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ABSTRACT

The goal of this paper is to study an output stabilization problem: the gradient stabilization for linear distributed systems.
Firstly, we give definitions and properties of the gradient stability. Then we characterize controls which stabilize the
gradient of the state. We also give the stabilizing control which minimizes a performance given cost. The obtained re-
sults are illustrated by simulations in the case of one-dimensional distributed systems.
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1. Introduction

One of the most important notions in systems theory is
the concept of stability. An equilibrium state is said to be
stable if the system remains close to this state for small
disturbances; and for an unstable system the question is
how to stabilize it by a feedback control.

For finite dimensional systems, the problem of stabili-
zation was considered in many works and various results
have been developed [1]. In the infinite dimensional case,
the problem has been treated in Balakrishnan [2], Curtain
and Zwart [3], Pritchard and Zabczyk [4], Kato [5], Trig-
giani [6]. Many approaches have been considered to char-
acterize different kinds of stabilization for linear distrib-
uted systems: Lyapunov and Riccati equation for expo-
nential stabilization, and dissipative type criterion for the
case of strong stabilization [3-5,7]. The problem has been
also treated by means of specific state space decomposi-
tion [6]. The above results concern the state, but in many
real problem the stabilization is considered for the state
gradient of the considered system, which means to find a
feedback control such that the gradient — 0, when
t — +oo.

For example the problem of thermal insulation where
the purpose is to keep a constant temperature of the sys-
tem with regards to the outside environment assumed to
be with fluctuating temperature. Thus one has to regulate
the system temperature in order to vanish the exchange
thermal flux. This is the case inside a car where one has
to change the level of the internal air conditioning with
respect to the external temperature.

As we cannot always have external measurements, we
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use a sensor to measure the flux, which is a transducer
producing a signal that is proportional to the local heat
flux.

The purpose of this paper is the study of gradient sta-
bilization. It is organized as follows: In the second sec-
tion we define and characterize gradient stability. In the
third section, we characterize gradient stabilizability, by
finding a control that stabilizes the gradient of a linear
distributed system and we give characterizations of such
a control. In the fourth section we search the minimal
cost control that stabilizes the system gradient. In the last
section we give an algorithmic approach for control im-
plementation and simulation examples.

2. Gradient Stability

This section is devoted to some preliminaries concerning
definition and characterization of gradient stability for
linear distributed systems.

2.1. Notations and Definitions

Let Q be an open regular subset of IR™ and let us
consider the state-space system

g:Az
ot (M
2(0)=z,eH

where A:D(A)cH —H is a linear operator gener-
ating a strongly continuous semigroup S(t), t>0, on
the state space H which is continuously embedded in
H'(Q).
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H is endowed with its a complex inner product (,).
and the corresponding norm |||| .
We define the operator V by:

ViH - (2(Q))
[62 oz az) 2
ZH €00 m—

m
(L2 (Q))m is endowed with its usual complex inner pro-

duct (,)m and the corresponding norm ||||m where:

()2 (@) x(2 ()" »1c
i=m _ 3)

with f=(f,f,,--,f ) and g=(9,,0,,---.9,) where
f.,0, € ’(Q) i=0,L---,m. The mild solution of (1) is
givenby z(t)=S(t)z,.

Let V' denote the adjoint operator of V, and we
define the operator G =V'V which a bounded operator
applying H into itself.

Definition 2.1

The system (1) is said to be
e Gradient weakly stable (g.w.s) if Vz, e H, the cor-

responding solution z(t) of (1) satisfies

(Vz(t).y) > 0astis o vye(2(Q))

e Gradient strongly stable (g.s.s) if for any initial con-
dition z, e H the corresponding solution z(t) of
(1) satisfies:

||Vz (t)"m -0 ast—> o

e Gradient exponentially stable (g.e.s) if there exist M,
a >0 such that:

||Vz (t)||m <Me ™|z,

,Vt>0,Vz, e H

Remark 2.2

From the above definitions we have:

l)ges = gss = gws.

2) If the system (1) is stable then it also gradient sta-
ble.

3) We can find systems gradient stable but not stable.
This is illustrated in the following example.

