEE Transac-
tions on Vehicular Technology, Vol. 59, No. 2, 2010, pp.
962-973. doi:10.1109/TVT.2009.2034668

[2] V. Karthikeyan, N. Malmurugan and S. K. Jain, “Ambi-
ence-Based Voice over Internet Protocol Quality Testing
Model,” IETE Journal of Research, Vol. 55, No. 5, 2009,
pp. 212-217. doi:10.4103/0377-2063.57598

[3] H. Qian, “Measurement and Analysis of VoIPv6 QoS
Parameters over Mobile/Wireless Networks,” China Pa-
pers, 4 October 2010.

[4] M. E. Flannagan, “Administering Cisco Qos in Ip Net-
works,” Syngress, 11 April 2001, 519 p.

[5] H. A. Ibrahim, “Open Source VoIPv6,” Ministry of Com-
munication & Information Technology (MCIT)-The Egy-
ptian IPv6 Task Force, Cairo, 2008.

[6] M. Larabel, “FreeBSD 8.0 Benchmarked against LINUX,
Opensolaris,” 2009.
http://www.phoronix.com/scan.php?page=article&item=f
reebsd8_benchmarks&num=1

[7] S. V. Subramanian and R. Dutta, “A Study of Perform-
ance and Scalability Metrics of a SIP Proxy Server—A
Practical Approach,” Journal of Computer & System Sci-
ences, Vol. 77, No. 5, 2011, pp. 884-897.
doi:10.1016/j.jcss.2010.08.006

[8] A. Mahani, Y. S. Kavian, M. Naderi and H. F. Rashvand,
“Heavy-Tail and Voice over Internet Protocol Traffic:
Queuing Analysis for Performance Evaluation,” IET Com-
munications, Vol. 5, No. 18, 2011, pp. 2736-2743.
doi:10.1049/iet-com.2010.0697

[9] Integration TET-FreeBSD Testing Today, 2008.
http://wiki.freebsd.org/TetIntegration

[10] S. W. M. Gimgibeom, “Performance Evaluation of VoIPv6
in a Large-Scaled u-Army Network,” Korea Information
and Communications Society, Chap. 36, No. 8, 2011, p.
897.

[11] L. H. Duck and M. S. Won, “Network Performance of
U-Army VoIPv6 Network Design Methodology Using
Simulation,” Korea Institute of Communication, Vol. 33,
No. 10, 2008, p. 904.

[12] A. N. Moldovan and C. H. Muntaean, “Towards Person-
alised and Adaptive Multimedia in M-Learning Systems,”
World Conference on E-Learning in Corporate, Govern-
ment, Healthcare, and Higher Education, Hawaii, 18
October 2011, pp. 782-791.

[13] P. Denisowski, “How Does It Sound,” IEEE Spectrum,
Vol. 38, No. 2, 2003, pp. 60-64. doi:10.1109/6.898801

[14] “Internet Protocol Specification A,” 1981.
http://www.rfc-editor.org/rfc/rfc791.txt

[15] S. Ginoza and A. Hagens, “The RFC Editor Function at
ISI Bob Braden,” USC Information Sciences Institute
Marina del Rey, 2009.
http://www.rfc-editor.org/RFCeditor.at.ISI.pdf

http://dx.doi.org/10.1109/TVT.2009.2034668
http://dx.doi.org/10.4103/0377-2063.57598
http://dx.doi.org/10.1016/j.jcss.2010.08.006
http://dx.doi.org/10.1049/iet-com.2010.0697
http://dx.doi.org/10.1109/6.898801

