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ABSTRACT 

For a rotating inhomogeneous circular disk a way of calculating dynamics of boundary shape perturbation and failure of 
bearing capacity is proposed in terms of small parameter method. Characteristic equation of plastic zone critical radius 
is obtained as a first approximation. A formula of critical angular velocity is derived which determines the stability loss 
of the disc according to the self-balanced form. Efficiency of the proposed method is shown by an illustrative example 
considered in Section 7. Values of critical angular velocity of rotation are found numerically for different parameters of 
the disc. 
 
Keywords: Axisymmetric Elastoplastic Problem; Method of Boundary Shape Perturbation; Rotating Inhomogeneous 

Circular Disc; Stability Loss; Failure of Bearing Capacity; Critical Angular Velocity 

1. Introduction 

The failure of bearing capacity of a quickly rotating elas-
tic disc [1-3] overloaded by centrifugal dilating forces is 
associated with the dynamics of its boundary shape per-
turbation [4]. After the disc takes up new balanced shape 
due to considerable growth of plastic zones [5] the insta-
bility [6] develops torrentially enough with the increase 
of rotation velocity [7]. This is stipulated by the response 
of the internal points to the disc contour reshaping and 
outrunning growth of variable radius of the perturbed 
elastoplastic boundary as compared with the variation of 
its current radius for a stable disc [8,9]. 

To study the stability loss and velocity dynamics of a 
rotating disc the perturbation method can be applied 
[10-12]. In the analysis of plane stress strain state this 
method was employed to obtain approximate critical 
values of the plastic zone dimensions and angular veloc-
ity of continuous homogeneous circular discs [13,14], 
ring-shaped discs [15] including those loaded along the 
contour by additional radial forces [16], stepped discs 
and some arbitrary profile discs [17] as well as simplest 
inhomogeneous discs. This proves efficiency of the ana-
lytical method of boundary shape perturbation (with the 
use of simplest numerical procedures at certain stage) 
which reduces essentially the amount of calculations and 
at the same time facilitates fruitful application of various 

numerical techniques [18-20] for stability and strength 
calculation of turbine and other massive discs. 

Meanwhile, there is still an open problem of estab-
lishing by the small parameter method the relationship 
between the value of boundary shape perturbation, plas-
tic zone radius and rotation velocity of unstable con- ti-
nuous inhomogeneous circular disc corresponding to the 
indicated state of perturbed elastoplastic boundary. This 
is the subject of our present investigation. 

2. Statement of the Problem 

We consider a disc D consisting of two homogeneous 
and isotropic plane discs D1 and D2. Continuous circular 
disc D1 possesses radius  which coincides with the 
internal radius of the ring-shaped circular disc D2. The 
external radius of disc D2 equals to . Discs D1 and D2 
made from different materials are rigidly connected into 
one disc D along the circumference . We designate 
by 1

a

b

r  a

s  the material yield limit of disc D1,  is the 
elasticity modulus, 1

1E
  is the density and 1  is the 

Poisson coefficient. The corresponding material parame-
ters of disc D2 are designated by 2s , 2 , 2E   and 2  
respectively. It is assumed that constant angular rotation 
velocity   of disc D is higher than its critical velocity 

* . This means the presence of perturbation of the initial 
contour circumference r b , perturbation of the current 
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radius of elastoplastic boundary 0  and, in general, 
perturbation of stress strain state of the whole (unstable) 
disc. 

r r

We focus our attention on the self-balanced form of 
the stability loss of disc D which is little different from 
the circular form. The disc boundary equation up to the 
first order infinitesimal is presented in the form 

= cosr b d n , ,constd    2,n 

or 

= 1 cos n   ,               (1) 

where = r b  is a dimensionless current radius,   is 
a small parameter, , n   is a polar angle. On this 
basis, let us determine critical values 0=r r  and 

=   which accompany reaching of the above men-
tioned circumference  by the perturbed elastoplas-
tic boundary in the elastic zone of disc D. The critical 
values corresponding to reaching of the disc edge by the 
elastoplastic boundary, i.e. its contact with curve (1), 
should be specially calculated. We recall that for solution 
of these problems it is necessary, first of all, to analyti-
cally establish the condition of contact of the elastoplas-
tic boundary and a circumference of given radius, i.e. to 
construct characteristic equation with the parameter 