Exemple 2.3

Let Q=[0,1],0on H'(Q) we consider the following
system

oz
2 1)=a(t)
%(O,t):%(l,t):o @)

2(,0)=2,e H'(Q)
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2
Where Az=Az+z and A= ;—2 is the Laplace op-
X
erator.
The eigenpairs (4,4 ),i € IN of A are given by:

4 =1-(in)’ i>0

¢ (X):\/%cos(inx) i>0

A generates a strongly continuous semigroup S(t)
given by

5(1)2, = X e (2,44

i>0

A, >0 then (4) isn’t stable but
Vs )af, < S (24 IV 4L,
1>

24t 2
<™z,

Therefore the system (4) is g.e.s.

2.2. Characterizations

The following result links gradient stability of the system
(1) to the spectrum properties of the operator A.
Let us consider the sets

o' (A)={1ec(A),Re(4)20,N(A-2l)EN(G)}
and
o’ (A)={4ec(A),Re(1)<0,N(A-Al)&N(G)|

where o(A) and N(A) are the points spectrum and
the kernel of the operator A.

Proposition 2.4

1) If the system (1) is g.w.s then o' (A)=@.

2) Assume that the state space H has an orthonormal
basis (¢, ), of eigenfunctions of A, if o' (A)= and,
for some a >0, Re(1)<-a forall Aec’(A), then
the system (1) is g.e.s.

Proof

1) Assume that there exists A e G(A) such that
Re(/i) >0 and there exists ¢ € H suchthat Ag=A¢.

For z,=¢, the solution of (1)is S(t)g=e"¢,so0

(Vs (t)6.v9), |2 Ve, 2|V, >0

hence the system (1) is not g.w.s.
2)For z,e€H wehave

VS (t) Z,= ze;mti<zoa¢n,k >V¢n‘k

n=0 k=1

where r, is the multiplicity of the eigenvalue A,.
o' (A)=Q, gives:

VS (t)z,] < Me ™z,

>
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for some M > 0.

So we have the g.e.s of the system (1).

As example we consider (4). We have: o' (A)=Q
and Vieo’(A), Re(1)<1-n’, then the system (4)
is g.e.s.

For the gradient exponential stability, we need the fol-
lowing lemma.

Lemma 2.5

Assume that there exists a function
M(t)el® (O, +00; IR+) such that:

[Vs(t+s)|<M(t)|VS(s)|vt.s =0 Q)

Then the operators (VS (t))t>0
Proof -

Let us show that sup "VS (t)” <+ . Otherwise there
t=0

are uniformly bounded.

exists a sequence (t +7,), t,>0 and 7, > such
that "VS (t,+7, )” is increasing without bound.
Now we have:

[[vs(s+5,)2|} ds= [V (s)7] ds
0 v

and the right-hand side goes to zero when Kk — o0

By Fatou’s lemma liminf "VS (s+7y) Z"m =0 when
k — oo, almost everywhere 0<s< o0,

Hence for some S, <t, we can find a subsequence

7, such that linm VS (50 +7y )Z“m =0.

But with (5) we have
“VS (t+z,)z <M —so)”VS(so +7,, )2

—0

when n — +oo, which is a contradiction.

The conclusion follows from the uniform boundedness
principle.

Proposition 2.6

Assume that (5) is satisfied and

[vs (nt)|<[vs(t)[ vt=0.vneIN’ (6)

Then the system (1) is g.e.s if and only if
[[vs(t)z] dt <o, zeH
0

Proof

tvs )z f[vswefas
0

< ||VS (s+t-s) z||;ds

< [M?(s)|VS(t-s)[, ds from (5)

e O

<N ||Z||2 from lemma (3.2)
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where N >0, then ln”VS (t)" <0, vVt>t, for some
t, >0, hence

w -
53]

Now we show that W, = lim

t—>+o0

Lett;>0,and N'= sup "S(t) , there exists neIN
[0.4]

such that nt, <t <(n+1)t, foreach t>t, then
sl mlvs(u)| s
t a t t
With (4) we have
In|[VS (b)) 0t In|[vs(t) N’
t Tt t, t

Therefore
In|[VS (1) <l Vs (1) e [vs ()]

limsu
p t>0 t t—o

t—>o

then w, = lim M

t—>+0
Hence for all € ]0,~@,[, there exists M' such that
[vs(t)z] <Me|z], vzeH, t>o0.

