
Intelligent Information Management, 2012, 4, 52-59
http://dx.doi.org/10.4236/iim.2012.43008 Published Online May 2012 (http://www.SciRP.org/journal/iim)

Enhancing Eucalyptus Community Cloud

Andrea Bosin1,2,3, Matteo Dessalvi4, Gian Mario Mereu3, Giovanni Serra3
1Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Monserrato, Italy

2 Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, Italy
3Consorzio Cybersar, Cagliari, Italy

4Università degli Studi di Cagliari, Cagliari, Italy
Email: {andrea.bosin, matteo.dessalvi}@dsf.unica.it, {gmariomereu, giovanni.srr}@gmail.com

Received December 14, 2011; revised January 26, 2012; accepted February 5, 2012

ABSTRACT

In the last few years, the cloud computing model has moved from hype to reality, as witnessed by the increasing num-
ber of commercial providers offering their cloud computing solutions. At the same time, various open-source projects
are developing cloud computing frameworks open to experimental instrumentation and study. In this work we analyze
Eucalyptus Community Cloud, an open-source cloud-computing framework delivering the IaaS model and running un-
der the Linux operating system. Our aim is to present some of the results of our analysis and to propose some enhance-
ments that can make Eucalyptus Community Cloud even more attractive for building both private and community cloud
infrastructures, but also with an eye toward public clouds. In addition, we present a to-do list that may hopefully help
users in the task of configuring and running their own Linux (and Windows) guests with Eucalyptus.

Keywords: Cloud; IaaS; Eucalyptus; KVM; Qcow2

1. Introduction

According to NIST [1], “cloud computing is a model for
enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released
with minimal management effort or service provider in-
teraction”. Such a definition is quite general, and is not
bound to any specific enabling technology or hardware
and software implementation.

Cloud resources are presented to users according to
one of three different delivery or service models:
 Software as a Service (SaaS). The service provided to

users is to employ the provider’s applications running
on a cloud infrastructure. The applications are acces-
sible from different client devices through either a
program interface or a thin client interface, such as a
web browser. Users can at most manage limited user-
specific application configuration.

 Platform as a Service (PaaS). The service provided to
users is to deploy onto the cloud infrastructure their
own applications developed using languages, libraries,
and tools supported by the provider. Users have con-
trol over the deployed applications and possibly con-
figuration settings.

 Infrastructure as a Service (IaaS). The service pro-
vided to users is to provision fundamental computing
resources (processing, storage, networks, etc.) where

users are able to deploy and run arbitrary software,
such as operating systems and applications. Users have
control over operating systems, storage, and deployed
applications; and possibly limited control of network
configuration (e.g., host firewalls or IP address reser-
vation).

Depending on the way in which resources are organized
and made available to users, we can distinguish between
four different deployment models:
 Private cloud. The cloud infrastructure is provisioned

for exclusive use by a single organization.
 Community cloud. The cloud infrastructure is provi-

sioned for exclusive use by a specific community of
users from organizations that have shared concerns.

 Public cloud. The cloud infrastructure is provisioned
for open use by the general public. It may be owned,
managed, and operated by a business, academic, or
government organization, or some combination of
them.

 Hybrid cloud. The cloud infrastructure is a composi-
tion of two or more distinct cloud infrastructures (pri-
vate, community, or public) that remain unique enti-
ties, but are bound together by standardized or pro-
prietary technology that enables data and application
portability.

While private and community cloud infrastructures
may be owned, managed, and operated by the organiza-
tions, a third party, or some combination of them, and

Copyright © 2012 SciRes. IIM

A. BOSIN ET AL. 53

may exist on or off premises, public clouds exist on the
premises of the cloud provider.

The Open Cloud Manifesto [2], with its motto “dedi-
cated to the belief that the cloud should be open”, puts
openness as one of the core principles of cloud comput-
ing, thus complementing the NIST model by envisioning
a long-running perspective based on openness.

