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ABSTRACT 

Reinforcement Learning is a commonly used technique for learning tasks in robotics, however, traditional algorithms 
are unable to handle large amounts of data coming from the robot’s sensors, require long training times, and use dis-
crete actions. This work introduces TS-RRLCA, a two stage method to tackle these problems. In the first stage, low-level 
data coming from the robot’s sensors is transformed into a more natural, relational representation based on rooms, 
walls, corners, doors and obstacles, significantly reducing the state space. We use this representation along with Be-
havioural Cloning, i.e., traces provided by the user; to learn, in few iterations, a relational control policy with discrete 
actions which can be re-used in different environments. In the second stage, we use Locally Weighted Regression to 
transform the initial policy into a continuous actions policy. We tested our approach in simulation and with a real ser-
vice robot on different environments for different navigation and following tasks. Results show how the policies can be 
used on different domains and perform smoother, faster and shorter paths than the original discrete actions policies. 
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1. Introduction 

Nowadays it is possible to find service robots for many 
different tasks like entertainment, assistance, maintenance, 
cleanse, transport, guidance, etc. Due to the wide range 
of services that they provide, the incorporation of service 
robots in places like houses and offices has increased in 
recent years. Their complete incorporation and accep-
tance, however, will depend on their capability to learn 
new tasks. Unfortunately, programming service robots for 
learning new tasks is a complex, specialized and time 
consuming process.  

An alternative and more attractive approach is to show 
the robot how to perform a task, rather than trying to 
program it, and let the robot to learn the fine details of 
how to perform the task. This is the approach that we 
follow on this paper. 

Reinforcement Learning (RL) [1] has been widely used 
and suggested as a good candidate for learning tasks in 
robotics, e.g., [2-9]. This is mainly because it allows an 
agent, i.e., the robot, to “autonomously” develop a con-
trol policy for performing a new task while interacting 
with its environment. The robot only needs to know the 

goal of the task, i.e., the final state, and a set of possible 
actions associated with each state. 

The use and application of traditional RL techniques 
however, has been hampered by four main aspects: 1) 
vast amount of data produced by the robot’s sensors, 2) 
large search spaces, 3) the use of discrete actions, and 4) 
the inability to re-use previously learned policies in new, 
although related, tasks. 

Robots are normally equipped with laser range sensors, 
rings of sonars, cameras, etc., all of which produce a 
large number of readings at high sample rates creating 
problems to many machine learning algorithms.  

Large search spaces, on the other hand, produce very 
long training times which is a problem for service robots 
where the state space is continuous and a description of a 
state may involve several variables. Researchers have 
proposed different strategies to deal with continuous state 
and action spaces, normally based on a discretization of 
the state space with discrete actions or with function ap-
proximation techniques. However, discrete actions pro-
duce unnatural movements and slow paths for a robot 
and function approximation techniques tend to be com-



Relational Reinforcement Learning with Continuous Actions by Combining  70 
Behavioural Cloning and Locally Weighted Regression 

putationally expensive. Also, in many approaches, once a 
policy has been learned to solve a particular task, it can-
not be re-used on similar tasks.  

In this paper, TS-RRLCA (Two-Stage Relational Rein- 
forcement Learning with Continuous Actions), a two- 
stage method that tackles these problems, is presented. In 
the first stage, low-level information from the robot’s 
sensors is transformed into a relational representation to 
characterize a set of states describing the robot’s envi-
ronment. With these relational states we applied a variant 
of the Q-learning algorithm to develop a relational policy 
with discrete actions. It is shown how the policies learned 
with this representation framework are transferable to 
other similar domains without further learning. We also 
use Behavioural Cloning [10], i.e., human traces of the 
task, to consider only a subset of the possible actions per 
state, accelerating the policy learning process and ob-
taining a relational control policy with discrete actions in 
a few iterations. In the second stage, the learned policy is 
transformed into a relational policy with continuous ac-
tions through a fast Locally Weighted Regression (LWR) 
process.  

The learned policies were successfully applied to a 
simulated and a real service robot for navigation and fol-
lowing tasks with different scenarios and goals. Results 
show that the continuous actions policies are able to 
produce smoother, shorter, faster and more similar paths 
to those produced by humans than the original relational 
discrete actions policies. 

This paper is organized as follows. Section 2 describes 
related work. Section 3 introduces a process to reduce the 
data coming from the robot’s sensors. Section 4 describes 
our relational representation to characterize states and 
actions. Sections 5 and 6 describe, respectively, the first 
and second stages of the proposed method. Section 7 
shows experiments and results, Section 8 presents some 
discussion about our method and the experimental results, 
and Section 9 concludes and suggests future research 
directions. 

2. Related Work 

There is a vast amount of literature describing RL tech-
niques in robotics. In this section we only review the 
most closely related work to our proposal.  

