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ABSTRACT 

Time series analysis, based on the idea that female reproductive endocrine physiology can be construed as a nonlinear 
dynamical system in a chaotic trajectory, is performed to measure the correlation dimension of the menstrual cycle data 
from subjects in two different age cohorts. The dimension is computed using a method proposed by Judd (Physica D, 
vol. 56, 1992, pp. 216-228) that does not assume the correlation dimension to be necessarily constant for all appropriate 
time scales of the system’s strange attractor. Significant time scale differences are found in the behavior of the dimen-
sion between the two age cohorts, but at the shortest time scales the correlation dimension converges to the same value, 
approximately 5.5, in both cases. 
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1. Introduction 

The typical conceptualization of the menstrual cycle is 
that it has a stable period of  28 days throughout most 
of the reproductive years but becomes irregular and un-
stable during the perimenopause, i.e. the years preceding 
the end of menstruation (menopause) [1]. However, the 
idea that the menstrual cycle is highly regular and peri-
odic not only is discrepant from the experience of many 
people, it also contradicts a body of published literature 
[2]. Treloar’s pioneering work [3] demonstrated many 
years ago that there is significant variability in the human 
menstrual cycle during the entire life span. Variability 
increases during perimenopause, but there is controversy 
in the literature over when this begins and how to char-
acterize it [4-6]. The increased irregularity has often been 
taken to be evidence of senescence and incipient break-
down in the reproductive system, but given the unex-
plained variability prior to perimenopause and the lack of 
any understanding for why such a transition should occur, 
these interpretations are premature [2]. We have previ-
ously hypothesized that the variability in the menstrual 
cycle is neither random nor extrinsic to the system, but 
rather is the result of the female reproductive endocrine 
system being a nonlinear deterministic system in a cha-
otic trajectory, and we have offered evidence that this is 
correct [7].  

The application of concepts from nonlinear dynamics  

and chaos to physiological problems has now become 
well established [8], but relatively little of this work has 
been performed on the human endocrine system. The 
collection of concepts and techniques known as time 
series analysis is one of the primary tools for the treat-
ment of data from nonlinear systems and the characteri-
zation of chaos. Successful time series analysis requires 
sampling an extremely large number of data points, and 
this is difficult for endocrine studies that typically require 
much trouble and expense (blood draws, bioassays, etc.) 
for each point sampled, in contrast to more widely used 
methods, for example voltage measurements in an elec-
trocardiogram. For this reason, only a relatively small 
number of time series analyses have been performed us-
ing endocrine data, all with considerably fewer than 103 
data points and none involving the reproductive system 
[9-11]. The novel approach that we have developed al-
lows us to study the menstrual cycle and hence the re-
productive endocrine system using time series analysis 
with 104 data points. In this paper, we employ these 
techniques, using a different methodological framework 
from our previous study [7], to make a comparison of 
menstrual cycle dynamics from women in differing age 
ranges.  

2. Methods 

The source of our data is the database maintained by the 
Tremin Research Program on Women’s Health, which *Corresponding author. 
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contains the results of an ongoing longitudinal study be-
gun in 1934 [12]. Subjects in this study record the days 
that they are menstruating, and from this data we can 
create a sequence of menstrual cycle lengths. Data from a 
cohort of subjects who participated in the study from 
when they were 20 years old (or less) until they reached 
menopause were used in the present work. Data were 
selected and analyzed separately for two different age 
ranges: menstrual cycle data from women aged 20 - 40 
years, and menstrual cycle data from women during the 6 
years preceding menopause. For the older woman data, 
130 subjects were used resulting in 8054 menstrual cycle 
data points. For the younger woman data, a subset of 
these subjects consisting of 53 women was used resulting 
in 10,639 menstrual cycle data points. (A different subset 
of these subjects was used in our previous study [7], so 
this work also served as a reproducibility check for the 
20 - 40 year age range results.) For each age range, the 
data were analyzed in two different forms. One form was 
an interevent time sequence consisting of the menstrual 
cycles themselves (ti), the other was a formal time se-
ries constructed using a novel procedure we have devised. 
The time series is defined such that fn, the nth term of the 
time series, is given by the difference between time tn 
and the time at which the nth menstrual cycle ends. The 
times tn are equally spaced so that tn = n where  is the 
sampling time, giving this scheme the structure of a for-
mal time series. More compactly,  

n

n i
i 1

f t n


    
 
