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ABSTRACT 

The electric power market is changing-it has passed from a regulated market, where the government of each country had 
the control of prices, to a deregulated market economy. Each company competes in order to get more cli.e.nts and 
maximize its profits. This market is represented by a Stackelberg game with two firms, leader and follower, and the leader 
anticipates the reaction of the follower. The problem is formulated as a Mathematical Program with Complementarity 
Constraints (MPCC). It is shown that the constraint qualifications usually assumed to prove convergence of standard 
algorithms fail to hold for MPCC. To circumvent this, a reformulation for a nonlinear problem (NLP) is proposed. 
Numerical tests using the NEOS server platform are presented. 
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1. Introduction 

The electric power market is in transition. Until recently, 
the market was regulated by the government of each 
country, and companies could only sell to a restrict set of 
consumers. 

With the deregularization, electricity industry becomes 
a liberalized activity where planning and operation sch- 
eduling are independent activities which are not constra- 
ined by centralized procedures. On the other side, the 
generator firms take more risk as they become responsible 
for their decisions. 

While in a regulated market the industry goal was to 
minimize the costs - once the price was fixed-now, it is 
also to maximize profit. A competition environment is 
created in order to benefit the consumers through price 
reduction, but ill effects can occur if the level of concen-
tration in the market grows. 

In order to study the interaction of all market partici-
pants and to have a better knowledge of the market con-
ditions, firms and governments need suitable decision- 
support models. The deregularization process is under 
way in many countries. In 1998, the USA has begun their 
transition: California, Massachusetts and Rhode Island 
were the first states, but others will follow them over the 
next years. Nowadays, America’s electric power industry 
is highly fragmented [1]. 

In Europe, the process has started in the decade of 80 in 

England and Wales. In the last years, the market has been 
faced with fusions and merges between companies. The 
directives of European Union for an electric power liber-
ality led up to increasing institutional and physical con-
nections between markets from different countries. Some 
papers about studies in course, related with German, 
French and The Netherlands power markets-see [2-6] for 
more details-have emerged. 

According to [7], there are reasons to consider electric 
power as a special commodity: 

All power travels over the same set of power lines, in-
dependently of the firm that generated it; this difference is 
particularly marked when the networks contains loops and 
there are transmission capacity limits; also electricity has 
unique physical properties, namely Kirchhoff voltage and 
current laws. 

As the electricity is difficult to store, and the quantity of 
power must be instantly adjusted to the demand, the 
companies that lead the market could easily manipulate 
the price, changing it to higher values, especially in peak 
consumption periods. The scientific community try to find 
models to predict how the prices will react to this new 
market structure. 

The organization of this paper is as follows: Section 2 
introduces the Stackelberg game and the related concepts 
and definitions of optimization. In Section 3, it is present 
the formulation of the electric power problem as well as 
its transformation from MPCC into a MPCC-NLP prob-
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lem and also the data specifying the network for the 
computational experiments. Finally, the numerical results 
obtained by a set of solvers are shown and the main con-
clusions are discussed in the last section. 

2. Stackelberg Game and Optimization 

To simulate the decision making process for defining 
offered prices in a deregulated environment, it was used 
the game theory, in particular the Stackelberg game. A 
parallelism between this economic theory and optimiza-
tion is also addressed. 

2.1 Stackelberg Game 

In Stackelberg game there are two kinds of players: the 
leader and the followers. The leader firm has the power 
to manipulate the prices, production and expansion ca-
pacity in order to maximize its own profit and anticipates 
the reaction of the rest of the player firms. The leader 
uses the knowledge of the reactions in order to choose its 
own optimal strategy. The follower decisions are depen- 
dent on the leader strategy. The follower does not have 
the perception how its decisions influence the leader 
resolution. 

Between followers their behaviour act like a noncoop- 
erative Nash game, where all players have the same in-
formation and no one can increase their own profit 
through unilateral decisions [8]. 

A Stackelberg game can be formulated as a bilevel 
programming problem and therefore we introduce the 
reader to it in the next subsection. 

2.2 Bilevel Optimization 

Definition 1 Bilevel Optimization Problem 
A bilevel optimization problem is composed by a 

first-level problem: 

x,y
min  

1( )F x, y  

s.t. ( ) 0g x, y   
(1)

Where y, for each value of x, is the solution of the sec-
ond-level problem: 

y
min  

2 ( )F x, y  

s.t. ( ) 0h x, y   
(2)

with nxx IR , nyy IR , 1 2, : nx+nyF F IR IR , :g  
nx+ny nuIR IR , : nx+ny nlh IR IR . 
The variables x[y] are called as first [second] level 

variable, g(x,y) [h(x,y)] are the first [second] level con-
straints and F1(x,y) [F2(x,y)] are the first [second] level 
objective function. 