So the system (1) is g.e.s.

The converse is immediate.

Example 2.7

The system (2) satisfies the conditions (5) and (6). In-
deed:

Let t>0,and zeH'(Q).

Wehave VS(t)z=Y¢*(z,¢,) Ve, which implies

i>0

[vs ), < Sz a) Vol
2
d

we can show that "VS (t)"m =™,

< Mt |

Wehave | [V (t)z]] dt <450
0

Therefore the system (4) is g.e.s.

Corollaire 2.8

Under conditions (5) and (6) and assume, in addition,
that there exists a self-adjoint positive operator P e L(H )
such that:

(Az,Pz)+(Pz,Az)+(Rz,2)=0,2 e D(A) (7)
where R e L( H ) is a self-adjoint operator satisfying

; , for some c >0 ()

(Rz,z)>c|Vz
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then (1) is g.e.s.
Proof
We define the function V (z)=(Pz,z), VzeH.
For z,eD(A), wehave z(t)=S(t)z, and

%V(z(t)):<PAS (1)2,.5(t)z)+(PS(t) 2y, AS (1) 2,)

—(RS(t)2,,5(t)z,)

Thus T(Rs(s)zo,s(s)zo>ds <V (z,) By (8), we ob-

win [ [VS ()2, ds <o
0

Since D(A) is dense in H we can extended this ine-
quality to all z, € H, and the proposition 3.3 gives the
conclusion.

For the gradient strong stability we have the following
result.

Proposition 2.9

Assume that the equation

(Az,Pz)+(Pz,Az)+(Rz,2) =0,z D(A)

has a self-adjoint positive solution PeL(H), where
ReL(H) is a self-adjoint operator satisfying (8). More-
over if the following condition holds

Re(GAz,2)<0,2e D(A) ©)

then (1) is g.s.s.
Proof
Let us consider the function:

V(z)=(Pz,z),vzeH
For zoeD( ) we have z(t)=S(t)z, and
)=(PAS(t)2,,S(t)z,)+(PS(t)z,. AS(t)z,)
=%RM)%5(VJ

we obtain T(RS(S)ZO S(s)z,)ds <V (z,) By (®),

T"vs (t)

z, "; ds <o and from (9), we have

0
~Ivs (t)z,[ <o.
Then
)2, ||2m ds

t t
t|vs(t)z,[ = { [VS (1)} ds < £||vs (t

We deduce
ws(af <2t o

(10)
z, € D(A) for some o (z)
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From the density of D(A) in H, and the continuity of
a(.) , (10) is satisfied for all z, € H. This means that
the gradient of (1) is strongly stable.

3. Gradient Stabilizability

Let us consider the system
oz(t)
ot

2(.,0)=2z,eH

= Az(t)+Bv(t) (11

with the same assumptions on A, and B is a bounded lin-
ear operator mapping U, the space of controls (assumed
to be Hilbert space), into H.

Definition 3.1

The system (11) is said to be gradient weakly (respec-
tively strongly, exponentially) stabilizable if there exists
a bounded operator K e L ( H,U ) such that the system

az@—(tt):(A+BK)z(t)

Z(.,O): z,€H

(12)

is g.w.s (respectively g.s.s, g.e.s).

Remark 3.2

1) If a system is stabilizable, then it is also gradient
stabilizable.

2) Gradient stabilizability is cheaper than state stabi-
lizability. Indeed if we consider the cost functional

= [ et
0
and the spaces
U, = {V e L*(0,+0;U ); v stabilizes the gradient}
and
Ul = {v € L*(0,+90;U ); v stabilizes the state}.
Then we have U,y DU}, and therefore
ming(v) < min g(v)

3) The gradient stabilization may be seen as a special
case of output stabilization with output operator V .

In the following we give the feedback control which
stabilizes the gradient of the system (11), by two ap-
proaches.

The first is an extension of state space decomposition
[6] and the second one is based on algebraic Riccati equ-
ation.

3.1. Decomposition Method

Let 6<0 be a fixed real and consider the subsets
o,(A) and o,(A) of the spectrum o(A) of A de-
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fined by

o,(A)={A:1ec(A),Re(1)25]}
and

o, (A)={1:1ec(A),Re(1)< 5}

Assume that o, (A) is bounded and is separated
from the set o (A) in such a way that a rectifiable
simple closed curve can be drawn so as to enclose an
open set containing o, (A) in its interior and o, (A)in
its exterior. This is the case, for example, where A is self-
adjoint with compact resolvent, there are at most finitely
many nonnegative eigenvalues of A and each with finite
dimensional eigenspace.

