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ABSTRACT

The computation of the multivariate normal integral over a Complex Subspace is a challenge, especially when the inte-
gration region is of a complex nature. Such integrals are met with, for example, in the generalized Neyman-Pearson
criterion, conditional Bayesian problems of testing many hypotheses and so on. The Monte-Carlo methods could be
used for their computation, but at increasing dimensionality of the integral the computation time increases unjustifiedly.
Therefore a method of computation of such integrals by series after reduction of dimensionality to one without informa-

tion loss is offered below. The calculation results are given.
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1. Introduction

At testing many hypotheses with reference to the pa-
rameters of multivariate normal distribution, the problem
of computation of multivariate normal integrals over a
Complex Subspace of the following form arises [1]
pu:I p(X|H|)dX’I:J:1=983|¢J9 (1)
T
where S is the number of tested hypotheses
H,:0=0', supposing that sample x' = (Xl,n-, Xn) was
brought about by distribution

p(%.0')= p(X %3608 )= p(x[H, )i =1,

where 0" =(6,,-+,6,) is the vector of distribution pa-
rameters and I'; is the acceptance region of hypothesis
H, from sample space R" (;e R”), which has the fol-

lowing form

ry={xklp(xH,)> X0, k(] H,).
j=1---,S

where 0<k) <40, ¢=1---,S.

Such regions of hypotheses acceptance arise, for ex-
ample, in the generalized Neyman-Pearson criterion, and
also in conditional Bayesian problems of testing many
hypotheses [2,3]. The dimensionality of these integrals
often reaches several tens when practical problems are
solved. For example, in ecological problems the number
of controlled parameters, according to which the decision

2
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is made, is quite often equal to several tens [4]; in the air
defence problems, in particular, in the problems of
tracking of flying objects using radar measurement in-
formation, the dimensionality of the problem is equal to
the multiplication of the number of flying objects by the
number of surveys made by the radar set [5] and so on.
On the other hand, the time for solution of these prob-
lems is often limited and at times it plays a decisive role
especially at solving the defence problems.

It is known that the complexity of realization and the
obtained accuracy of numerical methods of computation
of multidimensional integrals depend heavily on the di-
mensionality of these integrals and the complexity of the
integration region configuration. In the considered case
the integration regions are nonconvex and quite complex.
Therefore it is difficult to realize the numerical methods
and to provide the desired accuracy of calculation even
when the dimensionality of integral is greater than or
equal to three [6]. The methods of computation of the
multivariate normal integral on the hyperrectangle of-
fered in [7-12] are unsuitable for this case because of the
complexity of the integration region.

Despite the convenience and the simplicity of compu-
tations, the Monte Carlo method is computer time con-
suming, especially at large dimensionality of integrals
[3,13,14]. Therefore the method of approximate compu-
tation of integral (1) for a very short period of time is
topical in many applications of mathematical statistics
[15,16].
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The aim of the present paper is the development of the
method of computation of probability integral (1) with
the desired accuracy in a minimum of time.

2. Problem Statement

Let us consider the case when the probability distribution
density of the vector x looks like

p(x|H;)
“n “12 1 A i
- (2n) W e S (x-a ) W (- ) O
i=1,..,8,
where
o’ ph P
N K
Priu /0:12 O'r:z

For probability distribution density (3), let us rewrite
decision-making region (2) as

r={x:3; Clexp(-y,)<0}, )

where
-1/2

Cl=k/ (2n) " W,[ "% |,
-1/2

)=~k 2x) W

W) s

Random variables Yy,,f=1,---,S, are squared forms
of the normally distributed random vector, and, if
hypothesis H,; is true, their mathematical expectations
are equal to

E(y/|Hi):%(ai —a/)T w,! (ai —a‘/)
(6)
+%trace<VViW['), li=1,---,S.

Therefore, if hypothesis H; is true, the random
variable y, has noncentral distribution z*> with the
degree of freedom n and with the parameter of non-
centrality equal to (6) [2,17,18].

It is obvious that, at ¢ =i and hypothesis H, is true,
the random variable Yy, has the central y° distribution
with the degree of freedom n.