=r h

  
with respect to  having solved first the system of lin-
ear equations 

0r

0d
= 0 for = ,

d
rr

rr u r b
r


   

0 0 d
= 0 for = ,

d
rr

r

u
r b

b



 





  

0= 0 for = ,rr r r  

0= 0 for = ,r r r  

0

0=u r
d

= 0 for
d

r
r





   

with respect to  and arbitrary constants found in 
the expressions for stress and displacement components 

rr

 0u r

 , r ,   and  determining perturbed stress 
strain state of the rotating disc D. The above mentioned 
linearized perturbations of the first order of smallness 
satisfy differential balance equations of plane problem 
and partial differential equations of relationship between 
stresses and displacements [1]. Unperturbed stress state 
(designated by the upper index 0) is determined by ordi-
nary differential equations of quasistatic equilibrium and 
constraint equations in the elastic zone or by the yield 
Saint-Venant condition [5] in the plastic zone. 

u

In view of the instability development mechanism of 
the inhomogeneous disc under consideration the stated 
problem will be solved for each of the four cases: (a) 
D1peD2e (Figure 1(a)); (s2) D1pD2pe (Figure 1(b)); (b) 

D1eD2pe (Figure 1(c)); (c) D1peD2pe (Figure 1(d)). 

3. Solution in the Case D1peD2e 

In order to use boundary and conjugation conditions 

1 = 0 for = 1,e eAu                (2) 

2 = 0 for = 1,
e

e du
A

d



             (3) 

0= 0 for = ,e
                    (4) 

0= 0 for = ,e
                   (5) 

3 = 0 for = ,e eA u 0               (6) 

for perturbations of the first order of smallness e
  , 

e
   and e

   of radial, contact and tangential stresses 
related to the yield limit 2s  we recall that in D2e 
(Figure 1(a))  
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and in D1e 
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and, besides, 

0 1 2 2 1 3 2 4 1

0 5 2 6 1 7 2 8 1

= ,

= .

a q a q a q b q b

b q a q a q b q b

     
     

 

Here 0 01= r b , = a b , , 1 , 2  and 1b  are 
indefinite coefficients and 1  are the coefficients 
expressed via , 

2a
, ,q

a

8q
b

n 0 ,  , 1 , 2  and 2E 1= E ;  

   , ,I IVa a  ,    , ,I IVb b  ,    , ,I IVc c   are 

known functions [16]. Moreover,       
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Figure 1. Perturbed elastoplastic boundary reaching given circumference r = h. 
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For = 1  perturbation of the first order of smallness 

of the radial displacement related to  is known from 
(1)  
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Conditions (2)-(6) in the extended form [16] are 

2 1 = 0,a A  

2 2 = 0,b nA  

1 2 2 1 3 2 4 1 = 0,q a q a q b q b       
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Hence, 

   0 0= coseu U    

where 
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and, besides, 
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As a consequence, the characteristic equation with re-
spect to the plastic zone radius corresponding to the mo-
ment of contact of the perturbed elastoplastic boundary 
and the mentioned circumference = =h b   becomes 

 0 0 = 0.U                  (8) 

The critical value of angular velocity   corre-
sponding to the critical value of radius of the plastic do-
main 0 0=   ,  0 0 ,  

  ( 0   is a critical radius 
of the plastic zone D1p for which the disc loses its stabil-
ity) is obtained in terms of (7). 

4. Solution in the Case D1pD2pe 

Now, in contrast to Section 3, the elastic domain is ho-
mogeneous and represents zone D2e (Figure 1(b)), 
therefore [14,15] 
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
Thus, characteristic Equation (8) is constructed. 
The characteristic equation with a parameter with re-

spect to critical radius of the plastic domain which re- 
ached the external edge of the disc D reads [9] 
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where  0 0U    for 0

 
  . 6. Solution in the Case D1peD2pe 

In order to follow the perturbation dynamics of elasto-
plastic boundary between D2p and D2e (Figure 1(d)) we 
will take into account (see Section 4) the fact that 

5. Solution in the Case D1eD2pe
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Similarly to Section 5 the rest of calculations including 
general form of characteristic Equations (8) and (10) 
coincide with the results presented in Section 4.  

