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ABSTRACT 

We present a flexible version of GPBi-CG algorithm which allows for the use of a different preconditioner at each step 
of the algorithm. In particular, a result of the flexibility of the variable preconditioner is to use any iterative method. For 
example, the standard GPBi-CG algorithm itself can be used as a preconditioner, as can other Krylov subspace methods 
or splitting methods. Numerical experiments are conducted for flexible GPBi-CG for a few matrices including some 
nonsymmetric matrices. These experiments illustrate the convergence and robustness of the flexible iterative method. 
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1. Introduction 

Krylov subspace methods are the iterative choice for 
solving linear system of the form 

x bA .                  (1) 

where the matrix A is assumed to be nonsingular. The 
strength of Krylov subspace methods are most apparent 
when combined with a preconditioner. We only consider 
right preconditioning in the paper. Thus one solves the 
equivalent linear system 

 1M Mx b A .              (2) 

The preconditioner M is selected to be close to the 
matrix A. And the matrix 1M A  is never formed ex- 
plicitly. Instead, when 1M v z   is needed, one solves 
the corresponding system 

Mz v .                  (3) 

In this paper, we present a flexible version of GPBi- 
CG, which allows the preconditioner M vary from one 
iteration to another. Let us denote the matrix n  the 
preconditioner used in the nth iteration. The need to allow 
for a variable preconditioner arises when the solution of 
(2) is not obtained exactly (say, by a direct method), but 
is approximated by a second (inner) iterative method. 

M

In recent years, several flexible variants of Krylov sub- 
space methods have been established successfully. They  

include flexible CG, which is applied on a symmetric 
positive definite matrix [1], flexible GMRES [2], flexible 
QMR [3], variable preconditioned GCR [4], flexible 
BiCG and flexible Bi-CGSTAB [5]. Preconditioning as 
this form is called flexible preconditioning, also known 
as variable or inexact preconditioning. 

The paper is organized as follows. In the next section, 
we design the FGPBi-CG algorithm, which is a flexible 
version of GPBi-CG [6]. In Section 3, some numerical 
experiments will be conducted to illustrate the conver- 
gence of the algorithm. Furthermore, in some cases, it is 
shown that FGPBi-CG can achieve convergence to a 
tolerance when GPBi-CG is not convergent or even 
FBi-CGSTAB suffers stagnation. Finally we make some 
concluding remarks in Section 4. 

Throughout the paper, 0x  is the initial approximation, 

0 0r b Ax   is the initial residual, and the norm used is 
2-norm. 

2. Flexible GPBi-CG Method 

We describe the basic idea of variable preconditioning 
and how it is incorporated with the algorithm GPBi-CG 
in this section. 

The expression 1M v

1

 is calculated at each iteration 
of the conventional preconditioned Krylov subspace me- 
thods. The object of preconditioning is to change the 
original coefficient matrix A into another matrix close to 
identity, i.e. AM I  . Consequently, the following 
property that 1M v  approximates 1A v  can be verified 
easily. 

*The project is partly supported by the NSF of China (No. 61170309, 
No. 60973151, and No. 91130024) and the major project of scientific 
and technical development of China Academy of Engineering Physics 
(2011A0202012). 
#Corresponding author. 

Copyright © 2012 SciRes.                                                                                  AM 



J.-M. WANG  ET  AL. 332 

1 1M v A v  . 

Thus, we consider obtaining an approximation of 
1A v  instead of computing 1M v . That is, the follow- 

ing system (4) is roughly solved by an iterative method 
to a certain degree of accuracy that is not sufficient. 

Az v .                 (4) 

Here, an approximation for the system (4) does not 
need to be solved at the same precision at each iteration. 
A stopping criteria has been established to make the pre- 
conditioner to be changed at each iteration. Different 
inner-loop can be applied to the system (4) including 
Krylov subspace methods and stationery iterative meth- 
ods. 