Let us write down (1) as follows

py = [ P(X[H,)ax=P(X?,C/exp(-y,)<0|H,) (7)

The task consists in the computation of probability (7).
The method of its analytical computation is not known so
far. For its computation it is possible, for example, to use
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a modified Monte-Carlo method (with the purpose of
reducing the computation time) [3]. Though, at large S,
it still takes a good deal of time. The method of com-
putation of probability (7) if hypotheses are formulated
with reference only to the mathematical expectation of
normally distributed random vector is offered in [3]. This
method is unsuitable here, as the random variable

5] =ijlc€j exp(_yﬂ, )a ®)

which formulates integration region (4), in [3] is the
weighted sum of log-normally distributed random quan-
tities; C; and y, are determined by formulae (5). In
our case, &; is the weighted sum of the exponents of
negative quadratic forms of the normally distributed
random vector with correlated components.

Let us consider the case S =2. In this case, regions (2)
take the form

I, ={x: p(x|H2)< klp(x|H1)},
r, :{x: p(x|H1)<k2p(x|H2)}.

With taking into account probability densities (3), for
these regions we derive

I, = {x xXTWx—x"W,'x +2(aZTW2'1 - alTWI'l)x < /112} ,

r,= {x : XTWZ’IX—XTW[IX+2(aITW1’1 -a’ W, )x < /121},

where
1
Ay, =2In klm +(212TW2'1212 —alTWflal),
(W, 2
1
=2In| k —|W2| ’ +(a"W'a' —a"W;'a?).
221 2 | |7l
W, 2

Let us designate
&y =X W x=x" W, 'x+2(a” W, —a "W )x,
E=x Wx—x' W 'x + Z(aITWl_l -a W' )x .
Then, finally, for the required regions, we shall obtain
I={x:¢&, <A,},
r, :{x:§21 </121}.

Each of random variables &, and &,, is the sum of
three random variables one of which is distributed by the
normal law, and the two others are distributed by the y”
law. Therefore, the probability distribution laws of ran-
dom variables &, and &, have not closed forms.

Thus, at S=2, i.e. at testing two hypotheses with
respect to all parameters of multivariate normal distri-
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bution (in contradistinction to the case when hypotheses
are formulated with respect to only the vector of mathe-
matical expectation [3]), the principal complexity of the
considered problem does not decrease.

3. Computation of Probability Integral (7)
by Series

Let us use the expanded form of representation of the
quadratic form in (8) [18,19]. Then

5=c! exp{ZZZ tltz[x‘aa‘J(x‘aa‘ ]} ©)

t=1t,=1 t t

where afl/‘tz are the coefficients determined unambi-
guously by the elements of matrix W, (see formula (3)).

Let pj(Z|Hi) be the conditional density of pro-
bability distribution of the random variable &;. Then,
for (7), we obtain

ps =] p(zIH,)dz. (10)

Here the infinite interval (—oo +oo) is taken as the
domain of definition of random variable ¢&; because of
the signs of coefficients CJ from (5).

As was mentioned above, the probability distribution
law of the random variable &; has not a closed form.
Let us consider the opportunity of approximating this
density by series. For this reason we need the moments
of the random variable &; [19-21]. Let us consider the
problem of obtaining of these moments.

With this purpose let us calculate the initial moment of
the rth order of random variable &; provided that
hypothesis H, is true

Hl

H'= E[(fi )‘ H‘}z E[[gc"j eXp(_y”)jr

_Z ZC [exp( (y/1+"'+yl,))‘Hij|’ (11)

r:1’2’...

Expression y, +:--+Y, is the sum of correlated
Quadratic Forms dlstrlbuted by noncentral y*> pro-
bability distribution laws. Because of correlation, the
property of reproducibility of the y° distribution does
not take place [2,18], and, consequently the mathematical
expectation in (12) has not a closed form.

Let us use power series expansion of the exponent

0

exp(=(y, ++, )= X (1)
DI D)

v=0 Vo piel ety =l

(ygl +y, ey, )

yp1 'ypz‘“yp :

»

(12)
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Let us use the expanded representation of quadratic
form (9) and be satisfied with the first M terms of ex-
pansion (12). Then expression for calculation of mo-
ments (11) can be represented as follows

. M v
~>Scee i3]
=1 ! L 2

lr=

iiatl % (13)

=l =1

>

V2 ety oty il

where Ae{l,--,

22:1”]5 =2v.

Expression (13) contains product moments [17,19,20]
of the 2v (v=1,---,M) orders of normalized compo-
nents of the correlated normally distributed random ob-
servation vector. Therefore, they are not equal to zero
[18]. A lot of works are dedicated to the problem of com-
putation of product moments [see, for example, 22-28].

