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ABSTRACT 

Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states 
transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace 
Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is 
proposed for generating discrete mode transition graph of a hybrid system. This method can be used for a general class 
of industrial hybrid plants which are defined by Polyhedral Invariant Hybrid Automata (PIHA). In these automata there 
are no resetting maps, while invariant sets are defined by linear inequalities. Therefore, based on the continuity property 
of the state trajectories in a PIHA, the problem is reduced to finding possible transitions between all two adjacent dis- 
crete modes. In the presented method, the possibility and the direction of such transitions are detected only by comput- 
ing the angle between the vector field and the normal vector of the switching surfaces. Thus, unlike the most other rea-
chability methods, there is no need to solve differential equations and to do mapping computations. In addition, the 
proposed method, with some modifications can be applied for extracting Stochastic or Timed Discrete Trace Transition 
Systems.  
 
Keywords: Hybrid System; Discrete Trace Transition System; Polyhedral Invariant Hybrid Automata; Discrete Mode 

Transition Graph 

1. Introduction 

Hybrid dynamical system (HDS) which contains both 
discrete and continuous dynamics, has attracted consid-
erable attention in recent years [1-3]. Modeling of HDS 
is a challenging problem because; the model must repre-
sent completely both discrete and continuous behavior of 
HDS and their interactions as well.  

A Subclass of hybrid systems that arise naturally in a 
great number of engineering applications (i.e. DC-DC con- 
verters, combustion engines or manufacturing processes), 
is Discretely Controlled Continuous System (DCCS). A 
typical DCCS consists of a continuous plant (with con-
tinuous state vector  x t ) that its operation mode (  q t ) 
is switched by a discrete feedback controller (c.f. Figure 
1) [4].  

This paper concerns with modeling of a DCCS by a 
Polyhedral Invariant Hybrid Automaton (PIHA). PIHA 
is a particular class of Hybrid Automata (HA) that differs 
from general HA in the following respects: 

1) There are no so-called reset mappings associated 
with the discrete transitions, which means that there are 

no discontinuities in the continuous state trajectories.  
2) The invariant sets are defined by linear inequalities 

and guards are faces of the invariant sets. A discrete state 
transition (which is called an internal event) occurs im-
mediately when the continuous state trajectory reaches a 
guard set [5]. 

According to the continuity property of the state tra-
jectories in a DCCS, PIHA is a suitable tool for modeling 
and simulation of DCCS’s [5,6]. An essential step for  

 

 

Figure 1. Discretely controlled continuous system. 
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modeling a DCCS by a PIHA, is obtaining Discrete 
Trace Transition System (DTTS) of the underling system 
[7,8]. DTTS is a transition system that abstracts away the 
continuous dynamics and retains the hybrid system be-
haviors only at the instants of discrete transitions [5]. 
Generally speaking, DTTS is a Discrete Event System 
(DES) that describes all internal events of the DCCS (c.f. 
Definition 4) and may be represented by a discrete mode 
transition graph [6].  

Obtaining DTTS which is the main contribution of this 
paper is a challenging problem especially in model based 
fault diagnosis and supervisory control of DCCS’s. In 
these applications all internal events must be included in 
the obtained DTTS to guarantee completeness and effi-
ciency of the model [9]. On the other hand, modeling 
approach complexity reduces its application in real time 
and large scale processes [10].  

PIHA modeling of DCC has been cited in some lines 
of researches such as reachability analysis, verification 
analysis and fault diagnosis of HDS. [4,6,8,11,12]. In 
these approaches the continuous state space is divided 
into a set of disjoint partitions so that the union of all 
partitions covers the entire state space. These methods 
need complex computations for determining the transi- 
tions between elements of the partitions. Computing these 
transitions needs to solve state equations in each partition 
which may lead to a high degree of complexity especially 
for large scale systems [10]. Besides, in some verifica- 
tion analysis, the initial partitions may be refined for 
several times that it causes more complexity of DTTS 
computations [5].  

Based on the properties of PIHA, especially its conti-
nuity property, in this paper a fast geometric method is 
introduced for detecting DTTS of PIHA with lower com-
plexity. As it will be illustrated in the next section, in a 
PIHA, invariant sets are linear inequalities; hence guard 
sets can be visualized as hyper-plans that partition the 
continuous state space into discrete states. These discrete 
states, which specify different dynamics of DCCS, are 
called locations. The locations can be changed under 
evolution of continuous states. When a continuous state 
trajectory intersects a hyper-plane guard set, an interval 
event is occurred and current location is changed. It can 
be shown that continuity of continuous state trajectories 
in overall state space restricts the location transitions 
only to adjacent mode transitions. Therefore, in the DTTS 
of PIHA only transitions between two adjacent locations 
are possible. By these considerations, the problem of find-
ing DTTS is reduced to finding all possible adjacent 
mode transitions [6].  