A typical bilevel problem is an optimization model 
whose constraints require that certain of its variables (x) 
solve an optimization subproblem that dependents para-
metrically on the remaining variables (y). 

Regarding with careful attention the structure of the 

bilevel problem, it is possible to observe that the 
first/second level of the bilevel problem corresponds to 
the leader/followers players on the Stackelberg game. 

A bilevel problem is convex if F2 and h are convex 
functions in y for all values of x that is to say if the second 
level problem is convex [9]. The problem studied in this 
paper is a convex bilevel problem. The great advantage of 
this property in bilevel optimization is that, under certain 
conditions, the second level problem can be replaced by 
their own Karush-Kuhn-Tucker (KKT) conditions, and 
the resulting problem is one level optimization problem 
with complementarity constraints.  

2.3 Mathematical Program with  
Complementarity Constraints 

Definition 2 MPCC Problem 
Mathematical Program with Complementarity Con-

straint (MPCC) is defined as: 

z
min   F z  

. .s t  

 ic z = 0, i E  

 ic z 0, i I   

1 20 z z 0    

(3)

where  0 1 2, ,z z z z , with the control variable 0z   

nIR  and the state 1 2, pz z IR ; F is the objective func-

tion, ic , i E I   are the set of equality and inequality 

constraints, respectively. The sets E and I are the finite 
sets of indices. The objective function F and the con-

straints ic , i E I   are assumed twice continuously 

differentiable. The constraints related to complementarity 
are defined with the operator   and demand that the 
product of the two nonnegative quantities must be zero, i.e. 

1 2i iz z 0 ,  i 1,..., p . 

The concept of complementarity distinguishes an MP- 
CC from a standard nonlinear optimization problem and is 
a synonymous of equilibrium, reason why this type of 
problem is so popular in optimization (see [8,10,11] for 
some applications in the last years). 

In engineering, the MPCC problems are being used for 
contact and structural mechanic problems, namely in 
robotic [3,12,13], obstacle problems [14], elastohydrodi-
namic lubrification [15,16], process engineering models 
[17] and traffic network equilibrium [18,19]. 

Applications in economics include the general equilib-
rium and game theory from which Nash and Stackelberg 
game are instances [20-22].  

A new field of applications is in ecological problems: 
the questions related with reduction of greenhouse gas 
emission rights, coalition formation and international 
trade in order to negotiate the emission rights between 
develop and developing countries can be also formulated 
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as a MPCC problem [23,24]. 
The MPCC problem is nonsmooth mostly due to the 

complementarity constraints. The optimal conditions are 
complex and very difficult to verify. Besides, the feasible 
set of MPCC is ill-posed since the constraint qualifica-
tions - namely, Mangasarian Fromovitz (MFCQ) and 
Linear Independent (LICQ)-which are commonly as-
sumed to prove convergence of standard nonlinear pro-
gramming do not hold at any feasible point of the com-
plementarity constraints [25,26]. This implies mostly that 
the multiplier set is unbounded, the active constraint 
normal are linearly dependent and the linearizations of the 
MPCC can become inconsistent arbitrarily close to a 
solution. 

The violation of constraint qualifications has led to a 
number of specific algorithms for MPCCs, such as 
branch-and-bound [27], implicit nonsmooth approaches 
[28], piecewise SQP methods [8] and perturbation and 
penalization approaches [29]. But the use of specific 
solvers for MPCC is not a real solution at this time, since 
these algorithms still need rather strong assumptions to 
ensure convergence. 

The search of new techniques and algorithms in order to 
solve real problems with large dimension is still an area 
with intense research. Recently, some authors suggested 
solving MPCC problem by an interesting way: reformu-
lated it into an equivalent NLP problem. This formulation 
allows taking advantage of certain NLP algorithms fea-
tures in order to obtain rapid local convergence. Besides, 
it works like a challenge for the NLP solver, because it 
allows testing its reliability and robustness, whereas the 
MPCC problem has specific irregularities.  

A MPCC defined in (3) can be reformulated as an 
equivalent NLP problem: 

Definition 3 NLP formulation of the MPCC problem 

z
min   F z  

s.t.  

