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ABSTRACT 

Snoring is common in people with obstructive sleep 
apnea (OSA). Although not every snorer has OSA or 
vice-versa, many studies attempt to use snoring sounds 
for classification of people into two groups of OSA 
and simple snorers. This paper discusses the relation-
ship between snorers’ anthropometric parameters 
and statistical characteristics of snoring sound (SS) 
and also reports on classification accuracies of meth-
ods using SS features for screening OSA from simple 
snorers when anthropometric parameters are either 
matched or unmatched. Tracheal respiratory sounds 
were collected from 60 snorers simultaneously with 
full-night Polysomnography (PSG). Energy, formant 
frequency, Skewness and Kurtosis were calculated 
from the SS segments. We also defined and calculated 
two features: Median Bifrequency (MBF), and pro-
jected MBF (PMBF). The statistical relationship be-
tween the extracted features and anthropometric pa-
rameters such as height, Body Mass Index (BMI), age, 
gender, and Apnea-Hypopnea Index (AHI) were in-
vestigated. The results showed that the SS features 
were not only sensitive to AHI but also to height, BMI 
and gender. Next, we performed two experiments to 
classify patients with Obstructive Sleep Apnea (OSA) 
and simple snorers: Experiment A: a small group of 
participants (22 OSA and 6 simple snorers) with 
matched height, BMI, and gender were selected and 
classified using Naïve Bayes classifier, and Experiment 
B: the same number of participants with unmatched 
height, BMI, and gender were chosen for classifica-
tion. A sensitivity of 93.2% (87.5%) and specificity of 
88.4% (86.3%) was achieved for the matched (un-
matched) groups.  
 
Keywords: Snoring Sound (SS) Segment; Higher Order 
Statistic; Bispectrum; Median Bifrequency; Skewness; 
Projected Median Bifrequency; Energy 

1. INTRODUCTION 

Snoring is a very common disorder mostly associated 
with obstructive sleep apnea (OSA) syndrome. Overall, 
20% - 40% of the general population snore during sleep 
[1]. By age of 60, snore prevalence increases to 60% in 
male and 40% in female gender [2]. Although, not every 
snorer may have OSA (the so-called “simple snorers”) and 
not everybody with OSA may snore, yet snoring is con-
sidered as a major sign of undiagnosed OSA [3]. Thus, 
many studies attempt to use snoring sounds for classifi-
cation of people into two groups of OSA and simple 
snorers. This paper discusses the relationship between 
snorers’ anthropometric parameters and statistical char-
acteristics of snoring sound (SS), and also reports on 
classification accuracies of methods using SS features for 
screening OSA from simple snorers when anthropomet-
ric parameters are either matched or unmatched. 

Most of the signal processing techniques used for SS 
analysis, such as autocorrelation/autocovariance function 
[4,5], power spectrum density (PSD) [3,6], and autore-
gressive (AR) modeling [3,4] are based on the assump-
tion that a linear model can represent SS and also that the 
signal-generating process is Gaussian Furthermore, these 
2nd order statistical techniques do not analyze the infor-
mation contained in the signal’s phase. (Note that, hence-
forth, the terms linear, nonlinear, Gaussian, and non- 
Gaussian signal/segment are being used interchangeably 
with linear, non-linear, Gaussian, and non-Gaussian sig-
nal-generating process). 

If the signal of interest, i.e. snoring sounds, violates 
one of the above assumptions, one should take into ac-
count an alternative technique. Higher order statistics 
(HOS) techniques reveal information on not only ampli-
tude of a signal, but also its phase. Furthermore, if a non- 
Gaussian signal is received along with additive Gaussian 
noise, a transformation to higher order cumulant domain 
would be blind to the noise; hence, achieving a cleaner 
estimate in noisy environments. Thus, the bispectrum 
and bicoherence can efficiently reveal and quantify any 
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nonlinear relationship among the harmonic peaks (such 
as phase coupling) [7]. 