In this paper we analyze Eucalyptus Community [3],
an open-source cloud-computing framework delivering
the IaaS model and running under the Linux operating
system. Eucalyptus Community exhibits openness in at
least two important ways: in source code and in the
adopted Amazon EC2 [4] and S3 [5] application pro-
gramming interfaces (API), which have a public specifi-
cation. The developers present Eucalyptus as “a frame-
work that uses computational and storage infrastructure
commonly available to academic research groups to pro-
vide a platform that is modular and open to experimental
instrumentation and study” [3]. Openness in source code
allows us to fully study, experiment, customize and en-
hance such a framework.

The aim of this work is to present the results of our
analysis and to propose some enhancements that, in our
opinion, can make Eucalyptus Community Cloud even
more attractive for building both private and community
cloud infrastructures, but also with an eye toward public
clouds.

In Section 2 we present an overview of the Eucalyptus
Community open-source cloud-computing framework, its
design and its main functionality. Section 3 describes
Eucalyptus out-of-the-box configuration, and points out
some of its limitations. In Section 4 we discuss a number
of enhancements aimed at mitigating some of the bottle-
necks and some experiments showing how it is possible
to take advantage of different underlying hardware and
software resources. Section 5 tackles the problem of por-
ting an external physical or virtual machine into Eucaly-

ptus since, in our experience, this can be the nightmare of
advanced users wishing to run their own virtual machine
images. At last, Section 6 draws some conclusions.

2. Eucalyptus Overview

In Eucalyptus Community, the IaaS delivery model is
accomplished by providing virtual machines [6] to users:
the framework provides a number of high level manage-
ment services and integrates them with the lower level
virtualization services found in many recent distributions
of the Linux operating system. The system allows users
to start, control, access, and terminate entire virtual ma-
chines. Virtual machines (VM or guests or instances) run
somewhere on the physical machines (PM or hosts) that
belong to the underlying physical cloud infrastructure.

Eucalyptus Community has a flexible and modular ar-
chitecture with a hierarchical design as depicted in Fig-
ure 1.

Each high level component is implemented as a stand-
alone Web service [7]:
 Node Controller (NC) runs on a PM and controls the

execution, inspection, and termination of VM in-
stances on the host where it runs.

 Cluster Controller (CC) schedules and monitors VM
execution on specific node controllers, as well as ma-
nages virtual instance network.

 Storage Controller (SC) is optionally associated to a
cluster controller and is responsible for the manage-
ment (allocation, use and deletion) of virtual disks
that can be attached to VM instances; virtual disks (or
volumes) are off-instance storage that persists inde-
pendently of the life of an instance.

 Walrus is a put/get storage service, providing a sim-
ple mechanism for storing and accessing virtual ma-
chine images and user data.

 Cloud Controller (CLC) is the entry-point for users

Figure 1. Eucalyptus community cloud architecture.

Copyright © 2012 SciRes. IIM

A. BOSIN ET AL. 54

and administrators; it queries cluster controllers for in-
formation about resources (instances, images, volumes,
etc.), makes high level scheduling decisions, and man-
ages user credentials and authentication.

PMs running the node controller service are grouped
into one or more independent clusters, where each cluster
is managed by a cluster controller and optionally coupled
to a storage controller; all cluster controllers are coordi-
nated by one cloud controller, while one Walrus service
provides storage for all virtual machine images and op-
tional user data. User interaction involves the cloud con-
troller for VM and volume management through the EC2
API, and Walrus for the management of VM images and
user files through the S3 API; the access to VMs from
the network (e.g. login via secure shell) is transparently
granted or denied by the cluster controllers based on the
security policies (or access groups) specified by users.

Users can interact with Eucalyptus Community either
through command line tools such as euca2ools [8] or
s3cmd [9] or web browsers plug-ins such as Hybridfox
[10]. In addition, the CLC publishes a web interface for
user registration and credentials generation.

