
J. Intelligent Learning Systems & Applications, 2010, 2: 69-79
doi:10.4236/jilsa.2010.22010 Published Online May 2010 (http://www.SciRP.org/journal/jilsa)

Copyright © 2010 SciRes. JILSA

69

Relational Reinforcement Learning with
Continuous Actions by Combining Behavioural
Cloning and Locally Weighted Regression

Julio H. Zaragoza, Eduardo F. Morales

National Institute of Astrophysics, Optics and Electronics, Computer Science Department, Tonantzintla, México.
Email: {jzaragoza, emorales}@inaoep.mx

Received October 30th, 2009; revised January 10th, 2010; accepted January 30th, 2010.

ABSTRACT

Reinforcement Learning is a commonly used technique for learning tasks in robotics, however, traditional algorithms
are unable to handle large amounts of data coming from the robot’s sensors, require long training times, and use dis-
crete actions. This work introduces TS-RRLCA, a two stage method to tackle these problems. In the first stage, low-level
data coming from the robot’s sensors is transformed into a more natural, relational representation based on rooms,
walls, corners, doors and obstacles, significantly reducing the state space. We use this representation along with Be-
havioural Cloning, i.e., traces provided by the user; to learn, in few iterations, a relational control policy with discrete
actions which can be re-used in different environments. In the second stage, we use Locally Weighted Regression to
transform the initial policy into a continuous actions policy. We tested our approach in simulation and with a real ser-
vice robot on different environments for different navigation and following tasks. Results show how the policies can be
used on different domains and perform smoother, faster and shorter paths than the original discrete actions policies.

Keywords: Relational Reinforcement Learning, Behavioural Cloning, Continuous Actions, Robotics

1. Introduction

Nowadays it is possible to find service robots for many
different tasks like entertainment, assistance, maintenance,
cleanse, transport, guidance, etc. Due to the wide range
of services that they provide, the incorporation of service
robots in places like houses and offices has increased in
recent years. Their complete incorporation and accep-
tance, however, will depend on their capability to learn
new tasks. Unfortunately, programming service robots for
learning new tasks is a complex, specialized and time
consuming process.

An alternative and more attractive approach is to show
the robot how to perform a task, rather than trying to
program it, and let the robot to learn the fine details of
how to perform the task. This is the approach that we
follow on this paper.

Reinforcement Learning (RL) [1] has been widely used
and suggested as a good candidate for learning tasks in
robotics, e.g., [2-9]. This is mainly because it allows an
agent, i.e., the robot, to “autonomously” develop a con-
trol policy for performing a new task while interacting
with its environment. The robot only needs to know the

goal of the task, i.e., the final state, and a set of possible
actions associated with each state.

The use and application of traditional RL techniques
however, has been hampered by four main aspects: 1)
vast amount of data produced by the robot’s sensors, 2)
large search spaces, 3) the use of discrete actions, and 4)
the inability to re-use previously learned policies in new,
although related, tasks.

Robots are normally equipped with laser range sensors,
rings of sonars, cameras, etc., all of which produce a
large number of readings at high sample rates creating
problems to many machine learning algorithms.

Large search spaces, on the other hand, produce very
long training times which is a problem for service robots
where the state space is continuous and a description of a
state may involve several variables. Researchers have
proposed different strategies to deal with continuous state
and action spaces, normally based on a discretization of
the state space with discrete actions or with function ap-
proximation techniques. However, discrete actions pro-
duce unnatural movements and slow paths for a robot
and function approximation techniques tend to be com-

Relational Reinforcement Learning with Continuous Actions by Combining 70
Behavioural Cloning and Locally Weighted Regression

putationally expensive. Also, in many approaches, once a
policy has been learned to solve a particular task, it can-
not be re-used on similar tasks.

In this paper, TS-RRLCA (Two-Stage Relational Rein-
forcement Learning with Continuous Actions), a two-
stage method that tackles these problems, is presented. In
the first stage, low-level information from the robot’s
sensors is transformed into a relational representation to
characterize a set of states describing the robot’s envi-
ronment. With these relational states we applied a variant
of the Q-learning algorithm to develop a relational policy
with discrete actions. It is shown how the policies learned
with this representation framework are transferable to
other similar domains without further learning. We also
use Behavioural Cloning [10], i.e., human traces of the
task, to consider only a subset of the possible actions per
state, accelerating the policy learning process and ob-
taining a relational control policy with discrete actions in
a few iterations. In the second stage, the learned policy is
transformed into a relational policy with continuous ac-
tions through a fast Locally Weighted Regression (LWR)
process.

The learned policies were successfully applied to a
simulated and a real service robot for navigation and fol-
lowing tasks with different scenarios and goals. Results
show that the continuous actions policies are able to
produce smoother, shorter, faster and more similar paths
to those produced by humans than the original relational
discrete actions policies.

This paper is organized as follows. Section 2 describes
related work. Section 3 introduces a process to reduce the
data coming from the robot’s sensors. Section 4 describes
our relational representation to characterize states and
actions. Sections 5 and 6 describe, respectively, the first
and second stages of the proposed method. Section 7
shows experiments and results, Section 8 presents some
discussion about our method and the experimental results,
and Section 9 concludes and suggests future research
directions.