In [8] a method to build relational macros for transfer 
learning in robot’s navigation tasks is introduced. A 
macro consists of a finite state machine, i.e., a set of 
nodes along with rulesets for transitions and action 
choices. In [11], a proposal to learn relational decision 
trees as abstract navigation strategies from example paths 
in presented. These two approaches use relational repre-
sentations to transfer learned knowledge and use training 
examples to speed up learning, however, they only con-
sider discrete actions.  

In [9], the authors introduced a method that temporar-
ily drives a robot which follows certain initial policy 
while some user commands play the role of training input 
to the learning component, which optimizes the autono-
mous control policy for the current task. In [2], a robot is 
tele-operated to learn sequences of state-action pairs that 
show how to perform a task. These methods reduce the 
computational costs and times for developing its control 
scheme, but they use discrete actions and are unable to 
transfer learned knowledge. 

An alternative to represent continuous actions is to ap-
proximate a continuous function over the state space. The 
work developed in [12] is a Neural Network coupled 
with an interpolation technique that approximates Q- 
values to find a continuous function over all the search 
space. In [13], the authors use Gaussian Processes for 
learning a probabilistic distribution for a robot navigation 
problem. The main drawback of these methods is the 
computational costs and the long training times as they 
try to generate a continuous function over all of the 
search space. 

Our method learns, through a relational representation, 
relational discrete actions policies able to transfer know- 
ledge between similar domains. We also speed up and 
simplify the learning process by using traces provided by 
the user. Finally we use a fast LWR to transform the 
original discrete actions policy into a continuous actions 
policy. In the following sections we describe in detail the 
proposed method. 

3. Natural Landmarks Representation 

A robot senses and returns large amounts of data read-
ings coming from its sensors while performing a task. In 
order to produce a smaller set of meaningful information 
TS-RRLCA uses a process based on [14,15] In [14] the 
authors described a process able to identify three kinds of 
natural landmarks through laser sensor readings: 1) dis-
continuities, defined as an abrupt variation in the meas-
ured distance of two consecutive laser readings (Figure 
1(a)), 2) walls, identified using the Hough transform 
(Figure 1(c)), and 3) corners, defined as the location 
where two walls intersect and form an angle (Figure 
1(d)). We also add obstacles identified through sonars 
and defined as any detected object within certain range 
(Figure 1(e)).  

A natural landmark is represented by a tuple of four 
attributes: (DL, θL, A, T). DL and θL are, respectively, 
the relative distance and orientation from the landmark to 
the robot. T is the type of landmark: l for left discontinu-
ity, r for right discontinuity (see Figure 1(b)), c for cor-
ner, w for wall and o for obstacle. A is a distinctive at-
tribute and its value depends on the type of landmark; for 
discontinuities A is depth (dep) and for walls A is its  
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(a)                (b)                (c) 

 

   
(d)                 (e) 

Figure 1. Natural landmarks types and associated attributes, 
(a) discontinuity detection; (b) discontinuity Types; (c) wall 
detection; (d) corner detection; (e) wall detection 
 
length (len), for all of the other landmarks the A attribute 
is not used. 

In [15] the data from laser readings is used to feed a 
clustering-based process which is able to identify the 
robot’s actual location such as room, corridor and/or in-
tersection (the location where rooms and corridors meet). 
Figure 2 shows examples of the resulting location classi-
fication process.  

Table 1 shows an example of the data after applying 
these processes to the laser and sonar readings from Fig-
ure 3. The robot’s actual location in this case is in-room.  

The natural landmarks along with the robot’s actual 
location are used to characterize the relational states that 
describe the environment. 

4. Relational Representations for States and 
Actions 

A relational representation for states and actions has the 
advantage that it can produce relational policies that can 
be re-used in other, although similar, domains without 
any further learning. The idea it to represent states as sets 
of properties that can be used to characterize a particular 
situation which may be common to other states. For ex-
ample, suppose the robot has some predicates that are 
able to recognize a room from its sensors’ readings. If the 
robot has learned a policy to exit a room, then it can ap-
ply it to exit any recognizable room regardless of the 
current environment. 

A relational state (r-state) is a conjunction of first or-
der predicates. Our states are characterized by the fol-
lowing predicates which receive as parameters a set of 
values such as those shown in Table 1.  

1) place: This predicate returns the robot’s location, 
which can be in-room, in-door, in-corridor and in- 
intersection. 