The GPBi-CG algorithm proposed by Zhang [6], uses 
an unified way to derive a class generalizations of Bi-CG. 
By choosing different coefficients, namely, the following 
  and  , the GPBi-CG algorithm will be reduced to 
other methods based on Bi-CG includes the well known 
CGS, Bi-CGSTAB, Bi-CGSTAB2. 

Next we present a flexible version of GPBi-CG, which 
needs only some small modification of the GPBi-CG 
code. 

ALGORITHM (FGP-BiCG with right preconditioner) 

0x  is an initial guess, 0 ;  is an arbitrary 
vector, such that  , e.g., ; and set 

, 

0r b Ax 
0 0, 0r r 
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Enddo 
at if we replace Noted th nM  with M, a fixed precon- 

di

erical experiments to 

tioner, the above algorithm e reduced to the stan- 
dard GPBi-CG method with right preconditioner. 

3. Numerical Experiments 

 will b

In this section, we report some num
show the convergence behaviors of FGPBi-CG. In all 
cases the iteration was started with  0 0,0, ,0x   , and 
the outer-loop is stopped when the relative residual norm 

14
0 10nr r  . In the following examples, we use stop- 

ping criterion for inner-loop as: 

1)  
1

l
n kr Az   ; 

2) nuThe maximum mber of iterations of inner loop 

maxl N . 
Here, ( )

1
l

kz   denotes the l-th approximation when com- 

t

puting Az v  at k-th steps of the outer-loop. 

3.1. Examples for Toeplitz Matrix 

In the first example, we consider a Toeplitz matrix of or- 
der 200 with a parameter  . 
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 

A  



In this experiment, we choose   to be 3.79 and the 
inner iteration stopping criteria to be the maximum itera- 
tion is max 50N   and relative residuals range from 

310   to 610 . We can see from the Figure 1 that 
GPBi-CG converges faster than that of Bi-CGSTAB. 
When the standard GPBi-CG algorithm performs well, 
the flexible version of GPBi-CG is also convergent, but it 
need more computation. The results can be seen in Table 
1. In the table, “FG(B)” denotes FGPBi-CG with precon- 
ditioning Bi-CGSTAB, and so on, while “MV” represents 
the number of matrix-vector multiplication, “OIt” denotes 
the number of outer iteration. 

From Figure 1 and Table 1, we can see that for the 
problem t i-CGhat GPB  and Bi-CGSTAB method can 
convergent fast, FGPBi-CG and FBi-CGSTAB will not 
gain too much. While FGPBi-CG(GPBi-CG) and FBi- 
CGSTAB(GPBi-CG) will be faster than FGPBi- 
CG(Bi-CGSTAB) and FBi-CGSTAB(Bi-CGSTAB) re-  
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Figure 1. Convergence history of Bi-CGSTAB and GPBi-CG
for Toeplitz matrix 1. 

(G) 

 

 
Table 1. Performance comparison: γ = 3.79. 

FG(B) FG(G) FB(B) FB
  

MV OIt MV OIt MV OIt MV OIt
310  5  5  3  350 3 06 3 56 3 16 3 
410  454 2 416 2 294 2 258 3 
510  1102 4 528 2 736 4 332 2 
610  574 2 550 2 374 2 350 2 

 
specti ely. Becau  GPBi-CG se th n era n 
sually converges faster than Bi-CGSTAB. 

v se  u d in e in er it tio
u

Now, we consider another Toeplitz matrix of order 
200 with a parameter   as following. 
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In this experiment, we choose   
e th

to be 1.9 and the 
inner iteration stopping criteria to b e maximum itera- 
tio

CG is c gen hile Bi-CGSTAB is not. As a result, 
w

We consider the finite difference discretization of the par-  

n is max 50N   and relative residuals range from 
310   to 610 . 

We can  the Figure 2 and Table 2 that GPBi- 
onver t w

 see from

hen Bi-CGSTAB is used as an inner iteration, the num- 
ber of matrix vector multiplication is not influenced by 
the inner relative residual stopping criteria, i.e., the inner 
iteration is not terminated until it reaches Nmax (the larg-
est iterative number of inner loop). For this reason, GPBi- 
CG used as the inner iteration performs better. 