In our proposed method occurrence of these events is 
detected by computing  , where   is the angle be-
tween T and N, which T is the vector field and N is nor-
mal vector of switching surface at a guard set point, re-

spectively. For computing T on whole of the switching 
surface, the surface may be divided into some partitions 
and T is computed for each one.  

The proposed method in this paper has some advan-
tages: 

1) There is no need to solve differential equations and 
T can be computed directly by using state equations. 

2) Computations are carried out only on switching 
surface, instead of the overall state space. It means that 
the order of the equations reduces at least one order.  

3) The method can be easily extended to detect sto-
chastic or timed DTTS.  

This paper is organized as follows. Some basic con-
cepts including PIHA and DTTS are defined in Section 2. 
In Section 3 our geometric approach for detecting DTTS 
is described completely. Model completeness and further 
discussions of the proposed method are presented in Sec-
tion 4. For more illustration, in Section 5 the proposed 
method is applied on a two tank system. And finally in 
Section 6 a brief discussion is given about the abstraction 
levels. 

2. Basic Definitions  

In this section the proposed method for detecting DTTS 
for PIHA is described. Hence, some related definitions 
are given firstly, and then the method is presented at the 
end of the section. 

Definition 1 [1,5]: A PIHA is a 7-tuple H = (Q, X, f, 
Init, I, E, G), where  

 1 2, , , mQ q q q 

n

 is a set of discrete states or loca-

tions;  
X  is the continuous state space; 

F q Q is a function that assigns to each location   
a vector field  .f

Q Init X
q

 is a set of initial states; 
 on X;  

 :I Q P q QX  assigns to each location of   an 
invariant set of the form    I q X  where I q

E Q Q 

 is a 
non-degenerate convex polyhedron; 

 is a set of edges or discrete transitions 
which are called events; 

   . :G E P X  is a guard condition set that assigns 
to  ,e q q Ei j  a guard set.  

 P X  (or Recall that 2X ) denotes the power set of 
X. 

In PIHA the following assumptions must be satisfied: 
1) For each location the guards are the union of the 

faces of the corresponding invariant set. 
2) Events do not lead to transitions that violate invari-

ants. 
In addition the following assumption is considered. 

 The vector field  .qf  is Lipschitz for each location 
q. This condition implies uniqueness trajectory of 
 0,tx x  for each initial state 0x . 
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 The hybrid system is a DCCS. This assumption im-
plies that for each location q state equation can be 
written as  , q u x  that u denotes input discrete 
value. 

x f

 , qx
    

0 0, 0q

Definition 2 [5]: Given an initial hybrid system state 
, the continuous trajectory in location q, is 

 where 
0

   0 , .q x x

   0 ,q tx 0t 
x ; and  

 0 ,q


x  t f  ,q u , . (until a discrete tran-

sition occurs.) 
Definition 3 [1]: A transition system, 0, ,T S S

 : S P S 
S S

, 
consists of  

a set of states S;  
a transition relation ; 
a set of initial states . 0

In this paper a PIHA is abstracted into a transition 
system called Discrete Trace Transition System (DTTS) 
that abstracts away the continuous dynamics. DTTS is 
defined as follows. 

Definition 4 [6]: For a given PIHA, DTTS is a transi-
tion system in which S Q  X ; ; 0S  Init    n e

   \I q I q 

;  

in which ;          ,, , |n qq q t  xx x

     ,q q, , ,e q q q q e E     x x 1  and 0t 

  ( )G ex

 I q

 

  such  

that ,  and     1,q t x x

    \t I q ,qx . 

Here I q  denotes the boundary of  I q
   \

 and 
I q I q  is the interior of  I q . 

DTTS is a discrete event representation of PIHA and it 
is used to model transitions of locations and correspond-
ing event sequences. Based on definition 4, DTTS has 
two parts of transitions n , null transition and e , dis-
crete transition. Null transition comprises all continuous 
state trajectories that remain in a location indefinitely and 
discrete transition comprises all continuous state trajec-
tories in the PIHA between different locations. 