HOS analysis has been used as a tool for screening 
OSA among snorers [8,9]. However, the effect of anthro-
pometric differences among individuals on snoring sound 
analysis has not been addressed adequately in the past, 
while their effect on the accuracy of OSA classification 
among snorers could be significant. The main objectives 
of this study were: 1) to investigate how the anthropom-
etric parameters change the snoring sounds, 2) to deter-
mine the HOS measures that present significant sensitiv-
ity to OSA and other anthropometric changes among 
individuals, and 3) to investigate the effect of unmatched 
anthropometric parameters on classification accuracy for 
screening OSA among snorers. Since many researchers 
have used the SS features for OSA identification, it is 
important to investigate whether the same features are 
also sensitive to anthropometric parameters, i.e. weight, 
height, gender, etc., among different people. It is impor-
tant because if they are sensitive, then it implies the clas-
sification accuracy might be partly due to unmatched 
groups in terms of anthropometric parameters. 

To achieve the above objectives, we investigated the 
relationship between spectral and HOS features of SS 
segments and anthropometric parameters as well as the 
Gaussianity and linearity properties of the SS. We de-
rived two new features called Median Bifrequency (MBF) 
and Projected Median Bifrequency (PMBF), and also 
calculated skewness, kurtosis, 1st formant frequency, and 
energy of the SS segments. Then, we investigated the 
statistical relationship between these features and an-
thropometric parameters using Kendall's Tau-b test [10] 
and Kruskal-Wallis Analysis of Variance (KWAV) [11, 
12]. Lastly, we ran a Naïve Bayes classifier [13] on the 
features to examine the feasibility of OSA screening us-
ing both HOS and common spectral features. For this 
part of the study, we selected two subsets of the partici-
pants: one with matched anthropometric parameters be-
tween the OSA and simple snorer groups and the other 
one with unmatched anthropometric parameter between 
the two groups. 

2. METHOD 

2.1. Data Recording 

Data for this study was adopted from our previous study 

[14]. Out of the 68 participants of that study, data of 60 
individuals (15 females, 51.5 ± 11.6 y), who were snor-
ers, were selected for this study. The study was approved 
by the Ethics Board of the University of Manitoba prior 
to data collection. Data were recorded simultaneously 
with full-night Polysomnography (PSG) at the Health 
Science Center, Winnipeg, participated. The respiratory 
sounds of the participants were collected by a miniature 
microphone (ECM-77B) placed over the suprasternal 
notch of trachea and secured by double adhesive tape and 
a soft neck band, and were digitized at 10,240 Hz sam-
pling rate. The bit depth was 24. The participants’ an-
thropometric information of this study is shown in Table 
1. The AHI value of each participant was determined by 
the PSG study scored by the sleep lab technicians. 

As known, the respiratory sounds of a snorer consist 
of breath, loud vibratory sounds (perceived as snore by 
humans), and/or small segments of silence [5]. We call 
the part of respiratory sound containing snore (or loud 
vibratory sounds) as SS segment. The length of each SS 
segment varies within and between the subjects. 

The automatic algorithm proposed in our previous 
study was used to extract the SS segments in a semi- 
automated manner [15]. An example of the selection 
method is as the following: the PSG data provided in-
formation about the time (e.g. 3:00 - 3:45 am) when the 
patient X was snoring (snoring interval). Given this in-
formation the snore detection algorithm proposed in Ref. 
[15] was run either on the entire interval (if <15 minutes) 
or on a 15-minute interval (if >15 minutes). The snoring 
intervals shorter than 5 minutes were neglected. Al-
though the method’s accuracy was over 98%, to ensure 
100% accuracy of SS segments, all of the detected SS 
segments were validated by visual (spectrogram) and 
auditory means, and the misclassified cases were re-
moved. 

Overall 24214 of SS segments from all patients were 
analyzed, which on average corresponded to 10.1 ± 4.2 
min of snoring per patient. The average number of SS 
segments per individual was 462 ± 271. Most (99%) of 
the extracted snoring sounds occurred during inspiration. 
The extracted SS segments for each patient were used to 
estimate the bispectrum and derive the desired features. 
Figure 1 shows an extracted SS segment along with its 
spectrogram. It should be noted that the bispectral analy-
sis was only performed on the SS segments. 

 
Table 1. Anthropometric information of participating individuals. 

Group Number of subjects Age BMIa AHI Height 

OSA 
44 

(9 females) 
52.3 ± 12.1 33.7 ± 6.6 34.6 ± 32.6 171 ± 10 

Simple Snorers 
16 

(6 females) 
49.1 ± 10.2 30.7 ± 4.7 2.2 ± 1.3 169 ± 11 

aBody Mass Index. 
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Figure 1. An extracted snoring segment (SS) and its spectrogram. 
 