   
(a)                (b)                (c) 

Figure 2. Locations detected through a clustering processes, 
(a) room; (b) intersection; (c) corridor 
 
Table 1. Identified natural landmarks from the sensor’s 
readings from Figure 3 

N DL θL A T 

1 0.92 -17.60 4.80 r 

2 1.62 -7.54 3.00 l 

3 1.78 17.60 2.39 l 

4 0.87 -35.70 1.51 w 

5 4.62 -8.55 1.06 w 

6 2.91 -6.54 1.88 w 

7 1.73 23.63 0.53 w 

8 2.13 53.80 2.38 w 

9 5.79 -14.58 0.00 c 

10 2.30 31.68 0.00 c 

11 1.68 22.33 0.00 c 

12 1.87 -170.00 0.00 o 

13 1.63 -150.00 0.00 o 

14 1.22 170.00 0.00 o 

15 1.43 150.00 0.00 o 

 

 

Figure 3. Robot sensing its environment through laser and 
sonar sensors and corresponding natural landmarks 
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2) doors-detected: This predicate returns the orienta-
tion and distance to doors. A door is characterized by 
identifying a right discontinuity (r) followed by a left 
discontinuity (l) from the natural landmarks. The door’s 
orientation angle and distance values are calculated by 
averaging the values of the right and left discontinuities 
angles and distances. The discretized values used for 
door orientation are: right (door’s angle between –67.5° 
and –112.5°), left (67.5° to 112.5°), front (22.5° to 
–22.5°), back (157.5° to –157.5°), right-back (–112.5° to 
–157.5°), right-front (–22.5° to –67.5°), left-back (112.5° 
to 157.5°) and left-front (22.5° to 67.5°). The discretized 
values used for distance are: hit (door’s distance between 
0 m and 0.3 m), close (0.3 m to 1.5 m), near (1.5 m to 
4.0 m) and far (door’s distance > 4.0 m). 

For example, if the following discontinuities are ob-
tained from the robot’s sensors (shown in Table 1: [0.92, 
–17.60, 4.80, r], [1.62, –7.54, 3.00, l]), the following 
predicate is produced: 

doors-detected ([front, close, –12.57, 1.27])  
This predicate corresponds to the orientation and dis-

tance descriptions of a detected door (shown in Figure 3), 
and for every pair of right and left discontinuities a list 
with these orientation and distance descriptions is gener-
ated.  

3) walls-detected: This predicate returns the length, 
orientation and distance to walls (type w landmarks). 
Possible values for wall’s length are: small (length be-
tween 0.15 m and 1.5 m), medium (1.5 m to 4.0 m) and 
large (wall’s size or length > 4.0 m). The discrete values 
used for orientation and distance are the same as with 
doors and the same goes for predicates corners-detected 
and obstacles-detected described below. 

4) corners-detected: This predicate returns the orienta-
tion and distance to corners (type c landmarks).  

5) obstacles-detected: This predicate returns the orien-
tation and distance to obstacles (type o landmarks).  

6) goal-position: This predicate returns the relative ori-
entation and distance between the robot and the current 
goal. Receives as parameter the robot’s current position 
and the goal’s current position, though a trigonometry 
process, the orientation and distance values are calcu-
lated and then discretized as same as with doors. 

7) goal-reached: This predicate indicates if the robot is 
in its goal position. Possible values are true or false. 

The previous predicates tell the robot if it is in a room, 
a corridor or an intersection, detect walls, corners, doors, 
obstacles and corridors and give a rough estimate of the 
direction and distance to the goal. Analogous to r-states, 
r-actions are conjunctions of the following first order 
logic predicates that receive as parameters the odome-
ter’s speed and angle readings. 

8) go: This predicate returns the robot’s actual moving 

action. Its possible values are front (speed > 0.1 m/s), nil 
(–0.1 m/s < speed < 0.1 m/s) and back (speed < –0.1 
m/s).  

9) turn: This predicate returns the robot’s actual turn-
ing angle. Its possible values are slight-right (–45° < an-
gle < 0°), right (–135° < angle ≤ –45°), far-right (angle 
≤ –135°), slight-left (45° > angle > 0°), left (135° > angle 
≥ 45°), far-left (angle ≥ 135°) and nil (angle = 0°). 

Table 2 shows an r-state-r-action pair generated with 
the previous predicates which corresponds to the values 
from Table 1. As can be seen, some of the r-state predi-
cates (doors, walls, corners and obstacles detection) be-
sides returning the nominal descriptions; they also return 
the numerical values of every detected element. The 
r-action predicates also return the odometer’s speed and 
the robot’s turning angle. These numerical values are 
used in the second stage of the method as described in 
Section 6. The discretized or nominal values, i.e., the 
r-states and r-actions descriptions, are used to learn a 
relational policy through rQ-learning as described below. 

5. TS-RRLCA First Stage 

TS-RRLCA starts with a set of human traces of the task 
that we want the robot to learn. A trace Τk = {fk1, fk2, …, 
fkn} is a log of all the odometer, laser and sonar sensor’s 
readings of the robot while it is performing a particular 
task. A trace-log is divided in frames; every frame is a 
register with all the low-level values of the robot’s sen-
sors (fkj = {laser1 = 2.25, laser2 = 2.27, laser3 = 2.29, …, 
sonar1 = 3.02, sonar2 = 3.12, sonar3 = 3.46, …, speed = 
0.48, angle = 87.5}) at a particular time.  