3. Eucalyptus Out-of-the-Box Configuration

Eucalyptus Community Cloud (ECC) provides a standard
out-of-the-box configuration for the lower level virtuali-
zation services to allow a simple set-up of the cloud in-
frastructure. Such configuration affects mainly the node
controllers which are responsible of the bare execution of
VMs. The out-of-the-box configuration discussed here is
by no means the only possible, as we are going to show
in the next section, but it represents a simple and reason-
able starting point. In this section we cover the details
which we consider most relevant, and point out some of
the correlated limitations and bottlenecks.

VMs run atop the Xen [11] hypervisor, even though
ECC interacts with the specific hypervisor through an
abstraction layer, i.e. the libvirt virtualization API [12].
Xen requires a special Xen-aware kernel both on the host
and on the guest if para-virtualization [13] is used; only
if the host hardware supports hardware-assisted virtuali-
zation (HVM), as it is the case with recent CPU [14-16],
guest operating systems can be executed unmodified. As
a consequence, if HVM is not enabled, Windows operat-
ing systems cannot be executed, while Linux operating
systems must be booted from a Xen-aware kernel.

To run a VM instance, ECC needs separate image files
for kernel, ramdisk and root filesystem, which are up-
loaded by users and retrieved by the system through the
Walrus service; kernels and ramdisks can be registered
with Walrus only by cloud administrators. This means
that it is neither possible to boot a VM from the (native)
kernel and ramdisk in the root filesystem, nor to update
external kernels and ramdisks without the intervention of

cloud administrators. Windows can only be booted using
a custom-made kernel/ramdisk combination. Walrus cu-
rrent implementation is extremely inefficient in manag-
ing large image files (say larger that 1 GB), since it per-
forms many operations reading the files from and writing
them to disk every time, instead of piping all the opera-
tions using the main memory and writing the result to
disk only at the end.

The image file of the root filesystem partition is ac-
quired immediately before starting a VM instance; a copy
of the former (and also of the kernel and the ramdisk) is
cached in a directory on the node controller in such a
way that a new VM instance of the same type and on the
same node controller will use the cached images, thus
avoiding the overhead of retrieving them once again. The
set-up of the root filesystem image is very time consum-
ing; if it is not already present in cache, the image must
be first retrieved from Walrus and saved on the node
controller filesystem, then copied into the caching direc-
tory, and at last the VM is started. If the image is found
in the node controller caching directory, a copy is per-
formed and the VM is started. It is not unusual to have
root filesystem large 5 - 10 GB in size, and the need for
multiple copies slows down VM start-up times.

Figure 2 summarizes the main steps for the deploy-
ment of a VM: 1) a user requests a new VM to CLC; 2)
CLC authorizes the request and forwards it to CC; 3) CC
performs virtual network set-up (hardware and IP ad-
dresses, and firewall rules) and schedules the request to a
NC; 4) NC retrieves image files from Walrus (or cache);
5) NC starts the VM through the hypervisor; and 6) the
user logs into the VM.

To test a medium-sized ECC standard installation we
have used the cloud resources available from the Future-
Grid project [17], in particular those in the “India” cloud.

One of the first problems we encountered using Future

Figure 2. VM deployment with ECC.

Copyright © 2012 SciRes. IIM

A. BOSIN ET AL. 55

Grid ECC was the identification of a kernel/ramdisk
combination, among those already deployed, working
with our own Linux root filesystem image. Using a ker-
nel which is not the one bundled (and tested) with the
chosen Linux distribution may cause problems, in addi-
tion to the fact that we had to find out and install the cor-
responding kernel modules.

Another problem that we had to face was the mismatch
between the devices referenced by our own Linux root
filesystem image, and the para-vitualized devices seen by
the Xen kernel.

A simple measure of the time needed to prepare the
root filesystem image is the time interval that occurs be-
tween instance submission and the VM entering the run-
ning state. For a root filesystem image of 4 GB (741 MB
compressed) we have measured a start-up time of appro-
ximately 5 - 7 minutes.

4. Enhancing Eucalyptus

In this section we describe the experiments we have per-
formed and the enhancements we have tested starting
from a clean ECC v2.0.3 installation. Such enhancements
involve, in addition to the tuning of standard configura-
tion files, both customization/modification of ECC scripts
and the application of a couple of simple patches to the
source code; the scripts and the patches are available to
interested readers [18].