2. Related Work

There is a vast amount of literature describing RL tech-
niques in robotics. In this section we only review the
most closely related work to our proposal.

In [8] a method to build relational macros for transfer
learning in robot’s navigation tasks is introduced. A
macro consists of a finite state machine, i.e., a set of
nodes along with rulesets for transitions and action
choices. In [11], a proposal to learn relational decision
trees as abstract navigation strategies from example paths
in presented. These two approaches use relational repre-
sentations to transfer learned knowledge and use training
examples to speed up learning, however, they only con-
sider discrete actions.

In [9], the authors introduced a method that temporar-
ily drives a robot which follows certain initial policy
while some user commands play the role of training input
to the learning component, which optimizes the autono-
mous control policy for the current task. In [2], a robot is
tele-operated to learn sequences of state-action pairs that
show how to perform a task. These methods reduce the
computational costs and times for developing its control
scheme, but they use discrete actions and are unable to
transfer learned knowledge.

An alternative to represent continuous actions is to ap-
proximate a continuous function over the state space. The
work developed in [12] is a Neural Network coupled
with an interpolation technique that approximates Q-
values to find a continuous function over all the search
space. In [13], the authors use Gaussian Processes for
learning a probabilistic distribution for a robot navigation
problem. The main drawback of these methods is the
computational costs and the long training times as they
try to generate a continuous function over all of the
search space.

Our method learns, through a relational representation,
relational discrete actions policies able to transfer know-
ledge between similar domains. We also speed up and
simplify the learning process by using traces provided by
the user. Finally we use a fast LWR to transform the
original discrete actions policy into a continuous actions
policy. In the following sections we describe in detail the
proposed method.

3. Natural Landmarks Representation

A robot senses and returns large amounts of data read-
ings coming from its sensors while performing a task. In
order to produce a smaller set of meaningful information
TS-RRLCA uses a process based on [14,15] In [14] the
authors described a process able to identify three kinds of
natural landmarks through laser sensor readings: 1) dis-
continuities, defined as an abrupt variation in the meas-
ured distance of two consecutive laser readings (Figure
1(a)), 2) walls, identified using the Hough transform
(Figure 1(c)), and 3) corners, defined as the location
where two walls intersect and form an angle (Figure
1(d)). We also add obstacles identified through sonars
and defined as any detected object within certain range
(Figure 1(e)).

A natural landmark is represented by a tuple of four
attributes: (DL, θL, A, T). DL and θL are, respectively,
the relative distance and orientation from the landmark to
the robot. T is the type of landmark: l for left discontinu-
ity, r for right discontinuity (see Figure 1(b)), c for cor-
ner, w for wall and o for obstacle. A is a distinctive at-
tribute and its value depends on the type of landmark; for
discontinuities A is depth (dep) and for walls A is its

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 71
Behavioural Cloning and Locally Weighted Regression

(a) (b) (c)

(d) (e)

Figure 1. Natural landmarks types and associated attributes,
(a) discontinuity detection; (b) discontinuity Types; (c) wall
detection; (d) corner detection; (e) wall detection

length (len), for all of the other landmarks the A attribute
is not used.

In [15] the data from laser readings is used to feed a
clustering-based process which is able to identify the
robot’s actual location such as room, corridor and/or in-
tersection (the location where rooms and corridors meet).
Figure 2 shows examples of the resulting location classi-
fication process.

Table 1 shows an example of the data after applying
these processes to the laser and sonar readings from Fig-
ure 3. The robot’s actual location in this case is in-room.

The natural landmarks along with the robot’s actual
location are used to characterize the relational states that
describe the environment.

4. Relational Representations for States and
Actions

A relational representation for states and actions has the
advantage that it can produce relational policies that can
be re-used in other, although similar, domains without
any further learning. The idea it to represent states as sets
of properties that can be used to characterize a particular
situation which may be common to other states. For ex-
ample, suppose the robot has some predicates that are
able to recognize a room from its sensors’ readings. If the
robot has learned a policy to exit a room, then it can ap-
ply it to exit any recognizable room regardless of the
current environment.

A relational state (r-state) is a conjunction of first or-
der predicates. Our states are characterized by the fol-
lowing predicates which receive as parameters a set of
values such as those shown in Table 1.

1) place: This predicate returns the robot’s location,
which can be in-room, in-door, in-corridor and in-
intersection.

(a) (b) (c)

Figure 2. Locations detected through a clustering processes,
(a) room; (b) intersection; (c) corridor

Table 1. Identified natural landmarks from the sensor’s
readings from Figure 3

N DL θL A T

1 0.92 -17.60 4.80 r

2 1.62 -7.54 3.00 l

3 1.78 17.60 2.39 l

4 0.87 -35.70 1.51 w

5 4.62 -8.55 1.06 w

6 2.91 -6.54 1.88 w

7 1.73 23.63 0.53 w

8 2.13 53.80 2.38 w

9 5.79 -14.58 0.00 c

10 2.30 31.68 0.00 c

11 1.68 22.33 0.00 c

12 1.87 -170.00 0.00 o

13 1.63 -150.00 0.00 o

14 1.22 170.00 0.00 o

15 1.43 150.00 0.00 o

Figure 3. Robot sensing its environment through laser and
sonar sensors and corresponding natural landmarks

