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ABSTRACT 

The computation of the multivariate normal integral over a Complex Subspace is a challenge, especially when the inte-
gration region is of a complex nature. Such integrals are met with, for example, in the generalized Neyman-Pearson 
criterion, conditional Bayesian problems of testing many hypotheses and so on. The Monte-Carlo methods could be 
used for their computation, but at increasing dimensionality of the integral the computation time increases unjustifiedly. 
Therefore a method of computation of such integrals by series after reduction of dimensionality to one without informa-
tion loss is offered below. The calculation results are given. 
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1. Introduction 

At testing many hypotheses with reference to the pa- 
rameters of multivariate normal distribution, the problem 
of computation of multivariate normal integrals over a 
Complex Subspace of the following form arises [1] 
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
 is the vector of distribution pa- 

rameters and i  is the acceptance region of hypothesis 

iH  from sample space , which has the fol- 
lowing form 
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where , . 0 jk   1, , S 
Such regions of hypotheses acceptance arise, for ex- 

ample, in the generalized Neyman-Pearson criterion, and 
also in conditional Bayesian problems of testing many 
hypotheses [2,3]. The dimensionality of these integrals 
often reaches several tens when practical problems are 
solved. For example, in ecological problems the number 
of controlled parameters, according to which the decision 

is made, is quite often equal to several tens [4]; in the air 
defence problems, in particular, in the problems of 
tracking of flying objects using radar measurement in- 
formation, the dimensionality of the problem is equal to 
the multiplication of the number of flying objects by the 
number of surveys made by the radar set [5] and so on. 
On the other hand, the time for solution of these prob- 
lems is often limited and at times it plays a decisive role 
especially at solving the defence problems. 

It is known that the complexity of realization and the 
obtained accuracy of numerical methods of computation 
of multidimensional integrals depend heavily on the di- 
mensionality of these integrals and the complexity of the 
integration region configuration. In the considered case 
the integration regions are nonconvex and quite complex. 
Therefore it is difficult to realize the numerical methods 
and to provide the desired accuracy of calculation even 
when the dimensionality of integral is greater than or 
equal to three [6]. The methods of computation of the 
multivariate normal integral on the hyperrectangle of- 
fered in [7-12] are unsuitable for this case because of the 
complexity of the integration region. 

Despite the convenience and the simplicity of compu- 
tations, the Monte Carlo method is computer time con- 
suming, especially at large dimensionality of integrals 
[3,13,14]. Therefore the method of approximate compu- 
tation of integral (1) for a very short period of time is 
topical in many applications of mathematical statistics 
[15,16]. 
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The aim of the present paper is the development of the 
method of computation of probability integral (1) with 
the desired accuracy in a minimum of time. 

2. Problem Statement 

Let us consider the case when the probability distribution 
density of the vector  looks like x
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For probability distribution density (3), let us rewrite 
decision-making region (2) as 
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Random variables , are squared forms 
of the normally distributed random vector, and, if 
hypothesis 

, 1, ,y   

iH  is true, their mathematical expectations 
are equal to 
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Therefore, if hypothesis iH  is true, the random 
variable  has noncentral distribution y

2  with the 
degree of freedom  and with the parameter of non- 
centrality equal to (6) [2,17,18]. 

n

It is obvious that, at  and hypothesis ii H  is true, 
the random variable i  has the central y 2  distribution 
with the degree of freedom . n

Let us write down (1) as follows  

    1
d exp

j

S j
ij i ip p H P C y H




    x x   0

 

 (7) 

The task consists in the computation of probability (7). 
The method of its analytical computation is not known so 
far. For its computation it is possible, for example, to use 

a modified Monte-Carlo method (with the purpose of 
reducing the computation time) [3]. Though, at large , 
it still takes a good deal of time. The method of com- 
putation of probability (7) if hypotheses are formulated 
with reference only to the mathematical expectation of 
normally distributed random vector is offered in [3]. This 
method is unsuitable here, as the random variable 

S

 1
exp ,

S j
j C y


            (8) 

which formulates integration region (4), in [3] is the 
weighted sum of log-normally distributed random quan- 
tities; jC  and  are determined by formulae (5). In 
our case, 

y
j  is the weighted sum of the exponents of 

negative quadratic forms of the normally distributed 
random vector with correlated components. 

Let us consider the case . In this case, regions (2) 
take the form 
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With taking into account probability densities (3), for 
these regions we derive 
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Let us designate 

 1 1 2 1 1
12 1 2 2 12T T T T 1 x       x W x x W x a W a W , 
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Then, finally, for the required regions, we shall obtain 

 1 12 1: ,   x 2  

 2 21: 21   x . 