Then the state space H can be decomposed [5] ac-
cording to:

H=H,+H, (13)
with H, =PH, Hs:(I—P)H , and PeL(H) is the
.. . 1 -1
rojection operator given by P=—| (A1 —A) dA

proj p g y P=—=[(21-A)

where C is a closed curve surrounding o (A).
The system (11) may be decomposed into the two
subsystems

2,, = Pz, (14)

and

&jT(t)#vs (t)+(1-P)By(t)

Zs =(1-P)z, (15)
z,=(1-P)z

where A, and A, are the restrictions of Ato H, and
H,, and are such thato, (A) =o' (A), o,(A)=c(A),
and A, isabounded operator on H,.

The solutions of (14) and (15) are given by

2,(1)=5, (1), +[.S, (t-7)PBv(r)dz  (16)
And
2,(t) =5, (t)2,, + S, (t-7)(1 -P)Bv(z)dz  (17)

where S, (t) and S,(t) denote the restriction of S(t)
to H, and H, which are strongly continuous semi-
groups generated by A, and A .

For the system state, it is known (see [6]) that if the
operator A, satisfies the spectrum growth assumption
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s, (1)
tl_l)rgf—supRe(a(ﬂg)) (18)
then stabilizing (11) comes back to stabilize (14).

The following proposition gives an extension of this
result to the gradient case.

Proposition 3.3

Let the state space satisfy the decomposition (13) and
A, satisfy the following inequality

In ||vs )|
lim <supRe(c(A)) (19)
1) If the system (14) is gradient exponentially (respec-
tively strongly) stabilizable by a feedback control
u=K,Gz,,with K, eL(H,U), then the system (11) is
gradient exponentially (respectively strongly) stabilizable
using the control v =(u,0).

2) If the system (14) is gradient exponentially (resp
strongly) stabilizable by the feedback control: v=K,z,,
with K, eL(H,U) then the system (11) is gradient
exponentially (respectively strongly) stabilizable using
the feedback operator K =(K,;0).

Proof

We give the proof for the exponential case. In view of
the above decomposition, we have: supRe(o(A))<5 .

Hence if A, satisfies (19) then for some M, and
B €]0,-6[ , we have: ||VSs (t)" <Me”, t>0.

It follows that the system (15) is gradient exponen-
tially stabilizable taking v(t) = 0.

Let K, besuchthat z,(t)=e"'z, , with
F, =A +PBK,G eL(Z,) and there exists & >0, M,;>0
such that ||VZ (1) " <M,e |z, |

Then with the feedback control v=K, Gz,
V(O] <M K, e ] with M, >0
From (17) and (18) we have

we have

t
[Vz, ()] < Mye™ 2]+ My |12, | [ e 7P ds
0

<SMe |z, |+ M4”20u”e iy
with M, >0.

Thus the system (11) excited by v(t)=Kz(t) satis-
fies

V(). < (M Y

-pt _ —at
4%+ Mze“‘]”ZO"

which shows that the system (11) is gradient exponen-
tially stabilizable.

2) The case of strong stabilizability follows from simi-
lar above techniques.

Corollary 3.4

Let A satisfy the spectrum decomposition assumption
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(13) and suppose that (19) is satisfied. If in addition

1) H, isafinite dimensional space

2) The system (14) is controllable on H, then the
system (11) is gradient exponentially stabilizable.

Proof

The system (14) is of finite dimension and is control-
lable on the space H, then it is stabilizable on the same
space, hence it is gradient stabilizable, the conclusion is
obtained with the proposition 3.3.

3.2. Riccati Method

Let us consider the system (11) with the same assump-
tions on A and B. We denote by S (t), t>0 the
strongly continuous semigroup generated by A+ BK,
where K is the feedback operator K e L(H,U).

Let ReL(H) be a self-adjoint operator such that (8)
is satisfied and suppose that the steady state Riccati equ-
ation

(Az,Pz)+(Pz, Az) - (B'Pz,B’Pz) +(Rz,2) = 0,

20
ZeD(A) 20

has a self-adjoint positive solution PeL(H), and let
K=-B'P.