Once a set of traces (Τ1, Τ2, ..., Τm) has been given to 
TS-RRLCA, every frame in the traces, is transformed  

Table 2. Resulting r-state-r-action pair from the values in 
Table 1 

r-state r-action 

Place (in-room), go (nil, 0.0), 

doors-detected ([[front, close, –12.57, 1.27]]), turn (right, 92).

walls-detected ([[right-front, close, medium, –35.7, 
0.87], [front, far, small, –8.55, 4.62], 
[front, near, medium, –6.54, 2.91], 
[left-front, near, small, 23.63, 1.73], [left-front, 
near, medium, 53.80, 2.13]]), 

 

corners-detected ([[front, far, –14.58, 5.79], 
[front, near, 31.68, 2.30], 
[left-front, near, 22.33, 1.68]]), 

 

obstacles-detected ([[back, near, –170.00, 1.87], 
[right-back, near, –150.00, 1.63], 
[back, close, 170.00, 1.22], 
[left-back, close, 150.00, 1.43]]), 

 

goal-position ([right-front, far]),  

goal-reached (false).  
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into natural landmarks along with the robot’s location. 
This transformed frames are given to the first order 
predicates to evaluate the set of relations, i.e., generate 
the corresponding r-state and r-action (as the one shown 
in Table 2). By doing this, every frame from the traces 
corresponds to an r-state-r-action pair and every one of 
these pairs is stored in a database (DB).  

Algorithm 1 gives the pseudo-code for this Behav-
ioural Cloning (BC) approach. At the end of this BC ap-
proach, the DB contains r-state-r-action pairs correspond-
ing to all the frames in the set of traces. 

As the traces correspond to different examples of the 
same task and as they might have been generated by dif-
ferent users, there can be several r-actions associated to 
the same r-state. RL is used to develop a control policy 
that selects the best r-action in each r-state. 

5.1 Relational Reinforcement Learning 

The RL algorithm selects the r-action that produces the 
greatest expected accumulated reward among the possi-
ble r-actions in each r-state. Since we only used informa-
tion from traces only a subset of all the possible r-actions, 
for every r-state, are considered which significantly re-
duces the search space. In a classical reinforcement 
learning framework a set of actions (A) is predefined for 
all of the possible states (S). Every time the agent reaches 
a new state, it must select one action from all of the pos-
sible actions in S to reach a new state. In our RL ap-
proach when the robot reaches a new r-state, it chooses 
one action from a subset of r-actions performed in that 
r-state in the traces.  

In order to execute actions, each time the robot reaches 
an r-state, it retrieves from the DB the associated r-ac-
tions. It chooses one according to its policy and the asso-
ciated nominal value of the selected r-action is trans-
formed into one of the following values: 

1) For the predicate go, if the description of the 
r-action is front the corresponding value is 0.5 m/s, for 
back the corresponding value is –0.5 m/s, and for nil the 
value is 0.0 m/s.  

2) For the predicate turn the values are: slight-right = 
–45°, right = –90°, far-right = –135°, slight-left = 45°, 
left = 90°, far-left = 135° and nil = 0°. 

Once the r-action has been chosen and executed the 
robot gets into a new r-state and the previous process is 
repeated until reaching a final r-state. 

Algorithm 2 gives the pseudo-code for this rQ-learning 
approach. This is very similar to the Q-learning algo-
rithm, except that the states and actions are characterized 
by relations. 

By using only the r-state-r-action pairs from the traces 
(stored in the DB) our policy generation process is very 
fast and thanks to our relational representation, policies 
can be transferred to different, although similar office or  

Algorithm 1. Behavioural cloning algorithm 

Require: T1, T2, …Tn: Set of n traces with examples of the task the 
robot has to learn. 

Ensure: DB: r-state-r-action pairs database. 

   for i = 1 to n do 

      k ← number of frames in the trace i 

       for j = 1 to k do 

Transform frameij (frame j from trace i) into their cor-
responding natural landmarks and into the correspond-
ing robot’s location. 
Use the natural landmarks and the robot’s location to 
get the corresponding r-state (through the first order 
predicates). 
Use  the robot’s speed  and  angle  to get  the corre-
sponding r-action. 
DB ← DB∪{r-state, r-action}. % Each register in DB 
contains an r-state with its corresponding r-action 

     End for 
End for 

 
Algorithm 2. rQ-learning algorithm 

Require: DB, r-state-r-action pairs database. 

Ensure: function Q: discrete actions relational control policy. 