4.1. Service Environment

As a preliminary step to our experimentation, we have
deployed a new ECC installation starting from sources,
where all services, except NC, run on VMs so as to opti-
mize hardware resource usage. The answer to the obvi-
ous question, “is VM performance capable of efficiently
running ECC services?” is positive at least in the fol-
lowing environment that we have tested:
 VMs are executed on a host supporting hardware-

assisted virtualization by using a recent version of the
open-source machine emulator and virtualizer QEMU
[19] combined with Kernel-based Virtual Machine
[20] (KVM);

 VM virtual disks are stored in physical disk partitions
as logical volumes (LVM) [21] (LVM allows live
backups without service interruption);

 storage is made available to both Walrus and SC by
an efficient network filesystem (IBM General Parallel
File System [22] in our case) to provide the necessary
disk space and performance (we plan to test the Lus-
tre [23] filesystem, too); and VMs use the virtio [24]
network and disk drivers.

4.2. Hypervisor

The next step has been to replace the Xen hypervisor

with QEMU/KVM on node controllers, considered that
all recent servers support hardware-assisted virtualization.
The replacement is simple since ECC interfaces with the
libvirt API which supports both Xen and QEMU/KVM.

QEMU/KVM on node controllers is configured to use
virtio network/disk drivers. We have performed a set of
I/O tests: the combination of KVM on host and virtio on
guests, except for some unhappy occurrence of host ker-
nel and KVM modules (e.g. hosts running CentOS 5.7
Linux), guarantees a good guest performance (e.g. latest
CentOS 6 and Debian Squeeze Linux, but also Windows
XP). ECC over QEMU/KVM adopts a different strategy
for VM filesystem layout: the image of the root file-
system partition is converted into a virtual disk image in
“raw” format immediately before starting a VM instance
and the caching is performed on the virtual disk.

One of the advantages of QEMU/KVM is the usage of
standard unmodified operating system kernels both in
hosts (only kernel modules are required) and guests
(Linux and Windows), thus simplifying host and guest
set-up and portability.

In addition, QEMU/KVM allows node controllers to
boot a VM using the operating system boot loader (e.g.
Linux GRand Unified Bootloader or GRUB) stored in the
master boot record of the virtual disk image, and hence to
boot the operating system from the native kernel/ramdisk
stored inside the root filesystem. In this way users can
simply use their own kernels/ramdisks and can update
them as needed. Of course, this implies the possibility of
uploading an entire virtual disk image to Walrus, and not
only the root filesystem image, and ECC allows it.

VM start-up time is another aspect that deserves sub-
stantial enhancement. The availability of a network file-
system on node controllers allowed us to configure a cen-
tralized caching directory shared by all NCs; virtual disk
creation from the root filesystem image stored on Walrus
is then performed only once for all NCs instead of once
for every NC.

4.3. Image Format

Unfortunately, a shared cache does not avoid the neces-
sity of copying the virtual disk image from the cache
every time a VM is instantiated. In this respect QEMU
helped us thanks to the “qcow2” [25] image file format.
“Qcow2” is an incremental and differential file format
employing the copy-on-write principle of operation;
given an initial read-only “raw” image (or backing file),
it is possible to create a corresponding read-write incre-
mental “qcow2” virtual disk image pointing to the “raw”
backing file. The initial “qcow2” file will be in fact em-
pty (except for some meta-data) and will grow over time
only when a write operation is performed on it, while
leaving the “raw” backing file unmodified. In other
words, the “qcow2” file stores only the differences with

Copyright © 2012 SciRes. IIM

A. BOSIN ET AL. 56

the unmodified “raw” backing file. More than one
“qcow2” image file can reference the same read-only
“raw” backing file, hence the possibility of using the
“raw” virtual disk images in the caching directory as
backing files for the “qcow2” virtual disk images used by
VM, thus avoiding the copy of the whole virtual disk
image from cache. The creation of a “qcow2” virtual disk
image with a “raw” backing file is very fast (few seconds),
and VM start-up times are drastically reduced to a few
seconds, if the “raw” image already is in cache (with a
shared cache, only the first VM instance of a given type
will encounter a cache miss).