Each of random variables 12  and 21  is the sum of 
three random variables one of which is distributed by the 
normal law, and the two others are distributed by the 2  
law. Therefore, the probability distribution laws of ran- 
dom variables 12  and 21  have not closed forms. 

Thus, at 2S  , i.e. at testing two hypotheses with 
respect to all parameters of multivariate normal distri- 
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bution (in contradistinction to the case when hypotheses 
are formulated with respect to only the vector of mathe- 
matical expectation [3]), the principal complexity of the 
considered problem does not decrease. 

3. Computation of Probability Integral (7) 
by Series 

Let us use the expanded form of representation of the 
quadratic form in (8) [18,19]. Then 
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where 
1 2,t t   are the coefficients determined unambi- 

guously by the elements of matrix  (see formula (3)). W
Let  | j iHp z be the conditional density of pro- 

bability distribution of the random variable j . Then, 
for (7), we obtain  

 0
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
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Here the infinite interval  ,   is taken as the 
domain of definition of random variable j  because of 
the signs of coefficients jC  from (5). 

As was mentioned above, the probability distribution 
law of the random variable j  has not a closed form. 
Let us consider the opportunity of approximating this 
density by series. For this reason we need the moments 
of the random variable j  [19-21]. Let us consider the 
problem of obtaining of these moments. 

With this purpose let us calculate the initial moment of 
the th order of random variable r j  provided that 
hypothesis iH  is true 
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Expression 
1 r

y y     is the sum of correlated 
Quadratic Forms distributed by noncentral 2  pro- 
bability distribution laws. Because of correlation, the 
property of reproducibility of the 2  distribution does 
not take place [2,18], and, consequently the mathematical 
expectation in (12) has not a closed form.  

Let us use power series expansion of the exponent 
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Let us use the expanded representation of quadratic 
form (9) and be satisfied with the first M  terms of ex- 
pansion (12). Then expression for calculation of mo- 
ments (11) can be represented as follows 
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where  1, , 2 ,   0,1, , 2m   and  
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Expression (13) contains product moments [17,19,20] 
of the 2  ( 1, , M   ) orders of normalized compo- 
nents of the correlated normally distributed random ob- 
servation vector. Therefore, they are not equal to zero 
[18]. A lot of works are dedicated to the problem of com- 
putation of product moments [see, for example, 22-28]. 
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1 2, , , kx x x ,  2K   are mutu y independent, and 
en  not have to be independent, and 

there are obtained their variance formulae. These results 
are generalizations of the results presented in [24]. 
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p p i

ip p p

i p p

x a x a
H

v

 

  

 

     

  

 



  

 

          
         

  

2

2

p
  (15) 

Thus, for calculation of moments (13), it is required to 
calculate the product moments of -dimensional  

  1, ,2 , 1, , M    normally distributed ran- 
dom vectors for which the components of the vectors of 
mathe atical expectations and the covariance matrices 
are calculated by formulae (15). 

Let us designate 

 

m

 
1


 

, 1, ,,
1 , ,

Ti p i pi b b b 

1 1 1 2 1

2 1 2 2 2

1 2

, , , , , ,
1,1 1,2 1,
, , , , , ,

2,1 2,2 2,,

, , , , , ,
,1 ,2 ,

T T

i p p i p p i p p

i p p i p p i p p
i

i p p i p p i p p

v v v

v v v

v v v





 





    

 
 
   
  
 

V




   


,   (16) 

and the corresponding random vector—by 

i.e.   1, ,
T

y yy  , 

1 2
1 1 2 2

1 21 2
1 2

p px a x a p

p p p

x a
y y y

  





 




  
  ， ， . 

For calculation of conditional product moments o e 

，

f th
2 -order, we have  

 1 2 1 2
1 2 1 2
m m m m m m

iE y y y H y y y 

 

    

 1 2 1 2, , , d d d ,if y y y H y y y

 

    

  (17) 

where  1 2, , ,f y y y
ability distribution 

 is the -dimensional 
prob density  vector of math- 

 expectations and 

 
 with the

normal 

ematical the covariance matrix cal- 
culated by formulae (16). 