   Initialize Q (St, At) arbitrarily 

   Repeat 

st ← robot’s sensors readings values.  

Transform st into its corresponding natural landmarks and 
into the corresponding robot’s location. 
St ← r-state (st)% Use those natural landmarks and the ro-
bot’s location to get the corresponding r-state (through the 
first order predicates). 

for each step of the episode do 

Search the r-state (St) description in DB. 

for each register in DB which contains the r-state (St) de-
scription do 

Get its corresponding r-actions 

End for 

Select an r-action At to be executed in St trough an action 
selection policy (e.g., ε-greedy). 

Execute action At, observe rt+1 and st+1 

Transform st+1 into its corresponding natural landmarks 
and into the corresponding robot’s location. 
St+1 ← r-state (st+1)% Use those natural landmarks and the 
robot’s location to get the corresponding r-state (through 
the first order predicates). 
Q(St, At) ← Q(St, At) + α(rt+ 1 + γmaxAt+1 Q(St+1, At+1) - Q(St, 
At)) 

St ← St+1 

End for 

until St is terminal 
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house-like environments. In the second stage, this dis-
crete actions policy is transformed into a continuous ac-
tions policy.  

6. TS-RRLCA Second Stage 

This second stage refines the coarse actions from the 
previously generated discrete actions policy. This is 
achieved using Locally Weighted Regression (LWR). 

The idea is to combine discrete actions’ values given 
by the policy obtained in the first stage with the action’s 
values previously observed in the traces. This way the 
robot follows the policy, developed in the first stage, but 
the actions are tuned through a LWR process. What we 
do is to detect the robot’s actual r-state, then, for this 
r-state the previously generated discrete actions policy 
determines the action to be executed (Figure 4(a)). Be-
fore performing the action, the robot searches in the DB 
for all the registers that share this same r-state description 
(Figure 4(b)). Once found, the robot gets all of the nu-
meric orientation and distance values from these registers. 
This orientation and distance values are used to perform 
a triangulation process. This process allows us to esti-
mate the relative position of the robot from previous 
traces with respect to the robot’s actual position. Once 
this position has been estimated, a weight is assigned to 
the previous traces action’s values. This weight depends 
on the distance of the robot from the traces with respect 
to the actual robot’s position (Figure 4(c)). These weights 
are used to perform the LWR that produces continuous 
r-actions (Figure 4(d)).  

The triangulation process is performed as follows. The 
robot R in the actual r-state (Figure 5(a)), senses and 
detects elements E and E’ (which can be a door, a corner, 
a wall, etc.). Each element has a relative distance (a and  
 

        
(a)                     (b) 

 

        
(c)                    (d) 

Figure 4. Continuous actions developing process, (a) r-state 
and corresponding r-action; (b) a trace segment; (c) dis-
tances and weights; (d) resulting continuous action 

   
(a)               (b)               (c) 

Figure 5. Triangulation process, (a) R robot’s r-state and 
identified elements; (b) R’robot from traces; (c) elements to 
be calculated 
 
b) and a relative angle with respect to R. The angles are 
not directly used in this triangulation process, what we 
use is the absolute difference between these angles (α). 
The robot reads from the DB all the registers that share 
the same r-state description, i.e., that have the same 
r-state discretized values. The numerical angle and dis-
tance values associated with these DB registers corre-
spond to the relative distances (a’ and b’) from the robot 
R’ in a trace relative to the same elements E and E’, and 
the corresponding angle β (Figure 5(b)). In order to 
know the distance between R and R’ (d) through this tri-
angulation process, Equations (1)-(4) are applied. 

2 2 2 cos( )EE a b ab     : Distance between E and E’. 

(1) 

 arcsin /a EE     : Angle between a’ and EE . 

(2) 

arcsin( / )a EE  : Angle between a and EE . (3) 

2 2 2 cos( )d a a aa     : Distance between R and R’. 

(4) 

These four equations give the relative distance (d) be-
tween R and R’. Once this value is calculated, a kernel is 
used to assign a weight (w). This weight is multiplied by 
the speed and angle values of the R’ robot’s r-action. The 
resulting weighted speed and angle values are then added 
to the R robot’s speed and angle values. This process is 
applied to every register read from the DB whose r-state 
description is the same as R and is repeated every time 
the robot reaches a new r-state.  