             (1) 

where ti is the time length of the ith menstrual cycle in 
the sequence. Though this interevent time sequence itself 
(the set of ti) does not meet the requirements of a formal 
time series, there is good reason to believe that it can be 
employed in the same manner to characterize chaotic 
trajectories [13]. Each of these approaches (either using 
the ti or using the fn as input data to the time series 
analysis) makes different assumptions and approxima-
tions, so repeating the computations using both of these 
methods serves as a cross check on the validity of the 
results. In both cases, a phase space reconstruction (em-
bedding) of the data must be implemented and repeated 
for a variety of embedding dimensions. Further details 
concerning this methodology, and a discussion of the 
issues that arise therefrom, can be found elsewhere [7].  

A key concept in nonlinear dynamics and chaos is that 
the trajectory of the system in a multidimensional phase 
space of the relevant variables is described by a strange 
attractor in that space. One of the important quantities 
used to characterize a chaotic strange attractor is its frac-
tal dimension. Experimentally, the quantity that is fre-
quently calculated to obtain an approximation for this 
fractal dimension is the correlation dimension of the at-

tractor, which can be computed using a time series of 
data measured for some system variable. This quantity is 
defined as 

 
0

log C
d lim

log




             (2) 

where C(), the correlation sum, represents the number 
of interpoint distances in the time series data that are 
smaller than . These interpoint distances are computed 
in an embedding space of dimensionality D greater than 
that of the correlation dimension itself, with vectors in 
the embedding space found from sets of points in the 
time series. A major conceptual problem with this for-
mulation is the presence of the limit, because experi-
mentally there are no data in that limit for a time series of 
finite resolution. In practice, one can instead use estima-
tors of the correlation dimension, such the Takens esti-
mator [14] computed at a single convenient value of , or 
the slope of a log(C) vs. log() plot in the scaling region 
of the data where this plot is linear [15]. We have previ-
ously employed these estimators in an analysis of the 
menstrual cycle data from women in the 20 - 40 year age 
range [7]. However, the scaling region may not include 
all the information available about the attractor and does 
not correspond to the proper  limit in the definition; in 
addition, the points used in the correlation sums may 
include correlations due to time rather than to geometry, 
potentially biasing the results. In this paper, we employ a 
different estimator due to Judd [16,17], which mitigates 
some of these disadvantages. Judd has shown, at least for 
a reasonable class of attractors, that the probability of an 
interpoint distance being less than  is given by  

   d
0 1 2P a a a 2              (3) 

where d is the correlation dimension of the system. In 
essence, what Judd has shown is that the effect of not 
being in the asymptotic limit of   0 is to modify the 
usual relationship with the multiplication by a polyno-
mial in . This method then allows us to experimentally 
fit data over a range of  values and opens the possibility 
to explore any length (i.e. time) scale dependence that 
may exist for the correlation dimension d itself.  

In practice, the probability P(), which basically cor-
responds to the correlation sum, is not used directly. In-
stead, the number of interpoint distances bi within an 
interval i = i  i+1 are counted; such intervals can be 
referred to as bins. The numbers bi now correspond to the 
probability pi = Pi  Pi+1 and can be used to find the pa-
rameters of Equation (3) for all  smaller than some cut-
off value 0. As the cutoff 0 decreases, we approach 
closer to the asymptotic limit   0, but the number of 
bin values bi with which to fit the parameters decreases 
and the fits become problematic. The maximum value of 
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0 is determined by the fact that the theory is only valid 
on the decreasing tail of the pi distribution. The correla-
tion dimension d, in this formulation, is not required to 
be constant for all 0, so in essence we are able to obtain 
information about how the dimension d varies with the 
characteristic length scale of the system’s strange attrac-
tor by using different values for the cutoff. Judd has 
shown that the bi have a multinomial distribution, and he 
suggests fitting the parameters by a log-likelihood maxi-
mization of this probability function, but here we instead 
find the parameters by fitting the data to the probabilities 
entailed by Equation (3) directly, because we found this 
procedure to have some advantages in algorithmic speed 
and stability. 