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 72
Behavioural Cloning and Locally Weighted Regression

2) doors-detected: This predicate returns the orienta-
tion and distance to doors. A door is characterized by
identifying a right discontinuity (r) followed by a left
discontinuity (l) from the natural landmarks. The door’s
orientation angle and distance values are calculated by
averaging the values of the right and left discontinuities
angles and distances. The discretized values used for
door orientation are: right (door’s angle between –67.5°
and –112.5°), left (67.5° to 112.5°), front (22.5° to
–22.5°), back (157.5° to –157.5°), right-back (–112.5° to
–157.5°), right-front (–22.5° to –67.5°), left-back (112.5°
to 157.5°) and left-front (22.5° to 67.5°). The discretized
values used for distance are: hit (door’s distance between
0 m and 0.3 m), close (0.3 m to 1.5 m), near (1.5 m to
4.0 m) and far (door’s distance > 4.0 m).

For example, if the following discontinuities are ob-
tained from the robot’s sensors (shown in Table 1: [0.92,
–17.60, 4.80, r], [1.62, –7.54, 3.00, l]), the following
predicate is produced:

doors-detected ([front, close, –12.57, 1.27])
This predicate corresponds to the orientation and dis-

tance descriptions of a detected door (shown in Figure 3),
and for every pair of right and left discontinuities a list
with these orientation and distance descriptions is gener-
ated.

3) walls-detected: This predicate returns the length,
orientation and distance to walls (type w landmarks).
Possible values for wall’s length are: small (length be-
tween 0.15 m and 1.5 m), medium (1.5 m to 4.0 m) and
large (wall’s size or length > 4.0 m). The discrete values
used for orientation and distance are the same as with
doors and the same goes for predicates corners-detected
and obstacles-detected described below.

4) corners-detected: This predicate returns the orienta-
tion and distance to corners (type c landmarks).

5) obstacles-detected: This predicate returns the orien-
tation and distance to obstacles (type o landmarks).

6) goal-position: This predicate returns the relative ori-
entation and distance between the robot and the current
goal. Receives as parameter the robot’s current position
and the goal’s current position, though a trigonometry
process, the orientation and distance values are calcu-
lated and then discretized as same as with doors.

7) goal-reached: This predicate indicates if the robot is
in its goal position. Possible values are true or false.

The previous predicates tell the robot if it is in a room,
a corridor or an intersection, detect walls, corners, doors,
obstacles and corridors and give a rough estimate of the
direction and distance to the goal. Analogous to r-states,
r-actions are conjunctions of the following first order
logic predicates that receive as parameters the odome-
ter’s speed and angle readings.

8) go: This predicate returns the robot’s actual moving

action. Its possible values are front (speed > 0.1 m/s), nil
(–0.1 m/s < speed < 0.1 m/s) and back (speed < –0.1
m/s).

9) turn: This predicate returns the robot’s actual turn-
ing angle. Its possible values are slight-right (–45° < an-
gle < 0°), right (–135° < angle ≤ –45°), far-right (angle
≤ –135°), slight-left (45° > angle > 0°), left (135° > angle
≥ 45°), far-left (angle ≥ 135°) and nil (angle = 0°).

Table 2 shows an r-state-r-action pair generated with
the previous predicates which corresponds to the values
from Table 1. As can be seen, some of the r-state predi-
cates (doors, walls, corners and obstacles detection) be-
sides returning the nominal descriptions; they also return
the numerical values of every detected element. The
r-action predicates also return the odometer’s speed and
the robot’s turning angle. These numerical values are
used in the second stage of the method as described in
Section 6. The discretized or nominal values, i.e., the
r-states and r-actions descriptions, are used to learn a
relational policy through rQ-learning as described below.

5. TS-RRLCA First Stage

TS-RRLCA starts with a set of human traces of the task
that we want the robot to learn. A trace Τk = {fk1, fk2, …,
fkn} is a log of all the odometer, laser and sonar sensor’s
readings of the robot while it is performing a particular
task. A trace-log is divided in frames; every frame is a
register with all the low-level values of the robot’s sen-
sors (fkj = {laser1 = 2.25, laser2 = 2.27, laser3 = 2.29, …,
sonar1 = 3.02, sonar2 = 3.12, sonar3 = 3.46, …, speed =
0.48, angle = 87.5}) at a particular time.

Once a set of traces (Τ1, Τ2, ..., Τm) has been given to
TS-RRLCA, every frame in the traces, is transformed

Table 2. Resulting r-state-r-action pair from the values in
Table 1

r-state r-action

Place (in-room), go (nil, 0.0),

doors-detected ([[front, close, –12.57, 1.27]]), turn (right, 92).

walls-detected ([[right-front, close, medium, –35.7,
0.87], [front, far, small, –8.55, 4.62],
[front, near, medium, –6.54, 2.91],
[left-front, near, small, 23.63, 1.73], [left-front,
near, medium, 53.80, 2.13]]),

corners-detected ([[front, far, –14.58, 5.79],
[front, near, 31.68, 2.30],
[left-front, near, 22.33, 1.68]]),

obstacles-detected ([[back, near, –170.00, 1.87],
[right-back, near, –150.00, 1.63],
[back, close, 170.00, 1.22],
[left-back, close, 150.00, 1.43]]),

goal-position ([right-front, far]),

goal-reached (false).