To summarize this process, each time the robot 
reaches an r-state and chooses an r-action according to 
the learned policy; it retrieves from the DB all the regis-
ters that share the same r-state. It uses the numerical val-
ues of the retrieved r-states to evaluate the relative dis-
tance of the position of the robot in a trace to the position 
of the robot in the actual r-state. Once all the distance 
values (di) are calculated we apply a Gaussian kernel 
(Equation (5)) to obtain a weight wi. We tried different 
kernels, e.g., Tricubic kernel, and results were better with 
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Gaussian kernel but further tests are needed. 
2( ) exp( )i i iw d d  : Gaussian kernel.      (5) 

Then, every weight wi is multiplied by the corre-
sponding speed and angle values (wi × speedDBi and wi × 
angleDBi) of the r-state-r-action pairs retrieved from the 
DB. The resulting values are added to the discrete 
r-action (rAt = {disc_speed, disc_angle}) values of the 
policy obtained in the first stage in order to transform 
this discrete r-action into a continuous action (Equations 
(6) and (7)) that is finally executed by the robot. This 
process is performed in real-time every time the robot 
reaches a new r-state. 

continuous_speed = disc_speed + {w1 × speedDB1} + {w2 
× speedDB2} + … + {wn × speedDBn}: LWR for develop-
ing the continuous speed.                       (6) 

continuous_angle = disc_angle + {w1 × angleDB1} + {w2 
× angleDB2} + … + {wn × angleDBn}: LWR for develop-
ing the continuous angle.                       (7) 

The weights are directly related to the distances be-
tween the robots in the actual r-state to the r-states to the 
robot in the human traces stored in the DB. The closer 
the human traces registers are to the robot’s actual posi-
tion, the higher the influence they have in transforming 
the discrete action into a continuous action. 

The main advantage of our approach is the simple and 
fast strategy to produce continuous actions policies that, 
as will be seen in the following section, are able to pro-
duce smoother and shorter paths in different environ-
ments.  

7. Experiments 

For testing purposes, two types of experiments were per-
formed: 

1) Learning Curves: In these experiments we com-
pared the number of iterations it takes our method 
TS-RRLCA to learn a policy against classical Reinforce-
ment Learning (RL) and against the rQ-learning algo-
rithm (shown in Algorithm 2) without using Behavioural 
Cloning approach, which we will refer to as Relational 
Reinforcement Learning (RRL).  

2) Performance: In these experiments we compared the 
performance of the policies learned through TS-RRLCA 
with discrete actions against the policies learned through 
TS-RRLCA with continuous actions. Particularly we tested: 
How close the tasks are to the tasks performed by the 
user and how close the tasks are from obstacles in the 
environment. 

3)Execution times. 
These experiments were carried out in simulation 

(Player/Stage [16]) and with a real robot which is an 
ActivMedia GuiaBot (www.activrobots.com). 

Both robots (simulated and real) are equipped with a 
180° front laser sensor and an array of four back sonars 
(located at –170°, –150°, 150° and 170°).  

The laser range is 8.0 m and for the sonars is 6.0 m. 
The tasks in these experiments are “navigating through 
the environment” and “following an object”. 

The policy generation process was carried out in the 
map shown in Figure 6 (Map 1 with size 15.0 m × 9.0 m). 
For each of the two tasks a set of 20 traces was generated 
by the user. For the navigation tasks, the robot and the 
goal’s global position (for the goal-position predicate) 
were calculated using the work developed in [14]. For 
the following tasks we used a second robot which orien-
tation and angle were calculated through the laser sensor. 
Figure 6 shows an example of navigation and a follow-
ing trace. 

To every set of traces, we applied our approach to ab-
stract the r-states and induce the subsets of relevant r- 
actions. Then, rQ-learning was applied to learn the poli- 
cies. For generating the policies, Q-values were initialized 
to –1, ε = 0.1, γ = 0.9 and α = 0.1. Positive reinforcement, r 
(+100) was given when reaching a goal (within 0.5 m), 
negative reinforcement (–20) was given when the robot 
hits an element and no reward value was given otherwise 
(0). 

 

 
(a) 

 

 
(b) 

Figure 6. Traces examples, (a) navigation trace; (b) follow-
ing trace 
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7.1 Learning Curves 

Our method (TS-RRLCA) was compared in the number of 
iterations it takes to develop a control policy, against 
classical reinforcement learning (RL) and against the 
rQ-learning algorithm described in Algorithm 2, consid-
ering all the possible r-actions (the 8 r-actions, shown in 
Section 4) per r-state (RRL).  

For developing the “navigating through the environ-
ment” policy with RL we discretized the state and action 
space as follows: the training Map 1, depicted in Figure 6, 
was divided in states of 25 cm2. Since this map’s size is 
15 m × 9 m, the number of states is 2,160. In every state, 
one of the next 8 actions can be chosen to get into a new 
state which gives a total of 17,280 state-action pairs (This 
set of 8 actions correspond to the set of 8 r-actions we 
used in our rQ-learning algorithm).  