4.4. Virtual Disk Performance

No solution is perfect, and the “qcow2” format intro-
duces a penalty in VM disk write performance. To give
some numbers, with a Linux ext3 filesystem we mea-
sured the following speeds when writing a file of size 1
GB by means of 1024 write and sync operations of 1 MB
each: the guest performs at 33 MB/s for a virtual disk
image in “raw” format and 19 MB/s for “qcow2”, to be
compared with the host performance of 39 MB/s meas-
ured when writing directly to the filesystem and 33 MB/s
when writing to a “raw” virtual disk image.

“Qcow2” with meta-data pre-allocation performs
much better, reaching 32 MB/s, but the use of a backing
file and meta-data pre-allocation cannot be combined in
the current release of QEMU/KVM; the good news is
that they will be in the next future.

Table 1 summarizes the results of some write speed
measures performed on a CentOS 6 node controller (PM)
and a Debian Squeeze guest (VM) running on top of it. It
may be interesting to notice that VM performance sub-
stantially increases when over-writing the 1 GB file pre-
viously written (suggesting that allocation of new disk
space is one of the factors that limits the performance of
virtual disk images): approximately 40 MB/s for both
“raw” and “qcow2” images and aligned with native host
performance.

An important point to consider when comparing re-
sults is the decrease in write speed that physical disks
exhibit when moving from outer to inner cylinders.

To better understand the data shown in Table 1, it may
be useful to know that sda4 is a 10 GB partition that
spans only over the inner disk cylinders, while sda3 is a
180 GB partition (almost empty) whose extension starts
from the outer cylinders: this leads to different write
speeds, 30 MB/s for sda4 and 39 MB/s for sda3, the outer
the better.

The “qcow2” performance problem is more annoying
for Windows guests and especially immediately after boot,
since this operating system uses a page file located inside
its root filesystem; during operating system start-up all
process data that are not in active use are written to the

Table 1. Summary of write speed tests.

Test description PM (MB/s) VM (MB/s)

ext3 on phys. dev. (sda3 local) 39 -

ext3 on phys. dev. (sda4 local) 30 29

ext3 on “raw” image (sda3 local) 33 33

ext3 on LVM “raw” image (iSCSI) 25 24

ext3 on LVM “raw” image (overwrite) 16 16

ext3 on “raw” image (overwrite) - 41

ext3 on “qcow2” image (sda3 local) - 19

ext3 on “qcow2” image (overwrite) - 42

ext3 on “qcow2” preall. image (sda3 local) - 32

ext3 on “qcow2” preall. image (overwrite) - 42

page file causing a lot of (slow) writes to the “qcow2”
image.

At a first sight “qcow2” performance could be a re-
levant problem, since in general disk I/O performance for
VM is not exceptional (at least when the virtual disk
images are stored into files as with ECC). However, we
must consider that heavy disk write activity on the VM
root filesystem is not recommended anyway, nor it is
usually necessary since ECC provides off-instance vo-
lumes that can be attached on-the-fly to a running VM
instance and be seen as standard disks. Off-instance vo-
lumes are “exported” by a storage controller and “im-
ported” by the host running the VM via the iSCSI proto-
col, i.e. the network, and attached to the VM by emulat-
ing a PCI hot-plug device. If the storage controller fea-
tures a good filesystem performance and the network
bandwidth is reasonable, volume performance is accept-
able: the 1 GB test executed on an attached volume rea-
ched 24 MB/s on the guest, to be compared with 25
MB/s on the host. If the storage controller can be atta-
ched to a high performance NAS or SAN, a higher speed
would be achieved.