  0ic z , i E   

  0ic z , i I   

1 0z   

2 0z   
T
1 2 0z z   

(4)

Recall that the complementarity constraint was re-
placed by a nonlinear inequality, relaxing the problem. 
The transformation from a MPCC problem into a NLP 
problem allows using standard NLP solvers taking to 
advantage of the convergence properties of these solvers. 

One can easily show that the reformulated problem has 
the same properties that the previous one, including con-
straint qualifications and second-order conditions, which 
means that the violation of MFCQ is still a reality. How-
ever, in the last few years, some studies show that strong 
stationarity is equivalent to the KKT conditions of the 

MPCC-NLP problem [30,31]. This fact has advantages 
because strong stationarity is a useful and practical com-
putation characterization, once it is relatively easy to find 
a stationary point in a NLP solver, under reasonable as-
sumptions. 

3. The Electric Power Market Problem 

The problem described in this paper is based on the model 
proposed in [32]. It is a competitive power market, for-
mulated as an oligopolistic equilibrium model.  

There are a number of generator firms, each owing a 
given number of units. These make an hourly bid to an 
Independent System Operator (ISO). The ISO, taking in 
consideration the network, solves a social welfare maxi-
mization problem, announces a dispatch for each bidder 
and possibly distinct prices at each node. It decides how 
much power to buy from generators and how much power 
to distribute to consumers and what prices to charge. All 
these decisions are made with the optimal power flow 
(OPF) in mind. 

In spite of the fact that the ISO expects the bid to be a 
reflex of the true costs, the reality is different: the units, 
generally, increase their own bid, without the knowledge 
of the outside world, as the Figure 1 shows. This strategy 
has as main goal the increase of the units’ profit. 

The leader generator first decides and takes as input all 
the perceptions and information that it could have about 
the market (including predictable bids of the other firms, 
demand and supply functions) and it maximizes its profit 
inside a set of spatial price equilibrium constraints and 
Kirchhoff’s voltage and current laws. The followers firms 
make their own decisions taking into account the leader 
decision. 

3.1 Formulation 

In [32] the electric power market was formulated as a 
bilevel problem. In the first level-the leader level-the 
parameter related with the bid curve corresponds to the 
first level variable. In the second level-the follower level - 
there is a simulation of the conjectures of the market 
promoted by ISO and can be described as a commodity 
spatial price equilibrium problem. The model tries to find 
the optimal bid for each company. 
 

 

Figure 1. Marginal cost and bid curves. 
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Next we introduce the notation used in the mathe-
matical formulation:  

Indices: 
i node in the network 
ij arc from node i to node j 

m 
number of Kirchhoff voltage loops in the net-

work 
Sets: 
N set of all nodes 
A set of all arcs 

Sf 
set of generator nodes under control of leader 

firm f 
P set of all generators nodes 
D set of all demand nodes 
L set of Kirchhoff’ voltage loops m 

Lm 
set of ordered arcs (clockwise) associated with 

loop m 
Recall that, a node can be, simultaneously a generator 

and a consumer, so P and D are not necessarily disjoint 
and their union could be a proper subset of N. The 
uniqueness of the net flow on each arc is ensured by the 
Kirchhoff’s laws in the linearized DC models and, con-
sequently, the number of (independent) loops is #A – #N + 
1 (where #X is the set X cardinality). 

Parameters: 

i ia , b  
intercept and slope of supply function 

(marginal cost) for the generator at node 
i P  

i ic , d  
intercept and slope of demand function for 

consumer at node i D  

iα iα  
upper bound of the bid for the unit at node 

fi S  

iSQ  upper bound of production capacity for the 
unit at node i P  

ijT  
maximum transmission capacity on arc 

ij A  

ijr  reactance on arc ij A  

ijms  

1 corresponding to the orientation of the 
arc ij A  in loop m L  

(+1 if ij has the same orientation as the loop 
m) 

First-Level decision variable 

iα  bid for the unit at node i P  

In this model, it is assumed that the generate firms can 
only manipulate α  (the intercept in the bid function) and 
not the slope b , due to market and optimization as-
sumptions. 

Let iα  be fixed for the competitive firms (i.e. iα  

fixed fi P\ S  ) and variables for the leader firms (i.e. 

iα  variable fi S  ). 