1) front: robot goes forward 25 cm. 
2) back: robot goes back 25 cm. 
3) slight-right: robot turns –45°. 
4) right: robot turns –90°. 
5) far-right: robot turns –135°. 
6) slight-left: robot turns 45°. 
7) left: robot turns 90°. 
8) far-left: robot turns 135°. 
For developing the navigation policy with RRL we 

have 655 r-states with 8 possible r-actions for each r-state, 
this gives a total of 5,240 possible r-state-r-action pairs. 
The number of r-states corresponds to the total number of 
r-states in which the training map can be divided.  

For developing the navigation policy with TS-RRLCA 
we used 20 navigation traces from which 934 r-state- 
r-action pairs were obtained. As can be seen, by using 
our Behavioural Cloning approach we significantly re-
duced the number of state-action pairs to consider in the 
learning process. 

In each trace, every time our program performed a ro-
bot’s sensors reading, which includes laser, sonars and 
odometer, we first transformed the laser and sonar read-
ings into natural landmarks (as described in Section 3). 
These natural landmarks are sent to the predicates to 
generate the corresponding r-state, the corresponding 
r-action is generated by using the odometer’s readings (as 
described in Section 4). This gives an r-state-r-action pair 
such as the one shown in Table 2.  

Figure 7(a) shows the learning curves of RL, RRL and 
TS-RRLCA for a navigation policy. They show the ac-
cumulated Q-values every 1,000 iterations. As can be 
seen from this figure, the number of iterations for devel-
oping an acceptable navigation policy with TS-RRLCA is 
very low when compared to RRL and is significantly 
lower when compared to RL. It should be noted that the 
navigation policy learned with RL only works for going 
to a single destination state while the policies learned 
with our relational representation can be used to reach 

 
(a) 

 

 
(b) 

Figure 7. Learning curves comparison, (a) learning curves 
for the navigation policies; (b) learning curves for the fol-
lowing policies 
 
several destination places in different environments. 

For developing the “following an object” policy, the 
number of r-state-r-action pairs using our relational rep-
resentation (RRL) is 3,149, while the number of r-state- 
r-action pairs using the same representation but with be-
havioural cloning (TS-RRLCA) is 1,406, obtained from 
20 traces. For the following policy we only compared our 
approach against RRL. 

Figure 7(b) shows the learning curves of these two 
methods. As can be seen the number of iterations that our 
method needs to generate an acceptable following policy 
is much lower than RRL.  

To generate the continuous actions policies, LWR was 
applied using the Gaussian kernel for estimating weights. 
In the next section we compare the traces performed with 
the discrete actions policy with those using continuous 
actions. 

7.2 Performance Tests 

Once the policies were learned, experiments were exe-
cuted in the training map with different goal positions and 
in two new and unknown environments for the robot (Map 
2 shown in Figure 8 with size 20.0 m × 15.0 m and Map 3, 
shown Figure 9, which corresponds to the real robot’s 
environment whose size is 8.0 m × 8.0 m). A total of 120  
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(a)                          (b) 

 

  
(c)                          (d) 

Figure 8. Navigation and following tasks performed with 
the policies learned with TS-RRLCA, (a) navigation task 
with discrete actions, Map 1; (b) navigation task with con-
tinuous actions, Map 1; (c) following task with discrete ac-
tions, Map 2; (d) following task with continuous actions, 
Map 2 
 

   
(a)               (b)                (c) 

 

   
(d)               (e)                (f) 

Figure 9. Navigation and following tasks examples from 
Map 3, (a) navigation task with discrete actions; (b) naviga-
tion task with continuous actions; (c) navigation task per-
formed by user; (d) following task with discrete actions; (e) 
Following task with continuous actions; (f) following task 
performed by user 
 
experiments were performed: 10 different navigation and 
10 following tasks in each map, each of these tasks were 
executed first with the discrete actions policy from the 
first stage and then with the continuous actions policy 
from the second stage. Each task has a different distance 
to cover and required the robot to traverse through dif-
ferent places. The minimum distance was 2 m. (Manhat-
tan distance), and it was gradually increased up to 18 m. 

Figure 8 shows navigation (on the top) and a following 
task (on the bottom) performed with discrete and con-

tinuous actions policies respectively. 
Figure 9 shows navigation and a following task per-

formed with the real robot, with the discrete and with the 
continuous actions policy. 

As we only use the r-state-r-action pairs from the traces 
developed by the user in Map 1 (as the ones shown in 
Figure 6), when moving the robot to the new environ-
ments (Map 2 and Map 3), sometimes, it was not able to 
match the new map’s r-state with one of the previously 
visited states by the user in the traces examples. So when 
the robot reached an unseen r-state, it asked the user for 
guidance. Through a joystick, the user indicates the robot 
which r-action to execute in the unseen r-state and the 
robot saves this new r-state-r-action pair in the DB. Once 
the robot reaches a known r-state, it continues its task. As 
the number of experiments increased in these new maps, 
the number of unseen r-states was reduced. Table 3 shows 
the number of times the robot asked for guidance in each 
map and with each policy. 