2.2. Higher Order Statistics (HOS) 

Assume that  s n  is an extracted SS segment (in gen-
eral a random process). 

The key assumption underlying the HOS analysis is 
that the process  s n  is stationary in some sense [7]. 
Snoring sounds are non-stationary in nature [3]. Hence, 
all the HOS measures such as bispectrum and bicoher-
ence should be calculated on a short time-windowed ver-
sion of the signal to ensure stationarity (wide-sense) of 
the SS segments. 

2.2.1. Definition of Bispectrum and Bicoherence 
The 2nd, 3rd and 4th order cumulants of a zero-mean sta-
tionary process are defined by: 

      *
2 ,c k E s n s n k  





                 (1) 

        *
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4 , , s (n m) ,c k l m E s n s n k s n l    (3) 

where  s n  is a zero mean stationary process, k, l and 
m are different time increments, * refers to complex 
conjugate operator, and c2, c3, c4 denote 2nd, 3rd, and 4th 
order cumulants respectively [16]. The 2nd and 3rd order 
polyspectrum are defined as the Fourier Transform of c2 
and c3, respectively [16]: 
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where  represent the PSD and bispec-
trum, respectively. Note that the PSD is real valued, 
nonnegative, and a function of one variable (discrete 
frequency, f ). On the other hand, the bispectrum is a 
function of two variables (discrete bifrequencies, f1, f2) 
and has complex values. Bicoherence is another useful 
statistic measure, which is defined as [7]: 
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A linear and stationary random process,  s n , can be 
represented as the output of a linear system (impulse 
response:  h n ) excited by an independent and identi-
cally distributed (iid) noise, . The power spectrum 
and bispectrum of the output (

 e n
 s n ) can be simplified 

as: 
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and therefore bicoherence will be constant as: 

 
2
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e
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               (8) 

where  e n  is an iid noise with zero mean, variance 
2
e , and 3rd moment 3  ( ) and   3

3 E e n    H f  
is the Fourier Transform of  [17].  h n

Equation 8 shows that for any linear signal, squared 
bicoherence is constant and independent of the bifre-
quencies (f1, f2). If the squared bicoherence is zero, signal 
 s n  is Gaussian or non-skewed with a symmetric dis-

tribution because 3  or equivalently skewness is also 
zero [7,17]. 

We used the Hinich’s method to test for non-skewness 
(loosely called Gaussianity) and linearity of the SS seg-
ments [17]. First, we tested the Gaussianity hypothesis 
(H: the bispectrum is zero). If H holds the process is 
Gaussian; hence, signal generating process is linear. Oth-
erwise, the process is non-Gaussian and needs to be 
tested for its linearity. If the bicoherence is constant, the 
process is linear, otherwise, it is nonlinear. This proce-
dure was repeated for all SS segments and all body posi-
tions. 

2.2.2. Bispectrum and Bicoherence Estimation 
In practice, the number of sound samples is finite; hence, 
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the HOS measures need to be estimated from available 
data. The bispectrum of the signal  s n , can be esti-
mated using direct or indirect approaches. In this study, 
the direct approach [7], which is an extension of the 
Welch technique for power spectrum density estimation, 
was used to estimate the bispectrum in the following 
steps: 

1) The signal   ,s n   is divided into K 
overlapping segments, each of length M. Let the kth seg-
ment of 

0, , 1,n N  

  ,s n  be s n  ,  0, ,n M 1k   . 
It is worth noting that for snoring sound analysis, we 

used 80 ms time windows (M = 820) with 50% overlap 
to ensure the stationarity assumption. 

2) Calculate the zero-mean signal of each segment as: 
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3) Multiply the zero-mean signal by the Hanning win-
dow, , to control the effect of spectral leakage.  w n

      ,wk zks n s n w n           (10) 

4) Compute the discrete Fourier transform (DFT) of 
each segment: 

   
2π1

0

1
,

j nlM
M

k wk
n

X l s n e
M

 



        (11) 

The raw bispectral estimate ( ) can be calcu-
lated as: 

 ˆ ,kB l m
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where l, m are the discrete frequencies. 
5) The consistent estimate of bispectrum ( ) can 

be obtained by averaging raw estimates over all seg-
ments. 
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Consequently, the squared bicoherence can be derived 
from bispectrum as below [18]: 
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The discrete bispectrum has many symmetries in 
 plane. It is only needed to calculate  ,l m  ˆ ,B l m  in 

the non-redundant region or principal domain (D) which 
is defined as: 
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[19]. Where  1 2,f f  are the bifrequencies (in Hertz) 
correspondent to the normalized bifrequencies  ,l m . 