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 73
Behavioural Cloning and Locally Weighted Regression

into natural landmarks along with the robot’s location.
This transformed frames are given to the first order
predicates to evaluate the set of relations, i.e., generate
the corresponding r-state and r-action (as the one shown
in Table 2). By doing this, every frame from the traces
corresponds to an r-state-r-action pair and every one of
these pairs is stored in a database (DB).

Algorithm 1 gives the pseudo-code for this Behav-
ioural Cloning (BC) approach. At the end of this BC ap-
proach, the DB contains r-state-r-action pairs correspond-
ing to all the frames in the set of traces.

As the traces correspond to different examples of the
same task and as they might have been generated by dif-
ferent users, there can be several r-actions associated to
the same r-state. RL is used to develop a control policy
that selects the best r-action in each r-state.

5.1 Relational Reinforcement Learning

The RL algorithm selects the r-action that produces the
greatest expected accumulated reward among the possi-
ble r-actions in each r-state. Since we only used informa-
tion from traces only a subset of all the possible r-actions,
for every r-state, are considered which significantly re-
duces the search space. In a classical reinforcement
learning framework a set of actions (A) is predefined for
all of the possible states (S). Every time the agent reaches
a new state, it must select one action from all of the pos-
sible actions in S to reach a new state. In our RL ap-
proach when the robot reaches a new r-state, it chooses
one action from a subset of r-actions performed in that
r-state in the traces.

In order to execute actions, each time the robot reaches
an r-state, it retrieves from the DB the associated r-ac-
tions. It chooses one according to its policy and the asso-
ciated nominal value of the selected r-action is trans-
formed into one of the following values:

1) For the predicate go, if the description of the
r-action is front the corresponding value is 0.5 m/s, for
back the corresponding value is –0.5 m/s, and for nil the
value is 0.0 m/s.

2) For the predicate turn the values are: slight-right =
–45°, right = –90°, far-right = –135°, slight-left = 45°,
left = 90°, far-left = 135° and nil = 0°.

Once the r-action has been chosen and executed the
robot gets into a new r-state and the previous process is
repeated until reaching a final r-state.

Algorithm 2 gives the pseudo-code for this rQ-learning
approach. This is very similar to the Q-learning algo-
rithm, except that the states and actions are characterized
by relations.

By using only the r-state-r-action pairs from the traces
(stored in the DB) our policy generation process is very
fast and thanks to our relational representation, policies
can be transferred to different, although similar office or

Algorithm 1. Behavioural cloning algorithm

Require: T1, T2, …Tn: Set of n traces with examples of the task the
robot has to learn.

Ensure: DB: r-state-r-action pairs database.

 for i = 1 to n do

 k ← number of frames in the trace i

 for j = 1 to k do

Transform frameij (frame j from trace i) into their cor-
responding natural landmarks and into the correspond-
ing robot’s location.
Use the natural landmarks and the robot’s location to
get the corresponding r-state (through the first order
predicates).
Use the robot’s speed and angle to get the corre-
sponding r-action.
DB ← DB∪{r-state, r-action}. % Each register in DB
contains an r-state with its corresponding r-action

 End for
End for

Algorithm 2. rQ-learning algorithm

Require: DB, r-state-r-action pairs database.

Ensure: function Q: discrete actions relational control policy.

 Initialize Q (St, At) arbitrarily

 Repeat

st ← robot’s sensors readings values.

Transform st into its corresponding natural landmarks and
into the corresponding robot’s location.
St ← r-state (st)% Use those natural landmarks and the ro-
bot’s location to get the corresponding r-state (through the
first order predicates).

for each step of the episode do

Search the r-state (St) description in DB.

for each register in DB which contains the r-state (St) de-
scription do

Get its corresponding r-actions

End for

Select an r-action At to be executed in St trough an action
selection policy (e.g., ε-greedy).

Execute action At, observe rt+1 and st+1

Transform st+1 into its corresponding natural landmarks
and into the corresponding robot’s location.
St+1 ← r-state (st+1)% Use those natural landmarks and the
robot’s location to get the corresponding r-state (through
the first order predicates).
Q(St, At) ← Q(St, At) + α(rt+ 1 + γmaxAt+1 Q(St+1, At+1) - Q(St,
At))

St ← St+1

End for

until St is terminal

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 74
Behavioural Cloning and Locally Weighted Regression

house-like environments. In the second stage, this dis-
crete actions policy is transformed into a continuous ac-
tions policy.

6. TS-RRLCA Second Stage

This second stage refines the coarse actions from the
previously generated discrete actions policy. This is
achieved using Locally Weighted Regression (LWR).

The idea is to combine discrete actions’ values given
by the policy obtained in the first stage with the action’s
values previously observed in the traces. This way the
robot follows the policy, developed in the first stage, but
the actions are tuned through a LWR process. What we
do is to detect the robot’s actual r-state, then, for this
r-state the previously generated discrete actions policy
determines the action to be executed (Figure 4(a)). Be-
fore performing the action, the robot searches in the DB
for all the registers that share this same r-state description
(Figure 4(b)). Once found, the robot gets all of the nu-
meric orientation and distance values from these registers.
This orientation and distance values are used to perform
a triangulation process. This process allows us to esti-
mate the relative position of the robot from previous
traces with respect to the robot’s actual position. Once
this position has been estimated, a weight is assigned to
the previous traces action’s values. This weight depends
on the distance of the robot from the traces with respect
to the actual robot’s position (Figure 4(c)). These weights
are used to perform the LWR that produces continuous
r-actions (Figure 4(d)).