It is known that the value of integral (17) is invariant 
to linear transformation of the components of vector x  
[18] with the accuracy of Jacobian of Transformation. 
Let us designate the matrixes of eigenvectors and eigen-  

values of matrix   1,i V  by ,i i
j


 β  and  

,i i
jk



,i

K , respectively. It should be pointed out that  

K  is a diagon ents of al matrix. Then the compon  - 
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dimensional random vector 

   1, , , ,i i i i    Z K y bβ ,         ( ) 

will be uncorrelated and wi

18

ll have standard normal dis- 
tribution of probabilities [3,20]. 

From (18), we write 

  1, , , ,i i i i    y K Z bβ . 

Let us introduce the following designation  

  1
. , , , ,i i i i

j    γ K β

 the 
following expression 

n (19), for mathematical expecta- 
tion (17), we obtain 



Then, for the elements of the vector y , we obtain

, , ,
,1

, 1 ,i i i
t tt

y z b      


    .     (19) 

Using transformatio

,

 
 

1 2 ,
1 2
m m m i

iE y y y H 




 



J

, , ,
,11

,
m

i i i
t t it

E z b H


     


   


     (20) 

where   1, , ,modi i i  J K β   is the Jacobian 

Transformation (18). 
s raise to the powers the l

n (20) and group the identical 

of 

Let u inear forms in the right- 
hand side of expressio
items. Then (20) can be written as 

 

 
 

1 2
1 2
m m m

iE y y y H






 
1

, , ,
, , 1

0,1,2, ,2 ; 1, ,

,
i

i i i
i

i

d E z H


  
 



  


  

 
   J 

 

(21) 

where, the coefficients of the identical items in (20)
designated by 

 are 

1

,
, ,

id 

 ,  0,1,2, , 2 ; 1, ,i i   

,i
 ; 

the items of the vector Z   are determined as 

 ,

1, , .

iz 



 
 


 

 




 ,
, ,1 1

,i pi iK y    
    b

It is known that [21,29] 

 

 

,

10
,

i
i

j

jj

E z H

j











 

 





 





   
 

  
 


           (22) 

where 


  and j
   are the initial an

ment
d central mo- 

s of   and  j 
,

 orders, respectively, of ran- 
dom va e riabl iz

 . Af
se 

ter simple routine transformations, 
for the considered ca we obtain 

 
 

,
,

0, if is odd.j






      (23) 

Here 

2

!
, if is even,

2 !2
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z

j
j

j
j

j






 

 
 
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 

2 1

1 1 22 11 2
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,

, ,,
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2
, ,,
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.
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i p i pi
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V z H
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C b D
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



   

  









 

  
 

 











  

 





 






 

 

 

    

  

 

  

2

2

, 


  (24) 

Taking advantage of ratios (21), (22), for computation 
of the moments (13), we obtain expression (14). 

Probability integral (10) can be computed with the 
help of Edgewort’s series [19-21] using formula (14) for 
computation of the initial moments of random variable 
(9). In particular, in the considered case, using well- 
known techniques of obtaining Edgewort’s series [30], 
we have 
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
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(25) 

Copyright © 2012 SciRes.                                                                                  AM 



K. J. KACHIASHVILI, M. A. HASHMI 494 

 * , ,where 1 1 2
j i jz i    ;  ik j

 ,  is the 
th semi-invariant of the ra

 1,2,k  
ariable k ndom v j  provided 

ypothesis h iH  
 difficu

is true (the c -invar- 
ts is not lt knowing nclude- 

omput
 all in

ation of semi
itial moments iian

ing ,j i
k  (see, for example, [21])); ,

2
j i  is the second 

ocentral m ment;  x  is standard normal density, i.e.  

   2x x exp 2 2π . 

Satisfying the first seven terms in expansion (25), the 
absolute value of calculation error of the probability in- 
tegral is calculated by the formula 
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The variable  is continuous 
and unambiguousl e of 

 1
exp

S j
j C y


   

y defined for every valu x . There- 
fore, the random variable j  is continuous

of the random variable 
. T harac- 

teristic function 
he c

j  an its deri- 
f any or

tio

 o
 di

e 

d 
 any ovatives o s t m rder of 

this random variable exist. At the same time, the chara- 
cteristic func n is uniformly continuous. Consequently, 
the distribution function of this random variable exists 
and is c ntinuous [21]. 

Theorem 3.2. The stribution function of random va- 
riabl

der exist, a he mo ents of

j  exi uely determined by moments sts and is u
(14). 

niq

Proof. For proving this theorem, it is necessary to 
show that all moments , , 1, 2,j i

r r    exist and the fol- 
lowing condition takes place [19,21] 

 1 2,
2

limsup
2

rj i
r

r r




  . 