2.3. Feature Extraction 

Suppose that we estimated the bispectrum (  1 2
ˆ ,B f f ) in 

D. This section details on deriving two new features de-
fined in section I: 1) The MBF feature, which is a 2-D 
feature denoted as  1 2,mp mpf f ,  and 2) PMBF, which is 
a 1-D feature denoted as pf . 

2.3.1. MBF Computation 
MBF is the bifrequency where the summation of abso-
lute values of  1 2

ˆ ,B f f  becomes half of the summa-
tion of absolute value of  over all bifrequen-
cies in D. In fact, the procedure looks like: 

 1 2
ˆ ,B f f 

1) Calculate the summation of  1 2
ˆ ,B f f  at all bi-

frequencies in D. 
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If NO, increase f1 and go to step 3. (Note that:  

max
1 2

sff  .) 

2.3.2. PMBF Computation 
Once the MBF is computed, the PMBF, pf , can be 
determined by the projection of  1 2 ,mp mpf f  onto the 
line  2 1 1 2,  ,  f f f f D   corresponding to the diagonal 
slice of the bispectrum. Equivalently we have: 

1 2

2

mp mp
p f f

f


  

2.3.3. Skewness and Kurtosis 
Let  s n  be a zero-mean random process. Skewness 
 1  and kurtosis  2  are defined as: 

   3 4
1 23 4

0,0 0,0,0
,  

s s

c c
 

 
   

where s  is the standard deviation of  s n  and 
 3  and 0,0c  4 0,0,0c  are its zero-lag 3rd and 4th or-

der cumulants respectively [20]. 

2.3.4. 1st Formant Frequency and Energy 
Energy (E) and first formant frequency (F1) were ob-
tained from each SS segment. Linear predictive coding 
(LPC) [21] was used to estimate F1. To meet stationarity 
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assumption,  s n  was divided into 80 ms overlapping 
frames (50% overlap and Hanning window). In each 
frame, the autoregressive (AR) model of the signal was 
estimated and the roots of AR model were calculated. To 
select the AR model order, we used the optimum order 
model (optimum order =  KHz ,sf   4,  5 &   

 6 18f   KHzs ) suggested in [22]. Therefore, we se-
lected an AR model of 14 to estimate first formant fre-
quency of each frame. F1 was estimated by taking me-
dian over all frames. 

2.3.5. Calculation of Features 
As mentioned in the Section 2.1, the number of SS seg-
ments is different for each patient. Let us denote  SS thi

segment of patient X by , 1, .,X X
is i I   First, 

i
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i
E  1 i

F X

were calculated resulting in a finite number of observa-
tions for each feature. Then, the sample median of each 
feature set was estimated. In fact the followings were 
calculated for patient X: 
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This procedure was repeated for all 60 individuals 
yielding a  matrix for MBF feature and a 60 2 60 1  
vector for PMBF, energy, 1st formant frequency, skew-
ness, and kurtosis features. The reason we used median 
instead of mean is the insensitivity of median to outliers; 
it is known that when the data is not symmetrically dis-
tributed, the median outperforms the mean in measuring 
the middle range of data [23]. Figure 2 shows the sample 

density of , and  estimated by    1 2,
Xmp mp

i
f f

X

i
 Xp

i
f

kernel method [24]. As shown in Figure 2, the data is 
skewed; therefore, the median is a better estimate of the 
middle range of the data than the mean value in this case. 

2.4. Statistical Analysis 

To investigate the effect of anthropometric parameters 
such as age, gender, height, BMI, and AHI on the fea-
tures, we ran statistical tests assuming the significance 
level as . Since the distribution of the features 
deviated from normal distribution, the Kendall’s Tau-b 
test (nonparametric counterpart of Pearson correlation) 

[10] was used to measure the correlation among con-
tinuous anthropometric parameters and HOS features. 
The one-way KWAV [11,12] was also used to compare 
the median of features between men and women. 