3. Obtaining DTTS  

For detecting DTTS firstly invariants of PIHA must be 
defined. In this paper invariant sets are determined by 
using state quantizers. The state quantizer maps the con-
tinuous state space  onto discrete states set Q [13]. 
Here we use rectangular quantizer that leads to hyper- 
boxes as invariant sets. Based on Def. 1 and properties of 
PIHA, each common face of two hyper-boxes i  and 

n

q

jq  determines a guard set ijg  that is a subset of a hy-
per-plane ijg . Note that ij jig g  for all i  and q jq . 
Figure 2 shows a typical state partition of a two tank 
system illustrated in section 5. As it is shown in this fig-
ure, occurrence of event 21  is equal to discrete transi-
tion from location  to location .  

e

1q 2q



 

Figure 2. A typical state space partition.  
 
where x, u, d and f denote states, inputs, disturbances and 
faults respectively. 

Based on Def. 1, in PIHA an event jie  occurs when 
there is at least an entry point px  for jq

   0,
.

x q

 location, in 
which the continuous trajectory  intersects with 
the guard set gij .  

Generally, finding entry points of all discrete modes, 
needs to mapping all interior points of each location by 
solving state equation. These calculations are complex 
especially when refining partitions is needed [5]. 

By considering continuity properties of PIHA it is suf-
ficient to check intersection points on guard sets. In fact 
in our method we assume that each point on a guard set 
could be an intersection point. This assumption is not a 
restriction assumption and also guarantees completeness 
of the obtained model for DTTS that will be considered 
in the next section. Therefore it is only needed to check 
that each point on a guard set can be an entry point for 
location jq . This test can be carried out by calculating 

     1cos  p qi p qi px T x N x ,        (2) 

 T xqi p  is the vector field of  x t  and where 
 qiN xp  is the normal vector of hyper-plane ijg , both 

at px  (c.f. Figure 2). Now it can be deduced that: 

, , ,i x u dx f f ,   00 x x .        (1) 

px  is an entry point for jq   if 
π

2
 px    (3) 

Thus the possibility function of occurrence jie

   

 is de-
fined as 

π
1 if . .

2
0 otherwise

p ij p
ji

g s t x
Poss e

    


x
;   (4) 

Note that in Equation (1) 

     , 
iqi p p q u pT x x x f x .        (5) 

Which can be computed simply by replacing px  in 
 q uf x

ij

,i

By computing Equations (2)-(5) for all 
.  

x g , possi-
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bility of occurrence ji  is determined. Note that if 
 for a point 

e
1Poss e ji  px , then a transition from 

location i  to location q jq  is considered in DTTS and 
there is no need to test other points on ijg . By repeating 
this procedure for all guard sets and for all locations, the 
overall DTTS of PIHA is detected. This algorithm will 
be given in the next section, but before that, some major 
considerations are presented in the next section. 

4. Further Discussions 

In this section at first completeness of the DTTS is con-
sidered and then some special cases that may be arise in 
obtaining DTTS, are considered.  

Completeness of DTTS: Recall that DTTS is a discrete 
event model for PIHA. Thus DTTS must be a complete 
model for each initial hybrid state and for each input u. It 
means that the obtained DTTS could generate all possi-
ble discrete trajectories of the underlined DCCS, i.e. 

S ME E . Here, SE  and ME  are event trajectories 
generated by the system and the model, respectively. For 
investigation the completeness of DTTS, the problem is 
studied for discrete transition and null transition as fol-
lows.  

1) Discrete transition: In this case if the point at which 
event ji  occurs in HS is e px , then ijgxp . Since 
during the obtaining procedure of DTTS all points of ijg  
is tested for detecting location transitions, then ji  has 
been considered in DTTS and similarly it is true for all 
events of HS. Therefore, 

e

S  ME E , for all discrete 
transitions. 

2) Null transition: In this case there is no event occur-
rence at the system and continuous trajectory remains in 
a location permanently. If S k  denotes the system 
event trajectory where tk is the instant time in which a 
null transition occurs, then we have: 

 tE

 tE E
t 
 SE 

S S k  for 
all . On the other hand By part a), it is resulted that 

 for t . Therefore, for all time  
kt

 Mt tE kt

   S SE E M tEt  .              (6) 

Practically, null transition can be detected when all 
points on guard sets of a location are entry points to this 
location. 

Another issue that is addressed in this section is spe-
cial cases of the entry point px . 

1) If  for some 0T px , then px  is an equilib-
rium point and there is no transition of DTTS in this 
point (Figure 3(a)). 