The fact that all moments exist is obvious from for- 
mula (14) as by using it, it is possible to calculate the 
moments of any order with any specified accuracy. The 
values of these moments exist and are finite. 

When solving the practical problems coefficients 

take on the values bounded above; correlation matrices 
are positively determined matrices the determinants 
hich differ from zero. Therefore, coefficients 

kk  

W  
of w jC  
are bounded-above quantities. 

There takes place 

    

 

1

1
exp
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r

r
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i

i
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 
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 
  

 

where 
1 r

y y  
lly distributed

 is the sum of quadratic forms of 
ma -dimensional vector nor  n x  at dif- 
nt t atical expectations and covar- 

, at changing compon ts of the 
or

fere
iance m
vect

 vectors of ma
atrices. Ther

 

hem
efore en

x  from 

r

 up to , the qu form   adratic 

1
y y    takes t  he valu om 0 to , and the  

e of function

es fr  

valu  
 1 r
y y

e
   

 
varies from 1 to 0, res-  

pectively. Therefore [18] 
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Thus, taking into account (5) and (11) we can write 
down 

 
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 

 

 

 A  is the maximum by absolute value among 
coefficients jk . 

Assume 1r  , then we have  
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1

1
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. 
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If  2
min2π

n

A  W , then ,
1 1j i   and it is not diffi-  

 to be convinced that , 0j i
r   at r  . 

Let  

cult

2
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n

A C W , where 1C  . Hence  
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at r  , which prov s the theorem. 

4. Computation Results 

The acc acy of this algorithm depends heavily on 

e

ur M - 
of used items in expansion (12 n order to the number ). I

cy of apprincrease the accura oximation of the exponent 
for given M  and, in general, the reliability of  
putation in the tasks of hypotheses testing, it is expedient 
to perform first the normalization of initial data by 
formulae: 

 com-

   
   

,

, , 1, ,ij ij i i j jd c d c i j n          

where 

i i i ix x c d c   
 

 are the minimum and maxi- 
mum v parameter for the given set of the  

considered hypotheses, i.e. 
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alues o
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 
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i i
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}
max
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j
i

j
d  , ia

[3]. In this case, the values of 
m and seven items 

ansio

am his fact was estab- 
lis odel ation vector with non- 
correlated components. Unfortunately, by now the con- 
sidered algorithm has been realized only for such a case 
[31]. 

ulation showed that the time of exe- 
cution of the task (decision-making and computation of 
the suitable value of the risk function) by using e 
Monte-Carlo method made up  sec,  se  
and  sec for the numbe ypoth

1, ,i n  , 
the parame

1, ,j S   
ters of the algorith 15M   
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[31]. For 

5  s of Figure 1 and Fig
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M hile, when using the method
computation time did not practically change
sults were obtained for the time 
In both cases probability integrals (7) were computed 
with the accuracy of 0.005 . In Figures 3 and 4 are 
given the dependences of the integral computation time 
on the accu y and number of tested hypotheses respect- 
tively. 

At solving many practical problems, especially mili- 
tary problems [5,32], the dimensionality of the integrals 

 

Figure 1. The form of entering the tested hypotheses and a 
measurement vector. 
 

 

Figure 2. The form of entering the covariance matrix. 
 
like (1) often is equal to several tens and difference bet- 
ween the computation time necessary for the considered 
methods is significantly longer than in the above men- 
tioned case [14], whereas the computation time for solv- 
ing the defence problems are of great importance. 

The theoretical investigation of the dependence of the 
accuracy of computation of integral (1) on M-the num- 
ber of items in expansion (13) is a challenging task. There- 
fore, at program realization of the offered algorithm and, 
in general, algorithms of such a kind, it is worthwhile to    
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make parameter M  and the number of items in expan- 
sion (25) external parameters of the program. This allows 
establishing their optimal values for each concrete case 
by experimentation depending on the desired accuracy of 
computation. 

5. Conclusion 

The method of computation of the probability integral 
from the multivariate normal density over the Complex 
Subspace by using series and the reduction of dimen- 
sionality of the multidimensional integral to one without 
losing the information was developed. The formulae for 
computation of product moments of normalized normally 
distributed random variables were also derived. The ex- 
istence of the probability distribution law of the weighted 
sum of exponents of negative quadratic forms of the nor- 
mally distributed random vector was justified. The op- 
portunity of its unambiguous determination by the com- 
puted moments was proved. 
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