0.05p 

2.5. Classification 

Naïve Bayes classifier [13] was used to evaluate the abil-
ity of our feature set to discriminate the subjects to snor-
ers with OSA and snorers without OSA or the so called 
“simple snorer” groups. Particularly, we were interested 
to compare the ability of SS features to be used as a sig-
nature of OSA when the groups of OSA and non-OSA 
were matched (Experiment A) and unmatched (Experi-
ment B) in terms of anthropometric parameters. 

Therefore, we performed two experiments: Experi-
ment A: We selected a subset of our database including 
22 apneic and 6 simple snorers that were matched in 
terms of gender, BMI, height and AHI. Experiment B: 
Another subset with the same number of participants (28 
including 21 apneic and 7 simple snorers) with un-
matched anthropometric parameters was used for classi-
fication. Table 2 shows the anthropometric profile of 
both experiments. 

We used the energy, 1st formant frequency, MBF, 
PMBF, skewness, and kurtosis as our features for linear 
discriminant analysis. Several combinations of the fea-
tures were examined and the performance was evaluated 
using the Leave-One-Out Cross-Validation (LOOCV) 
technique [25,26]. The LOOCV is a common technique 
when the number of observations (subjects in this case) 
is relatively small; it helps to prevent over-fitting. In the 
LOOCV, one observation is used as testing set and the 
rest [27] is used as training set. This procedure is re-
peated for all observations [28] and the average per-
formance is measured. It is worth noting that the Euclid-
ean metric was used to compute the distance. 
 

 

Figure 2. Kernel density estimate of pf , 1
mpf , and 2

mpf  for 

a typical subject. Note the asymmetry of the distributions. 
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3. RESULTS AND DISCUSSION It is known that if a signal is non-Gaussian, the 2nd or-
der statistical techniques are only able to extract partial 
information from the signal [7,8]. Therefore, we used 
HOS measures to develop new features such as MBF and 
PMBF from existing data. We also extracted common 
HOS features such as skewness and kurtosis from the SS 
segments. It was found that there was a significant rela-
tionship between frequency based features such as 1

mpf , 

2
mpf , and pf  and all anthropometric parameters except 

age. As shown in Table 3, four out of five anthropomet-
ric parameters (height, BMI, AHI, and gender) signifi-
cantly affected the HOS features of the SS segments, 
while gender and BMI were significant parameters af-
fecting energy and first formant features. 

All SS segments were found to be non-Gausssian, while 
their linearity varied during the night. In fact, for each 
patient, there existed some linear SS segments as well as 
some non-linear ones. We also noticed that the linearity 
of the SS segments varied among different body posi-
tions within each subject. However, this result was not 
consistent among all subjects. Furthermore, not every-
body slept and/or snored in all positions. 

It was shown that the body position during sleep changes 
both duration and intensity of snoring sounds [27]. How-
ever, we did not find a consistent and significant rela-
tionship between the sleeping position and the change in 
the linearity of snoring sound generating process. The height of individuals was observed to be a sig-

nificant factor influencing the value of pf  (p < 0.01), 

1
mpf , and 2

mpf  (p < 0.05). There was a negative rela-
tionship between height and these frequency related fea-
tures. The taller the individuals, the lower frequency 
components were in their snoring bispectrum. The height 
has been shown to affect the tracheal sound spectral fea-
tures [28]. It was reported that the tracheal sounds in 
children had higher frequency components than in healthy 

However, in general, we did not find a consistent and 
significant relationship between the sleeping position and 
the change in the linearity of snoring sound generating 
process; the results in the population of our study were 
variable between the subjects. However, the lack of find-
ing a general pattern of such relationship could be par-
tially due to lack of snoring data in all different sleeping 
positions in our study. 
 

Table 2. Anthropometric information of two subsets selected for classification. 

Group # of subjects Age BMI Height AHI 

Experiment A 

OSA 22 (no female) 47.2 ± 11.4 33.5 ± 6 176.4 ± 2.4 36.5 ± 35 

Simple Snorers 6 (no female) 50.6 ± 5.8 33.8 ± 5 176.6 ± 3.2 1.8 ± 1.3 

Experiment B 

OSA 21 (7 females) 49.4 ± 10.6 34.7 ± 7.3 173.9 ± 12.2 27.8 ± 23.3 

Simple Snorers 7 (no female) 53.1 ± 9.3 30 ± 3.8 178.3 ± 7.6 2.3 ± 1.5 

Experiment A: The OSA and apneic groups were matched for gender, BMI, and height parameters; Experiment B: The OSA and apneic 
groups were not matched for gender, BMI, and height parameters. 