In [22] the following problem was solved. Let
X;»X5,°+, X, be random variables with mutually indepen-

n
dent distributions, and let X =] [ . There is found the

i=1

2v}, m, €{0,1,---,2v} and

probability that X lies between A and B , i.e.

P{A<X <B}, by using the central limit theorem in

accordance with which the random variable

InX = ZIn X; is approximately distributed by the nor-
i=1

mal law. The better is this approximation the bigger is

n.

The variance of the product of two random variables
was studied by Barnett (1955) and Goodman (1960), in
the case when they do not need to be independent. Shel-
lard (1952) studied the case when the distribution of

K

l—[xi was (approximately) logarithmic-normal. The au-
i=1

thor considered the case when X,X,,---,X, are random
variables with mutually independent distributions. For

finding the probability that X = l_[Xi lies between A
i=1

and B, i.e. P{AS X < B} , the central limit theorem is

used to approach the probability distribution of the ran-

dom variable In X by normal distribution and this ap-

proach is better at increasing n . In work [25] no assump-

K
tion is made about the distribution of | ] x; . There is dis-
i1

cussed the case when the K random variables,
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X, %, % , (K>2) are mutually independent, and
the case when they do not have to be independent, and
there are obtained their variance formulae. These results
are generalizations of the results presented in [24].

In [26] are given exact formulae for the mathematical
expectation of (YI - X, )(YJ - >?J. )(Yk - Xk) and

(% =X ) (% = X ) (R = X, ) (% = X, )

(i#j#k=h), where X, is the sample mean of the
i th “character” in a sample of n elements from a po-
pulation of N elements and X, is the corresponding
population mean. Formulae for estimating these product
moments from the sample were also given. These estima-
tions are slightly biased. In [27] the unbiased estimate of
the 4-variate product moment was obtained. Asymptotic
results for the 3-variate and 4-variate product moments
and their estimates were also obtained.

In [28] is derived a formula for the product moment

EX" ---X?P, m, >1,---,m_ =1 in terms of the joint sur-
vival function when (Xl,--‘, X p) iS a non-negative
random vector.

From the given review (of course incomplete, because
this is not the aim of this paper) of the works dedicated to
the study of product moments, it is seen that the problem
considered here differs from them.

Theorem 3.1. The initial moment of the I th order of
random variable &; determined by (9), provided that
hypothesis H, is true, can be calculated with any speci-
fied accuracy by the formula

S~ i (1Y
z Sciocl ”;(‘Ejﬁ

=

x{ Z ZZ% (AL
pie{ly, 0y =l =1ty =1 (14)
atl W " Z dzl'l‘?»-,r,\

{0,[,2,~«,2v};i:l,~-»,A

XHMZI,,( J 1(#{)1}},r:1,253,...

where Ji’AzmodJKi’A(ﬂi’A):l; g and K" are
the matrices of eigenvectors and eigenvalues of the in-
verse covariance matrix of normalized random variables
X, —a
O.Tpr
i=1,---,A, are the coefficients determined by the terms
of matrices "> and K"* and vector b"*; 4
and H, _; are the initial and central moments of the
first and r,— ] orders, respectively, defined by for-
mulae (22), (23) and (24).

o=l Ay dh L 5 e{01,2,0,2v),

. . X, —a
Proof. If hypothesis H; is true, the values ———,

Pr
o,

Copyright © 2012 SciRes.

r=12,---,A, are correlated normally distributed ran-
dom variables with the parameters

P i P
E Xr_arr H _ar_arr _bi»pz
P i P
O-T O-’[
P iy
X —arr (Gr)
V(T P lH, = = e = A
T
o, (O.Tp,
Py [ i
Xr _arl 2] _arz prl,‘rz
cov P > P ) P
o 1) 7, ()
o, o, o, -0, (15)
Py Pry _1...
=V, 2, =1 A

Thus, for calculation of moments (13), it is required to
calculate the product moments of A -dimensional
(A ef{l,---,2v},v=1--M ) normally distributed ran-
dom vectors for which the components of the vectors of
mathematical expectations and the covariance matrices
are calculated by formulae (15).