4.5. I/O Barriers

Filesystem performance on Linux is influenced by many
factors such as hardware, filesystem type and mount op-
tions. In particular, I/O barriers [26] on journaling file-
systems (i.e. ext3 and ext4) may substantially slow down
sync operations. This point is somehow subtle since dif-
ferent Linux distributions implicitly enforce different
default mount options; as an example, going from Cen-
tOS 5.7 to CentOS 6.0, the barrier default setting changes
from off to on with a considerable performance slow-
down for our 1 GB write test (16 MB/s with barriers on
and 48 MB/s with barriers off). To recover the previous
behavior we had to explicitly set barrier = 0 in CentOS
6.0 mount options.

Copyright © 2012 SciRes. IIM

A. BOSIN ET AL. 57

4.6. File Injection

Related to the “qcow2” image format, is the problem of
“injecting” files into a virtual disk image before VM
start-up; this technique is used by ECC to customize the
VM with a user-generated public key for the root user, in
such a way that after boot the user can exploit secure
shell to log in to the VM, by using the corresponding
private key (Linux only). While the injection of a file
into a “raw” image can be performed directly by using
the loopback devices, the same is not true for a “qcow2”
image. In the latter case we have then resorted to the lib-
guestfs [27] suite.

5. Porting New Machines into Eucalyptus

In our experience, when a user wishes to run guests from
its own deployed root filesystem or disk image, he/she
may immediately run into troubles, due to the differences
in the configuration expected by ECC and the one exhi-
bited by a cloned PM or even VM built for a different
environment. In this section we present a to-do list that
may hopefully help in the aforementioned task of con-
figuring and running a user-provided Linux guest in ECC.
Please notice that not all ECC installations have the same
configuration, as the experiments reported in this work
should point out. At a minimum, users should be aware
of the hypervisor in use, i.e. Xen or QEMU/KVM.

5.1. Filesystem Layout

In many recent Linux distributions (such as RHEL/
CentOS or Debian/Ubuntu), disk partitions are no longer
referred to by device in /etc/fstab; labels or universally
unique identifiers (UUID) are preferred just because of
physical device independence. Unluckily, some cloning
tools (most noticeably ECC euca-bundle-vol) do not
clone labels or UUID; hence, if /etc/fstab is not manually
adjusted in the cloned image, a mismatch occurs and
partitions cannot be mounted during VM boot. A similar
problem can come about even if /etc/fstab refers to disk
partitions by device, since devices usually differ between
a running PM and its VM clone or between a running
Xen VM and its QEMU/KVM clone; the SATA hard
disk partition device /dev/sda1 in a PM may become the
virtio disk partition /dev/vda1 in a QEMU/KVM VM or
the virtual disk partition /dev/xvda1 in a Xen VM.

5.2. Network

Network configuration is simple, since ECC provides the
IP address to its guests via the DHCP protocol (on the
contrary, host network configuration is quite flexible [3]):
just set the network interface eth0 to acquire an IP ad-
dress via DHCP; a common error, especially when clon-
ing a PM, is to have a specific MAC or hardware address

assigned to the network interface: this must be removed
from the network configuration file because ECC assigns
its own MAC addresses to guests and a MAC mismatch
will cause network start-up to fail.

5.3. Serial Console

ECC can redirect the output of the VM serial console
into a file, which can then be viewed by the user; this
may be useful for debugging problems which occur dur-
ing VM start-up. For console redirection to work, a VM
must be configured to write to its serial console, usually
by enabling the device /dev/ttyS0 (KVM) or /dev/hvc0
(Xen) in the /etc/inittab configuration file. No serial con-
sole configured means no output redirected to the file.

5.4. Ramdisk

The ramdisk associated to a kernel image contains the
modules necessary to mount the root filesystem during
boot; when booting a VM inside ECC, additional modu-
les may be needed, notably the virtio modules if QEMU/
KVM is configured to reply upon them. In such a case,
the ramdisk must be re-created including the necessary
modules; otherwise the boot will fail when trying to
mount the root filesystem. A common error is to clone a
PM or a VM built for Xen expecting that it will boot as a
VM using QEMU/KVM configured to employ virtio: a
typical PM ramdisk does not contain virtio device driv-
ers.