 
Table 3. The results of Kendall’s Tau-b and Kruskal-Wallis tests for five anthropometric parameters. 

Features H BMI Age AHI Gender 

1  ns ns ns ns ns 

2  ns ns ns ns ns 

pf  ** * ns * * 

1

mpf  * * ns * ns 

2

mpf  * ns ns ns * 

E ns ns ns ** * 

F1 ns * ns ns ns 

ns: non-significant; *: significant at level 5%; **: significant at level 1%. 
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adults. In another study [29], it is shown that the anat-
omy of the trachea determines the characteristic features 
of tracheal sounds. However, there was no study con-
firming the change in the features of SS segments due to 
the height. Based on our findings, the MBF and PMBF 
features of the extracted SS segments are negatively re-
lated to the height of individuals. Assuming that taller 
individuals have taller neck, this result implies that the 
characteristics of SS segments reflect resonances (exist-
ing in SS) that depend on the upper airway’s length. 

The results of the Kendall’s Tau-b test on BMI groups 
shows that BMI is significantly associated with the value 
of pf  (p < 0.05), 1

mpf  (p < 0.01) as well as F1 (p < 
0.05). They were negatively correlated meaning that the 
higher the BMI, the lower were the values of pf , 1

mpf , 
and F1. As known, obesity is a factor strongly associated 
with the presence of OSA [30]. Obese individuals with 
sleep apnea have been shown to have more (about 42%) 
fat in their cervical region than normal subjects as well 
as non-obese individuals with OSA [31]; thus, resulting 
in pharyngeal area narrowing. It is also known that 
higher BMI is associated with increased level of leptin (a 
hormone produced by the adipose tissue and has also 
actions on the respiratory centre control) [32]. Therefore, 
our observed changes in the acoustical properties of the 
SS segments due to BMI can be explained by both ana-
tomical and hormonal changes of the upper airway. 

It was also found that AHI and gender were signifi-
cantly correlated with energy and frequency-based HOS 
features of the SS segments. As shown in Table 3, the 
individuals with higher AHI had lower frequency-based 
features ( pf  and 1

mpf ) (p < 0.05) and higher energy (p 
< 0.01). The female snorers of this study were observed 
to have higher frequency-based features ( pf  and 2

mpf ) 
(p < 0.05) and lower energy feature (p < 0.05) than the 
male snorers. Although there was no study investigating 
the gender effect on the snoring sounds, this observation 
is congruent with findings reported in two studies fo-
cused on breath and lung sounds [33,34]. According to 
those studies, breath and lung sounds in healthy women 
contain higher frequency components than in men. It has 
also been shown that men have higher pharyngeal and 
supraglottic resistances than women [35]. Therefore, 
given that the size and mechanical properties of pharynx 
are significantly different between men and women [36], 
the snoring sounds of women and men can be expected 
to be significantly different as the results of our study 
indicate. Moreover, these might be also a reason for 
greater incidence of OSA in men [35,36]. 

Two of the frequency-based HOS features ( pf  and 

1
mpf ) were found to be significantly different in snorers 

with different AHI. This result is congruent with previous 
studies. In people with OSA, the lateral pharyngeal mus-
cular wall is usually narrower [37]. Therefore, minimum 

area of the airway has been shown to be significantly 
smaller in apneic individuals than non-OSA people. The 
size of airway plays a major role in the frequency com-
ponents of the sound produced by the flow turbulence in 
the airway. This explains the change in the frequency 
based HOS feature of the SS segments between snorers 
with OSA and simple snorers. 

It was observed that for some of the anthropometric 
parameters (e.g. BMI and gender) two of the fre-
quency-based features ( 1

mpf , 2
mpf , and pf ) were sig-

nificantly correlated, while the third one  was not sig-
nificantly correlated. pf  is linearly related to the sum-
mation of 1

mpf and 2
mpf  (projection of two). If both 

have a significant correlation with a parameter, then we 
expect that pf  would be also significant (as in the case 
with Height parameter) but having one of them signifi-
cantly correlated with a parameter, does not necessarily 
lead to a significant correlation of pf  and that parame-
ter. The reason that only one of the coordinates of MBF 
is significant depends on the bispectrum of the SS seg-
ment. As an example, let us compare MBF for 4 SS 
segments of participant4 (P4) and participant6 (P6). P4 
(BMI = 24.4): 1

mpf = [320,320,360,320] and 2
mpf  = 

[240,40,160,160]. P6 (BMI = 47.1): 1
mpf  = [240,240, 

200,250] and 2
mpf = [180,160,180,120]. It is clear that 

BMI significantly changed 1
mpf  but not 2

mpf . In fact, 
the difference between the bispectral information of the 
two sets of SS segments is well extracted using 2-D MBF 
feature which is an advantage of bispectral analysis. 