Let us designate

i.A i,p i.p
b' :( - bl A)
bl ? xA
i,p,py i,p1,p2 i,p1,PA
Vii Vi, Vi'A
[NUN- i,p2, P2 i,p2,PA
: V. V. . V.
A 2.1 2,2 2,4
v = ,  (16)
i,pr.p i,pr.ps 1,PAPA
\' \' \'
Al A2 AA AxA

and the corresponding random vector—by
T

y :(y”...’yA) , e
X, —a

Yi= : Py =

0,

X, —aj? X, —ap

2 7 IAT PA
) Oy

For calculation of conditional product moments of the
2v -order, we have

Hi): I J. ylml)/;nz yr/\

x f (yl,yZ’..., yA|Hi)dyldy2 cedy,,

E(yyse ey a7

where f (yl, Yoo Y A) is the A -dimensional normal
probability distribution density with the vector of math-
ematical expectations and the covariance matrix cal-
culated by formulae (16).

It is known that the value of integral (17) is invariant
to linear transformation of the components of vector x
[18] with the accuracy of Jacobian of Transformation.
Let us designate the matrixes of eigenvectors and eigen—

values of matrix (Vi’A )71 by g —"ﬂ/,

K =i,

K" is a diagonal matrix. Then the components of A -

AxA

, respectively. It should be pointed out that
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dimensional random vector
1

Zi,A — ﬂi,A (Ki,A )‘ (y _bi,A ) , (18)
will be uncorrelated and will have standard normal dis-

tribution of probabilities [3,20].
From (18), we write

y=K" (ﬁ.i,/\ )*1 7N L pih
Let us introduce the following designation
_ Ki,A (ﬁ.i,/\ )’1

Then, for the elements of the vector y, we obtain the
following expression

Y. ZH;/'A bt =1, A (19)

Using transformation (19), for mathematical expecta-
tion (17), we obtain

E(ylml y;ﬂz yxl\
e T (2

Ki,A(ﬁi,A)fl‘ is the Jacobian of

™ =it

AxA

H, )=

+b:A)m, H} (20)

where  J** = mod

Transformation (18).

Let us raise to the powers the linear forms in the right-
hand side of expression (20) and group the identical
items. Then (20) can be written as

E( lml ;n? ITA H|)
:Ji,/\>< Z dlA TAH” 1E|:( )r,] . :| (21)
€012, 2v =1 A

where, the coefficients of the identical items in (20) are
designated by d'A oo T L €{0,1,2,-+,2v}5i=1,+,A ;
the items of the Vector Z"" are determined as
i A A i i i.p,
ZqA = Z[:I[(Z(g:lﬂr],JKﬁ,(‘ )( y(‘ _b(l P ):|7
n=1--,A.
It is known that [21,29]

E|(#)|H |-,
=20 ( Jﬂ,,,_,- (),

where ﬂ;, and u, _j are the initial and central mo-
ments of 7, and T —j orders, respectively, of ran-
dom variable z After simple routine transformations,
for the cons1dered case we obtain

(45)
Hp =9 22 (i /2)
0,if jis odd.

(22)

,if jis even, (23)
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Here
V(z )=
=3 XL G D (i, 010 )
(Z/ 1C,I7//\bl Y
C:’,A Zb lﬂrzé 5,00
DiP = (Zgzlﬂm&Kéf)b;’p‘.

Taking advantage of ratios (21), (22), for computation
of the moments (13), we obtain expression (14).

Probability integral (10) can be computed with the
help of Edgewort’s series [19-21] using formula (14) for
computation of the initial moments of random variable
(9). In particular, in the considered case, using well-
known techniques of obtaining Edgewort’s series [30],
we have

0
f p;(z[H;)dz~

D;fp« )2 , (24)

7, (0]H ) =(z))

= P &l .
TS ST
2
+% —([f_j];/z (z°-152" + 4527 -15)
AL

e

i i

S )"
. 3

x(2 -21z° +1057 ~1057, ) - 20| [s),
o )

x(z° =367, +3782 ~12602,° +9452; )
2

35| [&a]]

5ol (s e
+l [ 6]1 (216_15214+452 —15)+8— (/,12“)2

6’y

x(z* -282° +2107" — 4207 +105)

2100[6:] [,
+_—

x(z" - 457" + 6307,

10! (Iazj,i)S
e (25)
—31502* + 47252 —945)+M [53]13/2
120 { ()
x(z? —667" +14852;" ~138602,°
+519752,* - 62370z, +10395)}a(z1*),
AM
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where Z*—( ,ul'i)/\/i [gk] (k=1,2,---) is the

k th semi-invariant of the random variable &; provided
hypothesis H,; is true (the computation of semi-invar-
iants is not difficult knowing all initial moments include-
ing 4" (see, for example, [21])); )" is the second
central moment a(x) is standard normal density, i.e.