Proposition 3.5

1) If Sy (t) satisfies the conditions (5) and (6), then
the system (11) is gradient exponentially stabilizable by
the control U (t)=Kz(t).

2)If (G(A+BK)z,2)<0,2eD(A) then the system
(11) is gradient strongly stabilizable.

3) Suppose that the system (11) is gradient exponen-
tially stabilizable. If in addition the feedback operator K
satisfies <GZ, Z> > CRe<( A+BK)z, Z>, ze D(A), for some
C > 0 then the state of the system (12) remains bounded.

Proof

The first and second points are deduced from the sec-
ond section.

For the thirst point: Let z, € D(A), we have

Re(((A+BK)2(t).2(1))) =S <fz(0f @
and from (21) we obtain
t
vz s)f, 25 (o -1 )
Since the system (11) is gradient exponentially stabi-
lizable then T"VZ (t)||2m dt <+, so there exists M >0
0

such that "Z(t)” <M, forall t>0 and by the density
of D(A) inH we have the conclusion.

3.3. Gradient Stabilization Control Problem

Here we explore the control that stabilizes the gradient of
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the system (11) as a solution of the minimization prob-
lem

veU,,

{min a(v) )

+00

where q(v) = f (Re(1).2(0)a +j IO dt with

Uy, = {v e L?(0,40;U); q(v) < +oo}

and R is a linear bounded operator mapping H into itself
and satisfying (8).

We recall the classical result known for state stabiliza-
tion if U, #< for each initial state z,, then there
exists a unique control v* that minimizes (22) and giv-
en by V' (t)=-B"Pz(t) where P is a positive solution
of the steady state Riccati Equation (20).

If in addition the operator R is coercive then the state
of system (11) is exponentially stabilizable (see [7]).

In the following we give an extension of the above re-
sult to the gradient case.

We suppose that U, #& for each initial state
Z, € H , and R satisfies (8).

Proposition 3.6

The control given by Vv (t)=-B’Pz"(t) minimizes
q(v) where P assumed to be a self-adjoint, positive
operator, and satisfies the steady state Riccati equation
(20), if in addition the semigroup S, (t) satisfies the
conditions (5) and (6) then the same control stabilizes the
gradient of system (11)

Proof

The proof follows from [7], and the proposition 3.5.

4. Numerical Algorithm and Simulations

In this section we present an algorithm which allows the
calculation of the solution of problem (22) stabilizing the
gradient of the system (11). By the previous result this
control may be obtained by solving the algebraic Riccati
Equation (20). Let H, =span{e,i=12,---,n} where
{e,,i =1} is a hilbertian basis of H. H is a subspace
of H endowed with the restriction of the inner product of
H. The projection operator II,:H — H,_ is defined by

,(z)=>(e.2)e VzeH

The projection of (20) on space H,,, is given formally
by:

PA +AP -PBB.P +R, =0 (23)

where A,, P, and R are respectively the projections

of A,PandRon H_ ,and B, the projection of B which
is mapping U the space of control into H,,.

We have lim||PanZ—Pz||=0, that is PII, con-
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verges to P strongly in H, (see [8]).
We can write the projection of (11) like

o, (1) *
— = t)-B,B. P,z (t
ﬁt A]Zn( ) n—n nZn( ) (24)
z,(0) =z,
the solution of this system is given explicitly by:
2, (t) =™ %) (0) 25)

To calculate the matrix exponential we use the Padé
approximation with scaling and squaring (see [9]).
If we denote 7, (t) = <Zn (t).e > , we have

n
vz, (t)=>7,(t)Ve, (26)
i=1

Let consider a time sequence t, =id, ieN where
0 >0 small enough.

With these notations, the gradient stabilization control
may be obtained the algorithm steps (Table 1).

Remark 4.1

The dimension of the projection space n is choosing to
be good approximation of the considered system and
appropriate for numerical constraint.