3.2. Examples for Model Problem 
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Figure 2. Convergence history of Bi-CGSTAB and GPBi-CG 
for Toeplitz matrix 2. 

FG(B) FG(G) FB(B) FB(G) 

 
Table 2. Performance comparison: γ = 1.9. 

  
MV OIt MV OIt MV OIt MV OIt

310 39  11 26  7526 13 58 5 26 13 8 5 
410 3926 13 904 3 2626 13 574 3 
510 3926 13 896 3 2626 13 604 3 
610 3926 13 906 3 2626 13 606 2 

 
tial diffe l at [3 ]) rentia equ ion ( ,5,7

 x yu xu yu u   f              (5) 

at the exact solution to 
the discretized equation
on a unit square, where f is such th

 Ax b  is x  1,1, ,1 . The 
parameters   and   are chosen to have a nonsym- 
metric matrix. In our experiment, 10  100 and    
or 1000  . The mesh is chosen of equal size in both 
dimension (32 nodes), and the corresponding matrix is 
thus of order 1024. 

In the first example, we take 10  , 100   and 
the inner iteration stopping criteria is N  ranges from 
30

max
6 . 

 3 
 to 70 and relative residuals is 10
For this choice, Figure 3 and Table show that both 

Bi-CGSTAB and GPBi-CG perform q  well for this 
ex

uite
ample, flexible versions of these algorithms are also 

convergent. If the inner-loop stopping criterion is Nmax = 
40 and 610  , the FBi-CGSTAB(Bi-CGSTAB) needs 
316 matrix vector multiplications to reach the prescribed 
tolerance, faster than that of Bi-CGSTAB. 

In the next experiment, we choose 10  , 1000   
and the inner iteration stopping criteria is N  ranges 
fro s 10

max

m 90 to 1000 and relative residuals i . 
Neither Bi-CGSTAB nor GPBi-CG witho t precondi- 

tioning is convergent for this problem (see F gu e 4). 

9

u
i r

i- 

We see from Table 4 that FGPBi-CG and FBi- 
CGSTAB with flexible precondition converges, but the 
cost of FGPBi-CG is about one and a half that of FB 
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Figure 3. Convergence history of Bi-CGSTAB and GPBi-CG for β = 10, γ = 100. 
 

 

Figure 4. Convergence history of Bi-CGSTAB and GPBi-CG for β = 10 and γ = 1000. 
 

Table 3. Performance comparison: β = 10, γ = 100. Table 4. Performance comparison: β = 10; γ = 1000. 

FB(G) FG(G) FG(B) FG(G) FB(B) FB(G) 
maxN  

maxN  M OI  ItV t MV O  

90 
MV OIt MV OIt OIt MV OItMV 

2  7   534 9576 18
30 910 5 1274 7 482 4 488 4 

40 446 2 726 3 316 2 486 3 
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CGSTAB, be  ther are thr r-loops in the 
FGPBi-CG al m rat  than t  FBi-CGSTAB. 

 from able, we see FGPBi-CG (GPBi-CG
c rges fo  of t  inner- stopping riteria.
W appropriate stopp  criteria is used in 

4.

d to a certain degree of precision. In 
teration for solving Az = v is stopped 

on Scientific C  4, 2000, pp. 1444- cause e ee inne
gorith her wo in

And this t ) 
 

1

onve r most he loop  c
hen ing the inner 

iteration, the flexible version will be a good choice. 

 Conclusion 

We have formulated a flexible version of GPBi-CG for 
the large sparse nonsymmetric linear systems. The pre- 
conditioning is carried out by roughly solving Az = v by 
an iterative metho
our proposal, the i
according to satisfy a certain accuracy of approximation 
or the maximum number of iterations, so the precondi- 
tioner is changed at each outer iteration. Our numerical 
experiments show that FGPBi-CG is a viable alternative 
to GPBi-CG. And some examples show that FGPBi-CG 
is convergent when GPBi-CG suffers from stagnation. 
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