2) If 
π

2
   for some px , then  x t  moves exactly  

on ijg  and event ji



e  cannot be detected at this point 
(Figure 3(b)). 

3) If  
ip  

jpp pxT x T  . In this case px  is not  

continuous at px . Thus it can be seen that if both  

 
(a) 

 
(b) 

Figure 3. Special cases for xp (a) xp is an equilibrium point 

(T = 0); (b) 
π

=
2

θ  and eji cannot be detected at xp.  

 

 
ip px  and  

jp px  are less than 
π

2
hen , t px  an 

entry point for pj and the event eji occurs (c.f. Figure 4). 

But, if 

 is

 π

2ip p  and x   π

2
p , the

jp x n the Zeno  

phenomenon has occurred at this point. It means that 
infinite oscillations (i.e. discrete transitions) occur in a 
finite duration time, thus the point px  is not an entry 
point. 

An important note in this method is that only algebraic 
equations must be solved and there is no need to solve 
differential equations. Moreover, since partitions are rec-
tangular, then 0N , for all points on all guard sets In 
addition; DTTS ned by this method is complete. At 
the end of this section the presented method are summa-
rized by following steps: 

1) According to state 

 obtai

equation and sensor positions, 
pa

 guard set choose a set of test points which 
is

rtition the system state space and determine all guard 
sets. 

2) For each
 called gN . This set is built by partitioning the guard 

set and selecting test points from each partition. 
3) For a test point, gNpx , on the guard set ijg ,  
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Figure 4. Disco  ntinuity in pθ x  at px . 

 

pute com  
iq pT x  and  

jq pT x . If at least one of them  

 zero, c nother tis equal to hoose a est point from gN , and 
go to step 3. 

4) Compute  
iq p x  and  

jq p x  by Equation 2.  

If f them is equal to zero, at least one o  choose another 
test point, and go to step 3. 

5) Determine  jiPoss e  or  ijPoss e  by Equation 4.  

6) If  jiPoss e  and  ijPos  cannot

because of Zeno e n, choo

ints and for all guard 
se

is procedure singular points, in which event oc-
cu

s e  be detected  

xecutio se another test point and 
go to step 3. 

7) Repeat steps 3-6 for all test po
ts.  
In th
rrence cannot be detected, are isolated in steps 3, 4 and 

6. If all test points of gN  are singular points, then an-
other set must be chos  by refining partitions of the 
guard set. In the next section the proposed approach is 
simulated to detect DTTS of a two tank system that is a 
well-known hybrid system. 

en

Limiting Conditions 

hich must be satisfied for apply-

he overall 
sy

switching system by a discrete model 
su

 
g (e.g. syn-

ch
 

se
ystem is represented by a difference equation 

se

5. An Illustrative Example  

d is applied for ob-

The main requirement w
ing this method is continuity of state trajectory. Two 
main situations may contradict this condition: 

1) Whenever there is a switching part in t
stem. In this case the presented method could be ex-

tended as follows: 
a) Represent the 
ch as a Finite State Automaton (FSA).  
b) Drive the DTTS of the continuous part
c) Obtain the overall DTTS by combinin
ronized production) of these two discrete models [14]. 
An example of this situation is considered in the next

ction.  
2) The s
t (i.e. it is a discrete system itself). In this case, the dis-

crete model could be derived directly by methods such as 
cell to cell mapping [9].  

In this section the proposed metho
taining PIHA of the two-tank system which is affected by 
faults. The system depicted in Figure 5. This system is a 
nonlinear hybrid system described by the following dif-
ferential equations [15,16]. 

 1 1 1in U Lh q q q
1

A
   ;             (7) 

 2 1 1 2

1
U Lh q q q

A
   ;             (8) 

 1 1 2 1 2 1
1

2

sgn is open

0 is closed
L

c h h h h V
q

v

   


    (9) 

 2 1 2 1 2 1 2

2 1 1 2
1

2 2 2 1

1 2 2

sgn , if ,

, if ,

, if ,

0 if , or closed

v

v v v
U

v v v

v

c h h h h h h h

c h h h h h h
q

c h h h h h h

h h h V

   

    
   



(10) 

2 3 2q c h .              (

Here 1h  and 2h  are liquid level
re el

f t

s V1 and V2 may be closed or open and the 
in

onse-
qu  

11) 

s of tank1 and tank2 
spectiv y, qin is input flow and hv  is the height of the 

upper pipe. The other parameters o he system are given 
in Table 1. 