Primal variables in the second-level: 

iSQ

vector defined by quantity of power gener-
ated by the unit at node i 

(
i iS i i SQ a +b Q  if i P  and 0

iSQ   if 

i P ) 

iDQ
quantity of power demanded at node i 

(
i iD i i DQ = c d Q  if i D  and 0

iDQ = if 

i D ) 

ijT  matrix defined by MW transmitted from 
node i to node j 

Dual variables in the second-level 

iλ  marginal cost at node i 

iμ  marginal value of generation capacity for unit 
at node i 

ijθ  marginal value of transmission capacity on arc 
ij 

mγ  shadow price for Kirchhoff voltage law for 
loop m 

Next, it is defined the second-level convex quadratic 
problem. The objective function is related with the 
maximization of social welfare: 

max 2 21 1

2 2i i i ii D i D i S i S
i D i P

c Q d Q αQ b Q
 

        
   

  (5)

This function reports a solution where the firms 
maximize their profits and the consumers maximize the 
utility of the product. 

The following constraints report to a spatial price equi-
librium plus a constraint due to Kirchhoff voltage law. 
 Nonnegative demand variables: 

0,
iDQ   Di  (6)

 Lower and upper bounds for transmission variables: 
0 ,ij ijT T  ij A  (7)

 Minimum and maximum capacity of production: 
0 ,

i iS SQ Q  i P  (8)

 Conservation constraints: 

: :

0
i iD S ij ij

j ij A j ij A

Q Q T T
 

      (9)

 Kirchhoff voltage law: 
0ijm ij ij

ij Lm

s r T


  (10)

If in Equation (8), by economic reasons, the minimum 
production level could not be zero, it is possible to change 
the lower bound and still use the same model. 

The description of the first level of the electric power is 
complete by taking into account that for the follower firms 
the bids are already fixed. The determination of the 
dominant company profit consists in finding a bid vector 

 :f
i fα α i S  , a vector of supplies SQ , a vector of 

demands DQ  and a vector of transmission capacities T, 

by solving the following maximization problem. 

Maximize 2( , )
2

f

i i i

i

i S

f S i S i S S

b
Q Q aQ Q  



    
 

 (11)
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s.t. 0 ,              
i i f

i S      

where SQ , DQ  and T for each value of  :
i

i P   , are 

the solution of the second-level problem (5-10). 
It is provided in [33] that, for each vector  , there 

exists a unique globally optimal solution of the quadratic 
problem above. 

But, solving a bilevel problem is not an easy task. So, 
the approach is to replace the ISO’s lower-level optimi-
zation problem by its stationary conditions that results in a 
system of equilibrium constraints. To write the above 
information into a vector-matrix notation, it is necessary 
to introduce two additional matrices. 

Let   be the matrix which give us the information 
about the pair (node, arc) in the electric network:  

1,

1, or

0,
il

if l ij A for some j N

if l ij A f some j N

other values

   
     



 (12)

Let R be the matrix (arc, cycle) related with the reac-
tance coefficients: 

,

0,
ijm ij m

ijm

s r if  ij L
R

otherwise


 


 (13)

So, the Karush-Kuhn-Tucker (KKT) optimality condi-
tions of the lower problem are: 

0 S SQ Q     0   

0 SQ      0Sλ+ μ+α+diag b Q 

0 DQ      D 0λ c+α+ diag d Q   
(14)

 

0 θ   0T T   
0 T   0T λ+θ+ Rγ   

free   0D SQ Q T     

free   0TR T   

(14)

where μ, θ, λ  and   are the dual variables. The nota-

tion diag(w) represents the diagonal matrix whose di-
agonal entries are the components of the vector w. 

Then, the second-level problem (5-10) can be replaced 
by the KKT conditions (14) and the MPCC problem is 
obtained by joining (11) and (14). 

For computational reasons the objective function needs 
to be reformulated, since it is neither convex nor concave 
due to the term 

ii SλQ . The equivalent objective function 

for solve the maximization of the leader firm profit is: 
 

 f S,Q    2 2

2i i i i
f

i
i D i D i S S

i D i S

b
cQ d Q aQ Q

 

    
 

 

 2

i i i
f

ij ij i S i S i S
ij A i P\S

θ T μQ + a Q b Q
 

     
(15)

3.2 Data 

The electric power network includes a circuit with 30 
nodes, which 6 are nodes with generators-3 for the leader 
firm A and the 3 remaining for the follower firm B-and 21 
are demand nodes. Connecting the nodes there are 41 arcs 
and 12 loops. Figure 2 shows a scheme that provides all 
the necessary information. 