Figure 10(a) shows results in terms of the quality of the 
performed tasks with the real robot. This comparison is 
made against tasks performed by humans (For Figures 
10(a), 10(b) and 11, the following acronyms are used, 
NPDA: Navigation Policy with Discrete Actions, NPCA: 
Navigation Policy with Continuous Actions, FPDA: Fol-
lowing Policy with Discrete Actions and FPCA: Follow-
ing Policy with Continuous Actions).  

All of the tasks performed in the experiments with the 
real robot, were also performed by a human using a joy-
stick (Figures 9(c) and 9(f)), and logs of the paths were 
saved. The graphic shows the normalized quadratic error 
between these logs and the trajectories followed by the 
robot with the learned policy. 

Figure 10(b) shows results in terms of how closer the 
robot gets to obstacles. This comparison is made using the 
work developed in [17]. In that work, values were given to 
the robot accordingly to its proximity to objects or walls. 
The closer the robot is to an object or wall the higher cost 
it is given. Values were given as follows: if the robot is 
very close to an object (between 0 m and 0.3 m) a value of 
–100 is given, if the robot is close to an object (between 
0.3 m and 1.0 m) a value of –3 is given, if the robot is near 
an object (between 1.0 m and 2.0 m) a value of –1 is given, 
otherwise a value of 0 is given. As can be seen in the 
figure, quadratic error and penalty values for continuous 
actions policies are lower than those with discrete actions. 

Policies developed with this method allow a close-to- 
human execution of the tasks and tend to use the available 
free space in the environment. 

7.3 Execution Times 

Execution times with the real robot were also registered. 
We compared the time that takes to the robot to perform a 
tasks with discrete actions against tasks performed with  
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Table 3. Number of times the robot asked for guidance in 
the experiments 

Policy type Map 1 Map 2 Map 3 Total 

Navigation 2 6 14 22 

Following 7 15 27 49 

 

 
(a) 

 

 
(b) 

Figure 10. Navigation and following results of the tasks 
performed by the real robot, (a) quadratic error values; (b) 
penalty values 
 
continuous actions. Every navigating or following ex- 
periment, that we carried out, was performed first with 
discrete actions and then with continuous actions.  

As can be seen in Figure 11, continuous actions poli-
cies execute faster paths than the discrete actions policy 
despite our triangulation and LWR processes.  

8. Discussion 

In this work, we introduced a method for teaching a robot 
how to perform a new task from human examples. Ex-
perimentally we showed that tasks learned with this 
method and performed by the robot are very similar to  

 

Figure 11. Execution times results 
 
those tasks when performed by humans. Our two-stage 
method learns, in the first stage, a rough control policy  
which, in the second stage, is refined, by means of Locally 
Weighted Regression (LWR), to perform continuous ac-
tions. Given the nature of our method we can not guar-
anteed to generate optimal policies. There are two reasons 
why this can happen: 1) the actions performed by the user 
in the traces may not part of the optimal policy. In this 
case, the algorithm will follow the best policy given the 
known actions but will not be able to generate an optimal 
policy. 2) The LWR approach can take the robot to states 
that are not part of the optimal policy, even if they are 
smoother and closer to the user’s paths. This has not rep-
resented a problem in the experiments that we performed. 

With the Behavioural Cloning approach we observed 
around a 75% reduction in the state-action space. This 
reduction depends on the traces given by the user and on 
the training environment. In a hypothetical optimal case, 
where a user always performs the same action in the same 
state, the system only requires to store one action per state. 
This, however, is very unlikely to happen due to the con-
tinuous state and action space and the uncertainty in the 
outcomes of the actions perform with a robot. 

9. Conclusions and Future Work 

In this paper we described an approach that automatically 
transformed in real-time low-level sensor information into 
a relational representation. We used traces provided by a 
user to constraint the number of possible actions per state 
and use a reinforcement learning algorithm over this re-
lational representation and restricted state-action space to 
learn in a few iterations a policy. Once a policy is learned 
we used LWR to produce a continuous actions policy in 
real time. It is shown that the learned policies with con-
tinuous actions are more similar to those performed by 
users (smoother), and are safer and faster than the policies 
obtained with discrete actions. Our relational policies are 
expressed in terms of more natural descriptions, such as 
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rooms, corridors, doors, walls, etc., and can be re-used for 
different tasks and on different house or office-like envi-
ronments. The policies were learned on a simulated en-
vironment and later tested on a different simulated envi-
ronment and on an environment with a real robot with 
very promising results. 

There are several future research directions that we are 
considering. In particular, we would like to include an 
exploration strategy to identify non-visited states to com-
plete the traces provided by the user. We are also explor-
ing the use of voice commands to indicate the robot which 
action to take when it reaches an unseen state. 
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