The valve
put pump works in on or off mode. The valve V3 is as-

sumed to be always open in the normal operation.  
For determining the DTTS of the system, (and c
ently its corresponding PIHA), all discrete states and 

 

L1

P(t)

Tank-2

inq

Tank-1

L2

L3

1V

2V

1Lq

3V

2Lq

1Lq

1Uq

2q

 

Figure 5. The two tank system. 
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Table stem. 

A = 1.5 × 10  m  Cross-section area of tanks. 

 1. Parameters of the two tank sy

–2 2

c1 = 6 × 10  m /s Flow constant of valve 1. 

c2 = 4 × 10–4 m5/2/s Flow constant of valve 2. 

3

qin = 9 lit/min Input flow. 

v = 0.3 m Height of the upper pipe. 

q1L (t) Leakage flow of tank 1 

q2L (t) Leakage flow of tank 2 

–4 5/2

c  = 2 × 10–4 m5/2/s Flow constant of valve 3. 

h  

 
 

Figure 6. The partitions of two tank system. 
 
quations for a few test points.  

il of the calculations is 
pr

 
vents must be identified. DTTS of such systems com-

ion, three working modes are considered for 
th

 (faultless). 

2f lock2). 

3f
Th S is identifying 

in

1 2

e
prises three parts; Input discrete events, internal events 
and fault events [6]. Here, Each combination of the situa-
tions of the V1, V2 and the pump is considered as a dis-
crete input for the system. Therefore, the system has 8 
different discrete inputs which all are assumed to be ob-
servable. 

In addit
e system as follows: 

1f : Faultless system
: Blockage in the output flow (b
: Leakage in the first tank (leak1). 
e crucial part of detecting DTT

ternal events [4]. Here, internal events occur when the 
liquid levels h1 or h2 reach the height of the upper pipe, 
hv. At this point, state equations change according to 
Equations (7)-(10). Thus the state space  ,h h x  is 
partitioned into four distinct locations due inct 
dynamics of Equation (10) (c.f. Figure 6). 

By considering all discrete states, the P

to four dist

IHA graph of 
the system is constructed which is shown in Figure 7. In 
this graph 

if
Q  denotes the sub graph depended on the 

fault if , 
ju  Q shows the sub graph related to discrete 

input ju
r ut 
 and ,i jQ  denotes the sub graph for fault if  

and di ete inpsc ju . It is assumed that the system is  
normal mode, 

in

of
Q until the fault if  occurs and the 

states of the PIHA move towards th
 

e 
if

Q  and remain 
there. In addition transitions between all 

juQ  are as- 
sumed to be acceptable.  

It can be seen that the basic element of the obtained 
I

e in

8 3 4 96    . 

It is clear that for such a number of discrete states, us- 
in

P HA, is ,i jQ  which must be determined for all faults 
and discret puts. By considering Figure 6, each ,i jQ  
has 4 invariant sets and the number of all discrete states 
is equal to:  

s

g the previous methods lead to a huge number of com- 
putations. By using the proposed method of this paper 
these computations reduced to solving a few algebraic  

e
For more illustration the deta
esented for sub graph Q8,1. In this mode the system is 

working with no fault, all valves are assumed to be 
opened and the pump is on. By using our method  qiT x , 

 qiN x , and,   x  is computed for all ijgx  
uard sets. For example for guard set 

 and
for all g 12g , an

12 1 2: , 0 0.3vg h h h

d for 
location 1;  

   ; 

   1 2 1,0h  N ; 

Not that the direction of the normal vector for each 
face of a hyper box is considered into the inside of the 
hyper box.  

 1 1 2,h hT , 

where, 1 vh h  due to the characteristic of guard set, 
12g  and   

   2 1 2 2
1

1
sgnin v vh q c h h h h

A
    . 

By Equation (2),  2h  is computed for all 20 h   
0. n Figu :  

 

3, and is depicted i re 8(a). It is seen that

2 2for 0.24
2

h h   , 

 

π

2 2

π
for 0.24

2
h h   . 

Therefore by using Equation (4), it is resulted that: 

 21 21 for 0.24Poss e h 

 12 21 for 0.24Poss e h 
 

By repeating these computations for the other guard 
se

.

ts,   x  and possibilities of all events are derived. 
Figur ows e 8 sh   x  for all guard sets and the obtained 
DTTS is depicted igure 9. In this graph nodes denote 
locations and events are denoted by edges. On each edge 
the condition for that transition has been written as well.   

 in F
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Figure 7. PIHA graph of the two-tank system. 
 