The triangulation process is performed as follows. The
robot R in the actual r-state (Figure 5(a)), senses and
detects elements E and E’ (which can be a door, a corner,
a wall, etc.). Each element has a relative distance (a and

(a) (b)

(c) (d)

Figure 4. Continuous actions developing process, (a) r-state
and corresponding r-action; (b) a trace segment; (c) dis-
tances and weights; (d) resulting continuous action

(a) (b) (c)

Figure 5. Triangulation process, (a) R robot’s r-state and
identified elements; (b) R’robot from traces; (c) elements to
be calculated

b) and a relative angle with respect to R. The angles are
not directly used in this triangulation process, what we
use is the absolute difference between these angles (α).
The robot reads from the DB all the registers that share
the same r-state description, i.e., that have the same
r-state discretized values. The numerical angle and dis-
tance values associated with these DB registers corre-
spond to the relative distances (a’ and b’) from the robot
R’ in a trace relative to the same elements E and E’, and
the corresponding angle β (Figure 5(b)). In order to
know the distance between R and R’ (d) through this tri-
angulation process, Equations (1)-(4) are applied.

2 2 2 cos()EE a b ab     : Distance between E and E’.

(1)

 arcsin /a EE     : Angle between a’ and EE .

(2)

arcsin(/)a EE  : Angle between a and EE . (3)

2 2 2 cos()d a a aa     : Distance between R and R’.

(4)

These four equations give the relative distance (d) be-
tween R and R’. Once this value is calculated, a kernel is
used to assign a weight (w). This weight is multiplied by
the speed and angle values of the R’ robot’s r-action. The
resulting weighted speed and angle values are then added
to the R robot’s speed and angle values. This process is
applied to every register read from the DB whose r-state
description is the same as R and is repeated every time
the robot reaches a new r-state.

To summarize this process, each time the robot
reaches an r-state and chooses an r-action according to
the learned policy; it retrieves from the DB all the regis-
ters that share the same r-state. It uses the numerical val-
ues of the retrieved r-states to evaluate the relative dis-
tance of the position of the robot in a trace to the position
of the robot in the actual r-state. Once all the distance
values (di) are calculated we apply a Gaussian kernel
(Equation (5)) to obtain a weight wi. We tried different
kernels, e.g., Tricubic kernel, and results were better with

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 75
Behavioural Cloning and Locally Weighted Regression

Gaussian kernel but further tests are needed.
2() exp()i i iw d d  : Gaussian kernel. (5)

Then, every weight wi is multiplied by the corre-
sponding speed and angle values (wi × speedDBi and wi ×
angleDBi) of the r-state-r-action pairs retrieved from the
DB. The resulting values are added to the discrete
r-action (rAt = {disc_speed, disc_angle}) values of the
policy obtained in the first stage in order to transform
this discrete r-action into a continuous action (Equations
(6) and (7)) that is finally executed by the robot. This
process is performed in real-time every time the robot
reaches a new r-state.

continuous_speed = disc_speed + {w1 × speedDB1} + {w2
× speedDB2} + … + {wn × speedDBn}: LWR for develop-
ing the continuous speed. (6)

continuous_angle = disc_angle + {w1 × angleDB1} + {w2
× angleDB2} + … + {wn × angleDBn}: LWR for develop-
ing the continuous angle. (7)

The weights are directly related to the distances be-
tween the robots in the actual r-state to the r-states to the
robot in the human traces stored in the DB. The closer
the human traces registers are to the robot’s actual posi-
tion, the higher the influence they have in transforming
the discrete action into a continuous action.

The main advantage of our approach is the simple and
fast strategy to produce continuous actions policies that,
as will be seen in the following section, are able to pro-
duce smoother and shorter paths in different environ-
ments.

7. Experiments

For testing purposes, two types of experiments were per-
formed:

1) Learning Curves: In these experiments we com-
pared the number of iterations it takes our method
TS-RRLCA to learn a policy against classical Reinforce-
ment Learning (RL) and against the rQ-learning algo-
rithm (shown in Algorithm 2) without using Behavioural
Cloning approach, which we will refer to as Relational
Reinforcement Learning (RRL).

2) Performance: In these experiments we compared the
performance of the policies learned through TS-RRLCA
with discrete actions against the policies learned through
TS-RRLCA with continuous actions. Particularly we tested:
How close the tasks are to the tasks performed by the
user and how close the tasks are from obstacles in the
environment.

3)Execution times.
These experiments were carried out in simulation

(Player/Stage [16]) and with a real robot which is an
ActivMedia GuiaBot (www.activrobots.com).

Both robots (simulated and real) are equipped with a
180° front laser sensor and an array of four back sonars
(located at –170°, –150°, 150° and 170°).

The laser range is 8.0 m and for the sonars is 6.0 m.
The tasks in these experiments are “navigating through
the environment” and “following an object”.