For each of the four cases described above (i.e. younger 
women using fn; older women using fn; younger women 
using ti; older women using ti), we have computed the 
correlation dimension for the entire range of accessible 0 
cutoffs in embedding dimensions ranging from D = 8 to 
D = 12. (Computations were also performed in lower 
embedding dimensions, but these are uninteresting since 
they merely fill the embedding space; results for D  8 
are reported since these values of D should be high 
enough to obtain valid results for d.) We did not use all 
of the interpoint distances computable for the N data 
points available, because that offered no means to check 
reproducibility, it might bias the results due to time cor-
relations, and it would be computationally inefficient. 
Instead, for every correlation dimension computed, we 
sampled random pairs from the population N and used 
the interpoint distances for those pairs to fill the bins. 
Using just a few percent of the N2 possible pairs pro-
vided ample amounts of data in the bins with minimal 
bias, and this procedure could then be repeated to find 
out how the random selection affected the consistency of 
the results. Every case (i.e. selection of D and 0 values) 
was redone for distributions from three random sam-
plings.  

3. Results 

An example of the results for a single sampling at a par-
ticular value of D and 0 is shown in Figure 1. The bin 
values are normalized to the total value in all the bins, 
and the  values are scaled to the cutoff value 0. The 
best-fit parameters (the correlation dimension d and the 
three polynomial coefficients in Equation (3) were found 
by minimizing the sum of the squared differences be-
tween the theoretical probability pi and the bin value bi 
for the set of available i in each case considered. The 
case illustrated in Figure 1 is for the time series data of 
the 20 - 40 year old sample at an embedding dimension 
of D = 10 and a cutoff value of 0 = 64.2 days, employing 
21 i and bi values in the fit. (Again, note that fewer val-

ues become available as 0 decreases, making reliable fits 
more difficult in the interesting asymptotic regime.) For 
the case shown in Figure 1, the best fit for the correla-
tion dimension is d 4.5 . While rigorous uncertainties 
for the correlation dimension are difficult to calculate 
using nonlinear methodologies of this sort, a pragmatic 
sense of the uncertainty in this number will be gleaned 
from the scatter due to different samplings of the popula-
tion and different embedding dimensions, as shown in 
the subsequent figures. It is worth emphasizing that every 
individual data point shown in Figures 2-5 represents the  
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Figure 1. Normalized interpoint distance bin values for the 
time series based on the 20 - 40 year old age cohort data, 
with an embedding dimension D = 10 and cutoff value 0 = 
64.2 days. Computed probabilities are based on Equation (3) 
using the best-fit parameters, including a correlation di- 
mension value of d = 4.5. 
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Figure 2. Correlation dimension d as a function of cutoff 
length 0 at embedding dimensions from D = 8 to D = 12, 
computed from time series values based on menstrual cycle 
data for women aged 20 - 40 years. 
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Figure 3. Correlation dimension d as a function of cutoff 
length 0 at embedding dimensions from D = 8 to D = 12, 
computed from time series values based on menstrual cycle 
data for women in the last 6 years before menopause. 
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Figure 4. Correlation dimension d as a function of cutoff 
length 0 at embedding dimensions from D = 8 to D = 12, 
computed from actual interevent time sequence values (i.e. 
menstrual cycles) for women aged 20 - 40 years. 

results of a fitting process like that illustrated in Figure 
1. 