5.5. Boot Loader

Booting a VM requires to specify at least kernel, ramdisk
and root filesystem. These boot parameters can be pro-
vided off-image by the hypervisor or can be configured
into a boot loader such as GRUB, installed on the virtual
disk image. Kernel and ramdisk deserve no special care,
apart from being compatible with the VM image (do not
forget the kernel modules), and users can choose their
own configuration both in the off-image and on-image
case. On the contrary, the root filesystem parameter re-
quires special attention. While in the on-image case users
can configure such parameter by configuring GRUB, in
the off-image case it is out of user control, because it is
statically configured. Anyway, if there is a mismatch be-
tween the root filesystem parameter and the actual loca-
tion of the root filesystem inside the virtual disk image,
VM boot will fail. Hence: 1) if the root filesystem is
specified by label, then the corresponding partition must
have the same label, or 2) if the root filesystem is speci-
fied by UUID, then the same UUID must be present on
the partition, or 3) if the root filesystem is specified by
device, then such a device must exist in the VM. QEMU/
KVM configured for virtio will not boot a VM if the root
filesystem is specified as /dev/hda1 since the typical de-

Copyright © 2012 SciRes. IIM

A. BOSIN ET AL. 58

vice for such a VM is /dev/vda1; on the contrary,
QEMU/KVM configured for IDE disk emulation will
boot a VM if the root filesystem is specified as /dev/hda1,
not if it is specified as /dev/vda1.

5.6. Windows

Windows is not covered in detail here, but unless
QEMU/KVM or Xen/HVM are configured to emulate
devices known to Windows (e.g. IDE disks), the correct
device drivers must be installed. While filesystem layout,
ramdisk and boot loader should not require special con-
figuration, almost certainly a Windows re-activation will
be required if using a cloned disk image. As far as the
network is concerned, DHCP should be configured and
terminal services started to be able to log in to the VM
through the network.

6. Conclusions

Eucalyptus Community Cloud is a very interesting cloud-
computing framework with promising possibilities, rely-
ing on open-source code and on EC2 and S3 API, for
which a public specification is available. In this work we
have investigated and proposed a number of enhance-
ments and extensions that, in our belief, can make ECC
even more attractive for building both private and com-
munity cloud infrastructures, but also with an eye toward
public clouds.

Many other interesting features can be tested, among
others we plan to experiment with the new “qcow2” for-
mat supporting both backing file and meta-data pre-
allocation, as soon as it is available.

In addition, most of the attracting features that made
us prefer KVM over Xen seem to be available in the
latest Xen, i.e. version 4, and we plan to investigate the
combination of ECC and Xen4 in the next future, even
because every Linux kernel from 2.6. 39 onwards will
contain the Xen hypervisor, thus eliminating the need of
a modified kernel in hosts and guests.

Moreover, some of the points covered in Section 5
could be automatically managed within ECC by means
of suitable scripts; for example, we already have in place
a semi-automatic procedure for installing GRUB to a
virtual disk image, and we plan to include it in ECC as a
completely automatic operation.

7. Acknowledgements

The authors acknowledge the Cybersar Consortium for
the use of its computing facilities. This material is based
upon work supported in part by the National Science
Foundation under Grant No. 0910812.

REFERENCES
[1] G. P. Mell and T. Grance, “The NIST Definition of Cloud

Computing,” National Institute of Standards and Tech-
nology, Gaithersburg, 2011.