The policy generation process was carried out in the
map shown in Figure 6 (Map 1 with size 15.0 m × 9.0 m).
For each of the two tasks a set of 20 traces was generated
by the user. For the navigation tasks, the robot and the
goal’s global position (for the goal-position predicate)
were calculated using the work developed in [14]. For
the following tasks we used a second robot which orien-
tation and angle were calculated through the laser sensor.
Figure 6 shows an example of navigation and a follow-
ing trace.

To every set of traces, we applied our approach to ab-
stract the r-states and induce the subsets of relevant r-
actions. Then, rQ-learning was applied to learn the poli-
cies. For generating the policies, Q-values were initialized
to –1, ε = 0.1, γ = 0.9 and α = 0.1. Positive reinforcement, r
(+100) was given when reaching a goal (within 0.5 m),
negative reinforcement (–20) was given when the robot
hits an element and no reward value was given otherwise
(0).

(a)

(b)

Figure 6. Traces examples, (a) navigation trace; (b) follow-
ing trace

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 76
Behavioural Cloning and Locally Weighted Regression

7.1 Learning Curves

Our method (TS-RRLCA) was compared in the number of
iterations it takes to develop a control policy, against
classical reinforcement learning (RL) and against the
rQ-learning algorithm described in Algorithm 2, consid-
ering all the possible r-actions (the 8 r-actions, shown in
Section 4) per r-state (RRL).

For developing the “navigating through the environ-
ment” policy with RL we discretized the state and action
space as follows: the training Map 1, depicted in Figure 6,
was divided in states of 25 cm2. Since this map’s size is
15 m × 9 m, the number of states is 2,160. In every state,
one of the next 8 actions can be chosen to get into a new
state which gives a total of 17,280 state-action pairs (This
set of 8 actions correspond to the set of 8 r-actions we
used in our rQ-learning algorithm).

1) front: robot goes forward 25 cm.
2) back: robot goes back 25 cm.
3) slight-right: robot turns –45°.
4) right: robot turns –90°.
5) far-right: robot turns –135°.
6) slight-left: robot turns 45°.
7) left: robot turns 90°.
8) far-left: robot turns 135°.
For developing the navigation policy with RRL we

have 655 r-states with 8 possible r-actions for each r-state,
this gives a total of 5,240 possible r-state-r-action pairs.
The number of r-states corresponds to the total number of
r-states in which the training map can be divided.

For developing the navigation policy with TS-RRLCA
we used 20 navigation traces from which 934 r-state-
r-action pairs were obtained. As can be seen, by using
our Behavioural Cloning approach we significantly re-
duced the number of state-action pairs to consider in the
learning process.

In each trace, every time our program performed a ro-
bot’s sensors reading, which includes laser, sonars and
odometer, we first transformed the laser and sonar read-
ings into natural landmarks (as described in Section 3).
These natural landmarks are sent to the predicates to
generate the corresponding r-state, the corresponding
r-action is generated by using the odometer’s readings (as
described in Section 4). This gives an r-state-r-action pair
such as the one shown in Table 2.

Figure 7(a) shows the learning curves of RL, RRL and
TS-RRLCA for a navigation policy. They show the ac-
cumulated Q-values every 1,000 iterations. As can be
seen from this figure, the number of iterations for devel-
oping an acceptable navigation policy with TS-RRLCA is
very low when compared to RRL and is significantly
lower when compared to RL. It should be noted that the
navigation policy learned with RL only works for going
to a single destination state while the policies learned
with our relational representation can be used to reach

(a)

(b)

Figure 7. Learning curves comparison, (a) learning curves
for the navigation policies; (b) learning curves for the fol-
lowing policies

several destination places in different environments.

For developing the “following an object” policy, the
number of r-state-r-action pairs using our relational rep-
resentation (RRL) is 3,149, while the number of r-state-
r-action pairs using the same representation but with be-
havioural cloning (TS-RRLCA) is 1,406, obtained from
20 traces. For the following policy we only compared our
approach against RRL.

Figure 7(b) shows the learning curves of these two
methods. As can be seen the number of iterations that our
method needs to generate an acceptable following policy
is much lower than RRL.

To generate the continuous actions policies, LWR was
applied using the Gaussian kernel for estimating weights.
In the next section we compare the traces performed with
the discrete actions policy with those using continuous
actions.

7.2 Performance Tests

Once the policies were learned, experiments were exe-
cuted in the training map with different goal positions and
in two new and unknown environments for the robot (Map
2 shown in Figure 8 with size 20.0 m × 15.0 m and Map 3,
shown Figure 9, which corresponds to the real robot’s
environment whose size is 8.0 m × 8.0 m). A total of 120

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 77
Behavioural Cloning and Locally Weighted Regression

(a) (b)

(c) (d)

Figure 8. Navigation and following tasks performed with
the policies learned with TS-RRLCA, (a) navigation task
with discrete actions, Map 1; (b) navigation task with con-
tinuous actions, Map 1; (c) following task with discrete ac-
tions, Map 2; (d) following task with continuous actions,
Map 2

(a) (b) (c)

(d) (e) (f)

Figure 9. Navigation and following tasks examples from
Map 3, (a) navigation task with discrete actions; (b) naviga-
tion task with continuous actions; (c) navigation task per-
formed by user; (d) following task with discrete actions; (e)
Following task with continuous actions; (f) following task
performed by user

experiments were performed: 10 different navigation and
10 following tasks in each map, each of these tasks were
executed first with the discrete actions policy from the
first stage and then with the continuous actions policy
from the second stage. Each task has a different distance
to cover and required the robot to traverse through dif-
ferent places. The minimum distance was 2 m. (Manhat-
tan distance), and it was gradually increased up to 18 m.