a( ) exp 2/2 /\/211
Satisfying the first seven terms in expansion (25), the

absolute value of calculation error of the probability in-
tegral is calculated by the formula

Y e

¢ ~157, +452 -15)

o (')
i 2

S [9_*_]12 (21* - 282 +2102;* — 4202, +105)
81 (")
+211(§)|0[(]%(Z?0—4521*8+63021*6_315021*4

) '
+4725z;‘2—945)+M [L]Jm

12! (/L'IQJ")

(zf12 -662," +14852° —13860z,° + 51975z,
~623702,” +10395} ) (2] )

The variable & = Z/S:l Clexp(-y,) is continuous
and unambiguously defined for every value of X. There-
fore, the random variable &; is continuous. The charac-
teristic function of the random variable ¢; and its deri-
vatives of any order exist, as the moments of any order of
this random variable exist. At the same time, the chara-
cteristic function is uniformly continuous. Consequently,
the distribution function of this random variable exists
and is continuous [21].

Theorem 3.2. The distribution function of random va-
riable ¢&; exists and is uniquely determined by moments
(14).

Proof. For proving this theorem, it is necessary to
show that all moments }',r =1,2,--- exist and the fol-
lowing condition takes place [19,21]

i 1/2r
limsup (ﬂl

r—o Zr

<00,

The fact that all moments exist is obvious from for-
mula (14) as by using it, it is possible to calculate the
moments of any order with any specified accuracy. The
values of these moments exist and are finite.

When solving the practical problems coefficients klk

Copyright © 2012 SciRes.

take on the values bounded above; correlation matrices
W, are positively determined matrices the determinants
of which differ from zero. Therefore, coefficients |C[J|
are bounded-above quantities.

There takes place

+00

e[exp((y, ++v, )| |- ]

—0

><N(x|ai,Wi)dx,

where y, +---+y, is the sum of quadratic forms of
normally distributed n-dimensional vector X at dif-
ferent vectors of mathematical expectations and covar-
iance matrices. Therefore, at changing components of the
vector X from —oo up to +oo, the quadratic form
Y, +--+Y, takes the values from 0 to +oo, and the

value of function e_(y”l o)
pectively. Therefore [18]

E[exp(—(yél +-eet yér))‘HiJ
sz...ij:N(xhi,

Thus, taking into account (5) and (11) we can write
down

varies from 1 to 0, res-

W, )dx =1

where A is the maximum by
coefficients k/.
Assume r =1, then we have

absolute value among

- ns B}
|'”1“|S A(2m) 23 p(H,)[W,| 1

£=1

Let us designate |

min|W[| . Then
1

min

JI<A 21t

Z p | min

| min

If A< 27t

cult to be convmced that 4" >0 at r—o.

, then g <1 and it is not diffi-

| min

Let A= C 27t
T<Crsr and

(i)™ 3 (cs2r)™ st (ar)
ar 2r B 2r

2r-1 1yar
=CsVr(2r) ar S L%

2r-1
(2rya 2

, where C >1. Hence

| min

1/2r
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at r — oo, which proves the theorem.

4. Computation Results

The accuracy of this algorithm depends heavily on M -
the number of used items in expansion (12). In order to
increase the accuracy of approximation of the exponent
for given M and, in general, the reliability of com-
putation in the tasks of hypotheses testing, it is expedient
to perform first the normalization of initial data by
formulae:

X =(x-¢;)/(di-c),
ol :pij/[(di _Ci)'(dj _Cj)]ai»jzla”'an

where ¢;,d;, i=1---,n, are the minimum and maxi-
mum values of the i th parameter for the given set of the
considered hypotheses, i.e. ¢, = n{ljl}n{ai’}, d, = n’(l%x{aij},
i=1---,n, j=1,---,S [3]. In this case, the values of
the parameters of the algorithm M =15 and seven items
in expansion (25) provided the absolute error of com-
putation of integral (1) that does not exceed 0.005 for
computed examples (see below). This fact was estab-
lished by modeling for the observation vector with non-
correlated components. Unfortunately, by now the con-
sidered algorithm has been realized only for such a case
[31].