 

Figure 1. Electric Network 
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The data related with production, demand, transmission 

values are based on [7]. The generator cost function, re-
actance and upper bounds for supply and transmission 
flows values are also given. As a safety measure of the 
network the upper bounds values for the transmission 
capacity are 60% of the values assumed in [8]. 

To solve the dominant firm A problem it is assumed 
that the bids for the units of the company B are equals to 
their marginal costs, which means α= a . 

The demand curve for each costumer node is deter-
mined by 40

ii i DP d Q  where id  is chosen so that iP  

$30 / MWh when 
iDQ  equals the value assumed in 

[34]. 
The code of this problem is in AMPL language and can 

be found in the MacMPEC [35] with the name mon-
teiro.mod. It is a problem with 136 variables, 201 con-
straints where 62 of them are complementarity con-
straints. 

To solve the problem, the MPCC-NLP approach was 
used, meaning that all complementarity constraints were 
reformulated as nonlinear constraints according the defi-
nition (4). 

4. Computational Results and Conclusions 

To solve the electric power problem it were used three 
nonlinear solvers that have distinct characteristics. 

Lancelot [36] is a standard Fortran 77 package for large 
scale nonlinear optimization, developed by Conn, Gould 
and Toint. The software uses an augmented Lagrangian 
approach and combines a trust region approach adapted to 
handle the bound constraints. 

Loqo [37] was developed by Vanderbei and is a soft-
ware for solving smooth constrained optimization prob-
lems. It is based on an infeasible primal-dual interior point  

method applied to a sequence of quadratic approximations. 
It uses line search to induce global convergence and the 
Hessian is exact. 

The Snopt, developed by Gill, Murray and Saunders, is 
a software package for solving large-scale linear and 
nonlinear programs. The functions used should be smooth 
but not necessary convex and it is especially effective for 
problems whose functions and gradients are expensive to 
evaluate. 

The NEOS Server [38] platform was used to interface 
with the selected solvers. NEOS (Network Enabled Op-
timization System) is an optimization service that is 
available through the Internet. It is a large set of software 
packages considered as the state of the art in optimization.  

The numerical results obtained by the used NLP solvers 
are presented in Table 1 where the objective functions 
together with the first level variables are shown. 

Curiously, although it has been reached an identical 
value for all solvers for the objective function, the same 
didn’t happen for the bid variable, which take us to believe 
for the existence of the several local maximum points. 

For the second-level variables the values are also dif-
ferent, as the Tables 2 and 3 expose. 

There are some demand nodes that practically do not 
receive electric power. This may be explained for two 
reasons: economical ones because it is possible that the 
transportation of the energy for these places are too ex 
pensive and by the existence of large demander nodes 
close to the generator units that absorbed all the power 
 

Table 1. Objective function and bid results 

Solver 
Profit function 

( )  
Bid  f  

LANCELOT 37.53 (35.83, 40, 29.80) 
LOQO 37.53 (35.83, 36.09, 20) 
SNOPT 37.53 (35.83, 39.99, 0) 

Table 2. Demanded power 

Node Lancelot Loqo Snopt Node Lancelot Loqo Snopt 

2 44.98 44.98 44.98 17 0 -1.37e-14 0 

3 2.55 2.55 2.55 18 0 -4.54e-15 -2.28e-26 

4 6.87 6.87 6.87 19 0 -4.55e-15 2.94e-13 

5 41.04 41.04 41.04 20 0 -4.71e-15 -5.98e-26 

7 0 -1.43e-14 0 21 0 0 0 

8 10.01 10.01 10.01 23 0 -6.42 2.96e-13 

10 0 -1.26e-14 8.08e-28 24 0 0 0 

12 0 -1.41e-14 1.09 26 0 0 0 

14 0 1.35e-14 0 29 0 0 0 

15 0 -5.71e-15 -2.96e-13 30 0 0 0 

16 1.32e-05 -4.32e-15 5.11e-13     
  

Table 3. Generated power 

Node 1 2 5 8 11 13 

Lancelot 44.30 10.09 41.04 10.01 1.29e-5 0 

Loqo 44.31 10.09 41.04 10.01 1.60e-14 0 

Snopt 44.31 10.09 41.04 10.01 -2-16e-13 0  
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produced. 
It has been shown that MPCC-NLP approach should be 

considered to solve real problems. 
As future work it is proposed the study of this problem 

developed as a nash model, where both firms compete at 
the same level and with the same market information. 
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