Figure 8 shows navigation (on the top) and a following
task (on the bottom) performed with discrete and con-

tinuous actions policies respectively.
Figure 9 shows navigation and a following task per-

formed with the real robot, with the discrete and with the
continuous actions policy.

As we only use the r-state-r-action pairs from the traces
developed by the user in Map 1 (as the ones shown in
Figure 6), when moving the robot to the new environ-
ments (Map 2 and Map 3), sometimes, it was not able to
match the new map’s r-state with one of the previously
visited states by the user in the traces examples. So when
the robot reached an unseen r-state, it asked the user for
guidance. Through a joystick, the user indicates the robot
which r-action to execute in the unseen r-state and the
robot saves this new r-state-r-action pair in the DB. Once
the robot reaches a known r-state, it continues its task. As
the number of experiments increased in these new maps,
the number of unseen r-states was reduced. Table 3 shows
the number of times the robot asked for guidance in each
map and with each policy.

Figure 10(a) shows results in terms of the quality of the
performed tasks with the real robot. This comparison is
made against tasks performed by humans (For Figures
10(a), 10(b) and 11, the following acronyms are used,
NPDA: Navigation Policy with Discrete Actions, NPCA:
Navigation Policy with Continuous Actions, FPDA: Fol-
lowing Policy with Discrete Actions and FPCA: Follow-
ing Policy with Continuous Actions).

All of the tasks performed in the experiments with the
real robot, were also performed by a human using a joy-
stick (Figures 9(c) and 9(f)), and logs of the paths were
saved. The graphic shows the normalized quadratic error
between these logs and the trajectories followed by the
robot with the learned policy.

Figure 10(b) shows results in terms of how closer the
robot gets to obstacles. This comparison is made using the
work developed in [17]. In that work, values were given to
the robot accordingly to its proximity to objects or walls.
The closer the robot is to an object or wall the higher cost
it is given. Values were given as follows: if the robot is
very close to an object (between 0 m and 0.3 m) a value of
–100 is given, if the robot is close to an object (between
0.3 m and 1.0 m) a value of –3 is given, if the robot is near
an object (between 1.0 m and 2.0 m) a value of –1 is given,
otherwise a value of 0 is given. As can be seen in the
figure, quadratic error and penalty values for continuous
actions policies are lower than those with discrete actions.

Policies developed with this method allow a close-to-
human execution of the tasks and tend to use the available
free space in the environment.

7.3 Execution Times

Execution times with the real robot were also registered.
We compared the time that takes to the robot to perform a
tasks with discrete actions against tasks performed with

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining 78
Behavioural Cloning and Locally Weighted Regression

Table 3. Number of times the robot asked for guidance in
the experiments

Policy type Map 1 Map 2 Map 3 Total

Navigation 2 6 14 22

Following 7 15 27 49

(a)

(b)

Figure 10. Navigation and following results of the tasks
performed by the real robot, (a) quadratic error values; (b)
penalty values

continuous actions. Every navigating or following ex-
periment, that we carried out, was performed first with
discrete actions and then with continuous actions.

As can be seen in Figure 11, continuous actions poli-
cies execute faster paths than the discrete actions policy
despite our triangulation and LWR processes.

8. Discussion

In this work, we introduced a method for teaching a robot
how to perform a new task from human examples. Ex-
perimentally we showed that tasks learned with this
method and performed by the robot are very similar to

Figure 11. Execution times results

those tasks when performed by humans. Our two-stage
method learns, in the first stage, a rough control policy
which, in the second stage, is refined, by means of Locally
Weighted Regression (LWR), to perform continuous ac-
tions. Given the nature of our method we can not guar-
anteed to generate optimal policies. There are two reasons
why this can happen: 1) the actions performed by the user
in the traces may not part of the optimal policy. In this
case, the algorithm will follow the best policy given the
known actions but will not be able to generate an optimal
policy. 2) The LWR approach can take the robot to states
that are not part of the optimal policy, even if they are
smoother and closer to the user’s paths. This has not rep-
resented a problem in the experiments that we performed.

With the Behavioural Cloning approach we observed
around a 75% reduction in the state-action space. This
reduction depends on the traces given by the user and on
the training environment. In a hypothetical optimal case,
where a user always performs the same action in the same
state, the system only requires to store one action per state.
This, however, is very unlikely to happen due to the con-
tinuous state and action space and the uncertainty in the
outcomes of the actions perform with a robot.