The results of simulation showed that the time of exe-
cution of the task (decision-making and computation of
the suitable value of the risk function) by using the
Monte-Carlo method made up ~1.2 sec, ~4.5 sec,
and ~13 sec for the number of hypotheses S =3,
S=4 and S=5, respectively, the dimensionality of
the observed vector being equal to n=8 in all cases.
The tested hypotheses and correlation matrix for the case
S =5 are given in tables of Figure 1 and Figure 2,
respectively. Figures are presented as the suitable forms
of the task of hypotheses test of the statistical software in
which the appropriate methods are realized [31]. For
other values of S, there are chosen the suitable sub-sets
of the tables of these Figures. In the first column of the
table of Figure 1 is given the vector of measurements
and in the other columns are given hypothetical values of
mathematical expectation of this vector.

Meanwhile, when using the method offered here, the
computation time did not practically change and the re-

sults were obtained for the time noticeably less than 1 sec.

In both cases probability integrals (7) were computed
with the accuracy of <0.005. In Figures 3 and 4 are
given the dependences of the integral computation time
on the accuracy and number of tested hypotheses respect-
tively.

At solving many practical problems, especially mili-
tary problems [5,32], the dimensionality of the integrals

Copyright © 2012 SciRes.

EEX

F‘Datainput
File Edit Tools Help

| Dls|w| & o %[/ [
|English =

X | a | ay | @y | a | a;

2010000 | 1.010000 | 4010000 | 7010000 1001000 | 13.00000

2020000 1020000 4020000 @ 7020000 1002000  13.00000
2030000 1030000 4030000 @ 7030000 10003000 | 13.00000

2050000 | 1.050000 | 4050000 | 7050000 10035000 | 13.00000
2060000 | 1.060000 | 4060000 | 7060000 1006000 | 13.00000

2070000 | 1070000 | 4070000 | 7070000 | 1007000

j
1

2 |

5 |

4 | 2040000 | 1040000 | 4040000 | 7040000 | 1004000 | 1300000
5 |

5 |

7 |

5 |

2080000 | 1030000 4020000 | 7080000 | 1002000 | 13.00000

Figure 1. The form of entering the tested hypotheses and a
measurement vector.

| Fl Parameters E|E|E|

File Edit Tools Help

| Di(E| 8| w4 @
Engish | m=|8—j
—— T r—

Covatianice matrix

iR

N N RN O

193160 | 249960 306740 | 343560 | 420380 477140

197920 | 255520 313120 370720 | 428320 485920
193160 | 197920 302680 261080 | 319480 | 377880 436280 494630
249960 | 255520 261080 346640 325840 385040 | 444240 503440
306760 313120 319430 325840 432200 352200 | 452200 512200
363560 | 370720 3YTRRD 335040 392200 499360 | 460160 520960
420360 | 428320 | 436280 444240 452200 460160 | 568120 529720

ey = = =

ATTIE0 | AR5020 | 494680 503440 512200 520960 | 529720 633480

Figure 2. The form of entering the covariance matrix.

like (1) often is equal to several tens and difference bet-
ween the computation time necessary for the considered
methods is significantly longer than in the above men-
tioned case [14], whereas the computation time for solv-
ing the defence problems are of great importance.

The theoretical investigation of the dependence of the
accuracy of computation of integral (1) on M-the num-
ber of items in expansion (13) is a challenging task. There-
fore, at program realization of the offered algorithm and,
in general, algorithms of such a kind, it is worthwhile to

AM



496 K. J. KACHIASHVILI, M. A. HASHMI

=== Monte Carlo Method
=== Suggested Method

12.57

7.5

5.0

Time of computation (sec)

2.5

0.0

I I I
0.005 0.010 0.050

Accuracy of computation

Figure 3. Dependence of the integral computation time on the accuracy.

=== Monte Carlo Method
=== Suggested Method

12.57]

10.07

7.5

Time of computation (sec)

2.5

0.0

T T T
3.000 4.000 5.000
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Figure 4. Dependence of the integral computation time on the number of hypotheses.
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make parameter M and the number of items in expan-
sion (25) external parameters of the program. This allows
establishing their optimal values for each concrete case
by experimentation depending on the desired accuracy of
computation.

5. Conclusion

The method of computation of the probability integral
from the multivariate normal density over the Complex
Subspace by using series and the reduction of dimen-
sionality of the multidimensional integral to one without
losing the information was developed. The formulae for
computation of product moments of normalized normally
distributed random variables were also derived. The ex-
istence of the probability distribution law of the weighted
sum of exponents of negative quadratic forms of the nor-
mally distributed random vector was justified. The op-
portunity of its unambiguous determination by the com-
puted moments was proved.
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