Figure 2 shows correlation dimension results, as func-
tion of cutoff value, for the analysis of a time series con-
structed using menstrual cycle data from women in the 
20 - 40 year age range. The relatively minor variations 
for different embedding dimensions are depicted using 
differently shaped symbols. Comparable results for the 
correlation dimension using a time series based on men- 
strual cycle data from the women in the last 6 years be-  
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Figure 5. Correlation dimension d as a function of cutoff 
length 0 at embedding dimensions from D = 8 to D = 12, 
computed from actual interevent time sequence values (i.e. 
menstrual cycles) for women in the last 6 years before 
menopause. 

fore they reached menopause are shown in Figure 3. In 
both of these figures the cutoff value on the horizontal 
axis is divided by the square root of the embedding di-
mension to make the results more comparable. Three 
major points of interest are apparent in the comparison 
between these two results. Firstly, the overall length 
scales of the two processes, indicated by the range of the 
cutoff values from the minimum to the maximum, are 
quite different in the two cases, with the characteristic 
length scale in Figure 3 being approximately a factor of 
2 greater. Secondly, the variation of the correlation di-
mension with the cutoff length is significant for the 20 - 
40 year old subjects, but this variation virtually nil for the 
subjects in the last 6 years before menopause. Thirdly, in 
the limit of low cutoff values, the two results for the cor-
relation dimension become approximately equal.  

Figure 4 and Figure 5 show correlation dimension 
results for the same subject populations as those of Fig- 
ure 2 and Figure 3, respectively, but in this case we used 
the raw menstrual cycle data in the analysis instead of 
using the time series constructed from this data. Note that 
once again a more dramatic variation of the correlation 
dimension with cutoff length is observed for the 20 - 40 
year old subjects than for the subjects in the last 6 years 
before menopause. Likewise, the characteristic length 
scales are roughly a factor of 2 different once again, and 
the limiting values of d at low 0 tend toward roughly the 
same values as in Figures 2 and 3. Although the d values 
at low 0 in Figure 4 are somewhat high compared to the 
others and the variations with 0 in Figure 5 are larger 
than those in Figure 3, these are relatively minor dis- 
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crepancies given the scatter in the results. The differ-
ences between the two age cohorts that we have identi-
fied, on the other hand, are relatively large and are repli-
cated in the two different analyses.  

4. Conclusion 

The important conclusion that we may infer from these 
results is that although the dynamics of the reproductive 
physiological system appear to be chaotic over the entire 
age range, significant changes occur in the strange at-
tractor governing the system during the later reproductive 
years of the lifespan. The observed increase in the char-
acteristic time scale involved is intuitively sensible, 
given the well-known increase in menstrual cycle vari-
ability during the perimenopause, but we should note that 
this is not merely an artifact of raw variability in the in-
put. The standard deviations of the actual values of the fn 
points comprising the two different time series are ap-
proximately equal, so the difference in characteristic time 
scales seen in the horizontal axes of Figures 2 and 3 re-
flects some deeper aspect of the dynamical behavior of 
the system. The specific nature of these age-related changes, 
however, is not well understood at this time. The differ-
ent behaviors of the correlation dimension with 0 are 
difficult to interpret without further information, and 
speculation about the physiological causes underlying 
these differences is premature at this stage. We are pres-
ently engaged in modeling the system to obtain further 
insight into these questions. Previous mathematical mod-
els of the menstrual cycle offer little insight, because 
they have assumed either periodic solutions or stochastic 
processes [18-20], which are inconsistent with empirical 
data and with the results presented here.  

A potentially exciting implication of these results is 
that nonlinear dynamics may open new avenues to cate-
gorize and explore the lifespan development of the re-
productive system. There is at present no agreement con- 
cerning even such basic issues as the definition of peri-
menopause or markers for when it begins [4-6]. We plan 
to use the methodology employed here to test some of 
these proposed definitions. Finally, we would suggest 
that these results call into question the assumption that 
menopause is merely the final outcome of a process of 
senescence, given the presence of a chaotic trajectory in 
both age cohorts, a presumably lawful process by which 
the trajectory changes, and the convergence at low 0 to 
similar values of the attractor’s correlation dimension in 
all cases.   
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