, 

7. Examples and Concluding Remarks 

For inhomogeneous disc with the parameters = 2n
= 0.9 , = 0.93 , 1 = 0.31 , 2 = 0.3 , = 1 , 
= 0.99 , = 0.99s  and 2 2 = 0.01s E , which loses its 

stability according to case (a) for 0 = 0.7148    and

2 = 1.6825q  the values of critical radius 0
  of 

nd rela otation velocity plastic zone D1p a tive critical r
*

2q  are presented in Table 1. 
Table 2 presents characteristic critical values obtained 

tion of characteristic Equation (10) for in terms of solu

the disc with parameters , = 2n = 0.1 , 1 = 0.4 , 

2 = 0.3 , = 0.8s, = 1 , = 1  and 2 2 = 0.01Es  
which loses its stability according to case (s2) for 

01 = = 0.1  , 0 = 0.7167   and 2 = 1.6674q . 
The same problem is solved for the disc with = 2n , 

, = 1.2 , = 1.1s  and , 1 = 0.3 , 2 = 0.2 = 0.5
2 2 = 0.01s E  whose instability develops according to 

(b) (Table 3) for = 0.8 , = 0.7106  and  0 

2 = 1.7310q  and according to (c) (Tab ) le 4 for = 1 , 

01 = 0.1889  , 0 = 0.7112   and 2 = 1.7262q . 
 

 o s and r eloTab c-
ity

δ 10

le 1. Values f critical radiu elative critical v
 depending on δ. 

–7 10–6 10–5 10–4 10–3 

*

0  0.8999 0.8996 0.8967 0.8770 0.8031 

*

2q  1.7228 1.7227 1. 7046 1.7223 7193 1.

 
Table 2. Values of critical radius and relative critical veloc-
ity depending on δ. 

δ 10–7 10–6 10–5 10–4 10–3 

*

0  0.9932 0.9853 0.9682 0.9310 0.8474 

*

2q  1.7146 1.7144 1.7138 1.7109 1.6984 

 
Table 3. Values of critical radius and relative critical veloc-
ity depending on δ. 

δ 10–7 10–6 10–5 10–4 10–3 

 0.9927 0.9842 0.9658 0.9255 0.8339 *

0

*

2q  1.7733 1.7732 1.7725 1.7696 1.7567 
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Table 4. Values of critical radius and relative critical veloc-

–6 10–5 10–4 10–3 

ity depending on δ. 

δ 10–7 10

*

0  0  0  0  0  0.9926 .9842 .9658 .9254 .8338 

*

2q  1.7779 1.7778  1.7769 1.7733 1.7572 

 

rturbation, location and type of
turbed elastoplastic boundary and rotation velo of
unstable continuous ci disc allow 
quantitative conclusi e bo li
the disc su h-s  T lic

e obtained results enables us to forecast the develop-

The relationships established between the value of 
boundary shape pe  per-

 city 
rcular qualitative and 

ons to b  made a ut pecu arities of 
 per-hig peed dynamics. he app ation of

th
ment of unstable state and to calculate possible loss of 
stability and failure of bearing capacity of rotating discs. 

It should be noted that basic equations of stability the-
ory of spatial deformable bodies derived by linearization 
of nonlinear equations contain terms specified via the 
components of unperturbed ground state. This causes 
some difficulties in the problem on loss of stability, since 
a loading parameter associated with the critical efforts 
enters the basic equations. Application of the approxi-
mated approach presented in the paper for stability inves-
tigation of spatial elastic bodies simplifies the problem 
because both the perturbations ij   satisfy the initial 
balance equations and the loading parameter is intro-
duced into boundary conditions on the perturbed initial 
surface of the body. The loading parameter is determined 
by essentially more simple characteristic equations. 
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