Example 4.2

Let Q=[0,1],0n

dz dz
H={zeH"'(Q) such that —(0)=—(1)=0
{2eh(@) suen thar £ (0)= £ (1) -0
which is an Hilbert space we consider the following sys-
tem

526(:) = Az(t)+ 2pV(t) Qx[0,+]
5Z(Oat):82(1’t):0 Vt>0 27)
oX OX -
2 1 1
e

where Az =0.02Az+0.5z2, v(t)eH Vt20, g, is
the restriction operator on D =[0.2,0.9], and we con-
sider the problem (22) with R=V"V.

A generates a strongly continuous semigroup S(t)

~+00

given by:S(t)z=3"e% (z,¢, )¢, , where

>0
4 =-0.01(in)’ +0.5 and ¢ (X)= e, cos(inx) with
2
PRV
1+(im)
The state and the gradient of system (27) are unstable

since Ay,4, >0.
Let consider the subspace

H, = Span{aH cos((i-1)nx),1<i<n, x eQ}

Copyright © 2012 SciRes.

Applying the algorithm taking the truncation at n = 5,
we obtain Figures 1 which illustrates the evolution of the
system gradient and shows how the gradient evolves close
to zero when the time t increases.

The gradient is stabilized with error equals 9.9836 %
10”7 and cost equals 2.6982 x 10™*. This shows the effi-
ciency of the developed algorithm.

In Table 2 we give the cost of gradient stabilization of
system (27) for different supports control “D”.

The Table 2 shows that there is relation between area
of control support and the cost of gradient stabilization,
more precisely more this area decreases more cost in-

Table 1. Algorithm.

1) Let £>0 the threshold, n the dimension of the projection space,
and z,(0)=2z,.

2) Solve (23) using Schur-type methods (see [10,11])

3) Solve system (24) using formula (25) gives z, (ti )

4) Calculate Vz,(t;) by the formula (26).

S)If |[Vz,(t)|<e stop, else

6)i=1i+1andgoto3.

Table 2. Support control-cost stabilization.

D Cost
[0,0.1] 9.0097
[0,0.3] 1.921
[0,0.5] 0.9408
[0,0.7] 0.817
[0,0.9] 0.2868
[0,1] 0.1636
0.15p
0.1f
0.05}
0
z
=
-0.05}
—oaf &
-0.15}

-0.2
0

Figure 1. The gradient evolution for the Neumann bound-
ary condition case.
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creases.
Example 4.3
Let Q=[0,1] on H=H;(Q) we consider the sys-
tem (27) with Dirichlet boundary conditions:
oz(t)
——==Az(t)+ ypVv(t) Qx[0,+00
at () + 7o0(t) [0 +0] (28)
z(x,O):(l—x)zx2 XxeQ
where Az =0.01Az+0.52, v(t)e H Vt>0, D=[0,0.3],
and we consider the problem (22) with R=V'V .
The eigenpairs of A are given by (ﬂ,l,ai sin(inx)) ,
i>1,with 4 =-0.01(ir)’ +0.5.
The state and the gradient of system (28) are unstable
since 4, >0.
We consider the subspace

2

1+ (im)’
Applying the algorithm with truncation (n = 5), the

Figure 2 shows the gradient evolution at times t = 3, 5,

and 13.
In Table 3 we present the cost of gradient stabilization

H, ={a sin(inx),i=1-,n} with a =

%107
6_

— =3
—t=5
—t=13

714 1 1 1 1 )
0 0.2 0.4 0.6 0.8 1

X

Figure 2. The gradient evolution for the Direchlet boundary
condition case.

Table 3. Support control-cost stabilization.

D Cost
[0,0.1] 0.0247
[0,0.3] 0.0039
[0,0.5] 0.0016
[0,0.7] 47255 x 10"
[0,0.9] 2.6982 x 10°*

[0,1] 2.6081 x 10°*

Copyright © 2012 SciRes.

of system (28) for different zone control support “D”.

Also in this example, we remark that more the area of
control support increases more the cost of gradient stabi-
lization decreases.

4. Conclusions

In this paper the question of gradient stabilization is ex-
plored. According to the conditions, satisfied by the dy-
namic of system, and those satisfied by the state space,
two methods are applied to characterize the controls of
gradient stabilization namely, decomposition approach
and Riccati method.

The obtained results are successfully illustrated by
numerical simulations. Questions are still open, this is the
case of regional gradient stabilization. It is under consid-
eration and will be appear in separate paper.
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