9. Conclusions and Future Work

In this paper we described an approach that automatically
transformed in real-time low-level sensor information into
a relational representation. We used traces provided by a
user to constraint the number of possible actions per state
and use a reinforcement learning algorithm over this re-
lational representation and restricted state-action space to
learn in a few iterations a policy. Once a policy is learned
we used LWR to produce a continuous actions policy in
real time. It is shown that the learned policies with con-
tinuous actions are more similar to those performed by
users (smoother), and are safer and faster than the policies
obtained with discrete actions. Our relational policies are
expressed in terms of more natural descriptions, such as

Copyright © 2010 SciRes. JILSA

Relational Reinforcement Learning with Continuous Actions by Combining
Behavioural Cloning and Locally Weighted Regression

Copyright © 2010 SciRes. JILSA

79

rooms, corridors, doors, walls, etc., and can be re-used for
different tasks and on different house or office-like envi-
ronments. The policies were learned on a simulated en-
vironment and later tested on a different simulated envi-
ronment and on an environment with a real robot with
very promising results.

There are several future research directions that we are
considering. In particular, we would like to include an
exploration strategy to identify non-visited states to com-
plete the traces provided by the user. We are also explor-
ing the use of voice commands to indicate the robot which
action to take when it reaches an unseen state.

10. Acknowledgements

We thank our anonymous referees for their thoughtful and
constructive suggestions. The authors acknowledge to
CONACyT the support provided through the grant for
MSc. studies number 212418 and in part by CONACyT
project 84162.

REFERENCES
[1] C. Watkins, “Learning from Delayed Rewards,” PhD

Thesis, University of Cambridge, England, 1989.

[2] K. Conn and R. A. Peters, “Reinforcement Learning with
a Supervisor for a Mobile Robot in a Real-World Envi-
ronment,” International Symposium on Computational
Intelligence in Robotics and Automation, Jacksonville, FI,
USA, June 20-23, 2007, pp. 73-78.

[3] E. F. Morales and C. Sammut, “Learning to Fly by Com-
bining Reinforcement Learning with Behavioural Clon-
ing,” Proceedings of the Twenty-First International Con-
ference on Machine Learning, Vol. 69, 2004, pp. 598-
605.

[4] J. Peters, S. Vijayakumar and S. Schaal, “Reinforcement
Learning for Humanoid Robotics,” Proceedings of the
Third IEEE-RAS International Conference on Humanoid
Robots, Karlsruhe, Germany, September 2003, pp. 29-30.

[5] W. D. Smart, “Making Reinforcement Learning Work on
Real Robots,” Department of Computer Science at Brown
University Providence, Rhode Island, USA, 2002.

[6] W. D. Smart and L. P. Kaelbling, “Effective Reinforce-
ment Learning for Mobile Robots,” Proceedings of the
2002 IEEE International Conference on Robotics and
Automation, Washington, DC, USA, 2002, pp. 3404-3410.

[7] R. S. Sutton and A. G. Barto, “Reinforcement Learning:
An introduction,” MIT Press, Cambridge, MA, 1998.

[8] L. Torrey, J. Shavlik, T. Walker and R. Maclin, “Rela-
tional Macros for Transfer in Reinforcement Learning,”
Lecture Notes in Computer Science, Vol. 4894, 2008, pp.
254-268.

[9] Y. Wang, M. Huber, V. N. Papudesi and D. J. Cook,
“User-guided Reinforcement Learning of Robot Assistive
Tasks for an Intelligent Environment,” Proceedings of the
2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Las Vegas, NV, 2003, pp. 27-31.

[10] I. Bratko, T. Urbancic and C. Sammut, “Behavioural
Cloning of Control Skill,” In: R. S. Michalski, I. Bratko
and M. Kubat, Ed., Machine Learning and Data Mining,
John Wiley & Sons Ltd., Chichester, 1998, pp. 335-351.

[11] A. Cocora, K. Kersting, C. Plagemann, W. Burgard and L.
De Raedt, “Learning Relational Navigation Policies,”
IEEE/RSJ International Conference on Intelligent Robots
and Systems, Beijing, China, October 9-15, 2006, pp.
2792-2797.

[12] C. Gaskett, D. Wettergreen and A. Zelinsky, “Q-learning
in Continuous State and Action Spaces,” In Australian
Joint Conference on Artificial Intelligence, Australia,
1999, pp. 417-428.

[13] F. Aznar, F. A. Pujol, M. Pujol and R. Rizo, “Using
Gaussian Processes in Bayesian Robot Programming,”
Lecture notes in Computer Science, Vol. 5518, 2009, pp.
547-553.

[14] S. F. Hernández and E. F. Morales, “Global Localization
of Mobile Robots for Indoor Environments Using Natural
Landmarks,” IEEE Conference on Robotics, Automation
and Mechatronics, Bangkok, September 2006, pp. 29-30.

[15] J. Herrera-Vega, “Mobile Robot Localization in Topo-
logical Maps Using Visual Information,” Masther’s thesis
(to be publised), 2010.

[16] R. T. Vaughan, B. P. Gerkey and A. Howard, “On Device
Abstractions for Portable, Reusable Robot Code,” Pro-
ceedings of the 2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Vol. 3, 2003, pp. 2421-
2427.

[17] L. Romero, E. F. Morales and L. E. Sucar, “An Explora-
tion and Navigation Approach for Indoor Mobile Robots
Considering Sensor’s Perceptual Limitations,” Proceed-
ings of the IEEE International Conference on Robotics
and Automation, Seoul, Korea, May 21-26, 2001, pp.
3092-3097.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.66667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.66667
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 807.874]
>> setpagedevice