[2] “Open Cloud Manifesto,” 2009.
http://www.opencloudmanifesto.org/Open%20Cloud%20
Manifesto.pdf

[3] D. Nurmi, et al., “The Eucalyptus Open-Source Cloud-Com-
puting System,” Proceedings of the 9th IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid, Shang-
hai, 18-21 May 2009, pp. 124-131.
doi:10.1109/CCGRID.2009.93

[4] Amazon, “Amazon Elastic Compute Cloud API Reference,”
2011.
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf

[5] Amazon, “Amazon Simple Storage Service API Reference,”
2006.
http://awsdocs.s3.amazonaws.com/S3/latest/s3-api.pdf

[6] J. E. Smith and R. Nair, “The Architecture of Virtual Ma-
chines,” Computer (IEEE), Vol. 38, No. 5, 2005, pp. 32-38.
doi:10.1109/MC.2005.173

[7] M. P. Papazoglou, P. Traverso, S. Dustdar and F. Leymann,
“Service-Oriented Computing: State of the Art and Re-
search Challenges”, Computer (IEEE), Vol. 40, No. 11, 2007,
pp. 64-71. doi:10.1109/MC.2007.400

[8] “Euca2ools,” 2011.
http://open.eucalyptus.com/wiki/Euca2oolsGuide_v1.3

[9] M. Ludvig, “S3 tools,” 2011. http://s3tools.org/s3tools

[10] “Hybridfox,” 2011.
http://code.google.com/p/hybridfox

[11] Xen, 2011. http://xen.org

[12] Libvirt, “The Virtualization API,” 2011.
http://libvirt.org

[13] T. Abels, P. Dhawan and B. Chandrasekaran, “An Over-
view of Xen Virtualization,” Dell Power Solutions, No.8,
2005, pp. 109-111.

[14] Advanced Micro Devices, “AMD64 Virtualization Code-
named ‘Pacifica’ Technology—Secure Virtual Machine Ar-
chitecture Reference Manual,” Advanced Micro Devices,
Sunnyvale, 2005, pp. 1-3.

[15] G. Neiger, A. Santoni, F. Leung, D. Rodgers and R. Uhlig,
“Intel Virtualization Technology: Hardware Support for
Efficient Processor Virtualization,” Intel Technology Jour-
nal, Vol. 10, No. 3, 2006, pp. 167-178.
doi:10.1535/itj.1003.01

[16] A. Aneja, “Xen Hypervisor Case Study—Designing Em-
bedded Virtualized Intel Architecture Platforms,” Intel,
2011, pp. 5-9.
http://download.intel.com/design/intarch/PAPERS/32525
8.pdf

[17] FutureGrid, “A Distributed Testbed for Clouds, Grids, and
HPC,” 2011. https://portal.futuregrid.org

[18] A. Bosin, M. Dessalvi, G. M. Mereu and G. Serra, “En-
hancing Eucalyptus Community Cloud,” 2011.
http://www.dsf.unica.it/~andrea/eucalyptus.html

[19] QEMU, 2011. http://wiki.qemu.org/Main_Page

[20] Kernel Based Virtual Machine, 2011.
http://www.linux-kvm.org/page/Main_Page

Copyright © 2012 SciRes. IIM

http://dx.doi.org/10.1109/CCGRID.2009.93
http://dx.doi.org/10.1109/MC.2005.173
http://dx.doi.org/10.1109/MC.2007.400
http://dx.doi.org/10.1535/itj.1003.01

A. BOSIN ET AL.

Copyright © 2012 SciRes. IIM

59

[21] LVM, 2011.
http://sources.redhat.com/lvm2

[22] IBM, “IBM General Parallel File System,” 2011.
http://www-03.ibm.com/systems/software/gpfs

[23] “Lustre Filesystem,” 2011.
http://wiki.lustre.org/index.php/Main_Page

[24] R. Russell, “Virtio: Towards a De-Facto Standard for
Virtual I/O Devices,” ACM SIGOPS Operating Systems
Review—Research and Developments in the Linux Kernel

Archive, Vol. 42, No. 5, 2008, pp. 95-103.
doi:10.1145/1400097.1400108

[25] M. McLoughlin, “The Qcow2 image format,” 2008.
http://people.gnome.org/~markmc/qcow-image-format.ht
ml

[26] “Understanding Linux Block IO Barriers,” 2010.
http://www.linuxsmiths.com/blog/?p=18.

[27] Libguestfs, “Tools for Accessing SND Modifying Virtual
Machine Disk Images,” 2011. http://libguestfs.org

http://dx.doi.org/10.1145/1400097.1400108