One important point is that these frequency changes 
due to small changes in the airway size may not always 
be detectable by spectral analysis of the sounds. How-
ever, as known, HOS techniques complement the infor-
mation obtained from 2nd order statistical techniques, i.e. 
power spectral analysis. Hence, we propose using a 
combination of HOS techniques and conventional acous-
tical techniques increases the diagnosis accuracy of OSA. 
In this paper, we tried to verify this point by applying a 
simple classifier to our feature set. We partitioned our 
database into two sets to compare two scenarios, one 
when the height, gender, and BMI are matched between 
the two groups of snorers with OSA and simple snorers, 
and the other one when those parameters are not matched. 
We observed an increase in the accuracy of classification 
when the parameters were matched. 

Table 4 illustrates the results of classification. Several 
combinations of features were used as input to the naïve 
Bayes classifier. Results demonstrate that the highest 
sensitivity and specificity occurred when a combination 
of both conventional feature (Energy) and HOS feature 
set ( 1

mpf  and skewness) was used. This combination 
resulted in sensitivity of 93.2% (87.5%) and the specific-
ity of 88.4% (86.3%) for experiment A (B). As shown in 
Table 4, for experiment A, the sensitivity and specificity 
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Table 4. Naïve Bayes classification results for different combination of conventional and HOS features. 

Sensitivity (%) Specificity (%) 
Feature set 

Experiment A Experiment B Experiment A Experiment B 

pf , 1

mpf , 2  77.2 75.2 80.3 79.1 

pf , 1

mpf , 1  84.2 81.3 74.6 78.6 

pf , 1 , 2  75.9 77 81.9 87.3 

1

mpf , 1 , 2  94.1 91.2 74.6 71.2 

pf , 1 , E 85.9 82.1 88.1 84.4 

1

mpf , 1 , E 93.2 87.5 88.4 86.3 

E, F1 78.2 80.5 72.1 65.3 

 
values for only HOS features were 75.9% - 94.1% and 
74.6% - 81.9%, respectively. On the other hand, using 
only energy and formant frequency resulted in a sensitiv-
ity and specificity of 78.2% and 72.1%, respectively. 

As expected, overall, the sensitivity and specificity 
decreased when an unmatched subset was used for clas-
sification. 

To compare our work with a recently published work 
[9], we matched the anthropometric parameters of snor-
ers with OSA and simple snorer groups. Moreover, our 
recordings were performed using a microphone placed 
over trachea. Therefore, our recorded sounds have a 
higher signal to noise ratio than those recorded by an 
ambient microphone. We also improved the sensitivity 
and specificity of OSA diagnosis among snorers by si-
multaneous usage of HOS and conventional features. 
However a major difficulty in our study was to find a 
larger population with matched anthropometric parame-
ters to validate the results of our analysis. This limitation 
was partially resolved by using LOOCV which performs 
well when the population size is relatively small. 

4. CONCLUSION 

In this study, the relationship between anthropometric 
parameters of 60 snorers and the 3rd and 4th order statis-
tical features derived from the SS segments were inves-
tigated. 

In summary, we developed two new frequency-based 
HOS features from the non-Gaussian SS segments, and 
investigated statistical correlation of these features along 
with the zero-lag HOS features with different anthro-
pometric parameters. An important contribution of the 
statistical investigation is on the application of snoring 
sound for OSA identification among snorers. Since the 
common features of snoring sounds used in classification 
are sensitive to anthropometric parameters, the results of 
classification is reliable only when the two groups of 
apneic and controls are matched for those parameters.  

When HOS features were used in the classification of 
the apneic group, the results have shown improvement 
compared to those of previous studies. The HOS features 
may also be used (under investigation) to find the site of 
obstruction in upper airway, and cluster the SS segments 
based on their production mechanism. 
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