Note that when possibility of an event is 1 for some 
po

een nodes 3 and 2, shows 
th 1 2

 
iq pT x  is computed for this. Here  

 
iq

int on a guard set, there is no need to check other 
points. Generally, each guard set may be divided into 
some partitions and these computations are carried for a 
few points of each partition. 

In Figure 9 the edge betw

 0.01, 0.007    that indicap

from location 4 to locati
transition matrix, L  wo

T x tes the transition  

on 2. For each sub-graph Qi,j, a 
uld be defined. In this matrix, 

at this transition occurs just at  0.3, 0.3p h h   x . 
In fact this point can be conside   red as a g

i,j

each entry li,j indicates a state transition from state j to 
state i. For example the transition matrix for DTTS of 
Figure 9 is as follows.      

uard set and

Copyright © 
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(a)                                                      (b)    

   
(c)                                                      (d) 

Figur . 
 

   

e 8. θ(x) for guard sets g12, g24, g34 and g31, when all valves are open

2

2
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4

2

0 . 2 4

0 . 2 4
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h

h

q

q

q

h






1q 2q

10 0.3h 

3q4q

2 0.24h 

2 0.24h 

2 0.3 6. Hierarchical DTTS h

1 0.32h 

1 20.3, 0.3h h 
1 0.32h 

 

Figure 9. DTTS of two-tank system for Q8,1. 
 

0 1 0 1

1 0 1 1

0 1 0 1

0 0 0 0

 
 
 
 
 
 

. 

The method presented in this paper generates a Finite 
State Automaton (FSA) as DTTS of a PIHA. In this FSA 
all continuous behavior of the origin  system are ab- 
stracted by discrete states and their transitions. Such FSA 
has been used in some fault diagnosis applications, suc- 

 the diagnosability analysis 
 FSA. Generally speaking, a 

8,1L 

al

cessfully [17,18]. In [16,17]
have been presented for such
FSA is diagnosable if it could generate eventually, two 
different discrete trajectories for two different faulty 
modes. If the obtained FSA (i.e. DTTS) is not diagnos- 
able, it means that the level of abstraction is high and 
some necessary details have been ignored. In these cases 
two modifications could be used.  

1) Increasing the discrete states by refining the parti- 
tions. In this method, some ignored details of the con- 
tinuous behavior are considered, but the dimension of the 

Copyright © 2012 SciRes.                                                                                  ICA 
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FSA is increased [10].  
2) Using the other discrete event models for repre- 

senting the DTTS. In fact, in these approaches, other 
discrete event models such as Stochastic Automata (SA) 
or

nsitions are considered instead
th

 Timed Automata (TA) are applied [13,19]. These 
models consider more details of the continuous behavior 
within a location rather than the FSA. In SA the prob- 
abilities of the state tra  

eir possibilities. In TA, each discrete state transition is 
known with its occurrence time. In fact, for abstracting 
PIHA a hierarchical modeling can be used due to the 
abstracting level. FSA has the highest degree of abstrac-
tion and the most simplicity of calculations. SA is in the 
second level of the abstraction and TA is in the third lev-
el [4]. 

The presented method in this paper could be extended 
for SA or TA modeling of DTTS. Basic principles of 
these extensions are given here briefly, while more de-
tails must be considered in each one.  

In the case of SA extension, the probability of occur-
rence of eji is computed by: 

i j
ji

l
e

l
 .                (12) 

Here, i jl   denots the length of the part of g12 in 
which the event eji occurs and l is the whole length of g .  

terval time of reaching a 
continuous state trajectory to a guard set. Because the 
computations are done only for s
on the guard sets, then the complexity of calculatio
ye  than

7.

stem is the first and
lyzing such systems. The method of
ontinuity properties of PIHA 

d can be easily
ex

ima-

Nonlinear An s & Applications, 

12

The extension of the method for TA modeling could 
be carried by computing the in

ome points (or intervals) 
ns is 

t lower  the other methods.  

 Conclusions 

In this paper a geometric method is presented to detect 
discrete trace transition system of a PIHA. Since a wide 
range of technological plants can be described by a PIHA, 
this method can be used in these areas.  

Constructing DTTS of a hybrid sy  
 essential step in ana

this paper uses c for 
detecting DTTS without need to solve differential 
equations. In addition, the computations are done only on 
switching surfaces, which have smaller dimensions rather 
than the original state space. The metho  

tended to detect stochastic DTTS or timed DTTS. 
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