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ABSTRACT 

Being viewed from the standpoint of whole system, the hunting stability of a heavy-haul railway vehicle on a curved 
track is investigated in this paper. First, a model to simulate dynamic performance of the heavy-haul vehicle on the 
elastic track is developed. Secondly, the reason of the hunting motion is analyzed, and a bifurcation diagram for the 
vehicle on the curved track is put forward to simulate the nonlinear critical speed. Results show that the hunting motion 
of the heavy-haul vehicle will appear due to the larger conicity, the initial lateral shift and the wheelset angle of attack. 
With the hunting motion appearing, the lateral shift and force of the wheelset are changed sharply and periodically with 
a wave of circa 3.6 m. There is obvious difference in the bifurcation diagram between on a curved track and on a tan-
gent track. Relative to the centerline of the track, each vehicle body on the curved track has two stable cycles. As for the 
curved track with a radius of 600 m and a superelevation of 55 mm, the nonlinear critical speed of the heavy-haul vehi-
cle is 76.4 km/h. 
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1. Introduction 

Developing heavy-haul railways is one efficient measure 
to increase the transport volume. However, being re-
stricted to the landform in the heavy-haul railway, there 
are many sharp curved tracks with the radius ranging 
from 500 m to 1000 m. When a heavy-haul vehicle is 
negotiating these curved tracks with low speeds, the phe-
nomenon of the hunting motion, usually taking place on 
the tangent track, will also appear. Due to the hunting 
motion on the curved tracks, the interaction force be-
tween the wheel and the rail is seriously enhanced, the 
performance of the negotiation is severely deteriorated, 
the rail is sharply worn, the rail life is clearly shortened, 
and even the vehicle will derail on the curved track. So, 
much attention should be paid to the vehicle hunting mo-
tion on the curved track. 

Studies on the running stability of the railway vehicle 
have been performed for almost half of century. The first 
bifurcation analysis of the free running wheelset was 
carried out by Huilgol [1] and in this research a hopf bi-
furcation from the steady state was revealed. The first 
observation of chaotic oscillations in models of railway 
vehicles was carried out by True et al. [2] and Petersen 
[3]. Dukkipati [4] developed the mathematical linear 
models to determine the lateral stability or hunting of 
North American standard three-piece freight truck on 

track/roller stands, and the theoretical model results were 
compared with field test data performed by the Associa-
tion of American Railroads (AAR). In the meanwhile, 
using linear models, a comparative study on the dynamic 
stability and steady state curving behavior of some un-
conventional railway truck designs was carried out by 
Dukkipati [5]. Further works demonstrating the hunting 
stability of high-speed vehicle were carried out by Lee 
and his team [6,7], including the stability on the tangent 
track [6] and the stability on the curved track [7]. Lee et 
al. [8] modeled eight degrees of freedom (DOFs) for 
truck system moving on curved tracks, and it was re-
ported that the critical hunting speeds evaluated by using 
the eight-DOF system differed significantly from those 
done by the six-DOF system. 

Unfortunately, up to now, there is little study about the 
lateral stability of the heavy-haul vehicle on the curved 
track, let alone the stability research based on the cou-
pled model between the vehicle and the track. 

Therefore, being viewed from the standpoint of the 
coupled system presented by Zhai et al. [9,10], investiga-
tion efforts will be focused on the nonlinear hunting sta-
bility of the heavy-haul vehicle on the curved track in 
this paper. Firstly, a model to simulate the dynamic per-
formance of the heavy-haul vehicle on the elastic track is 
established. Secondly, the reason of the hunting motion 
on the curved track is analyzed. Lastly, a bifurcation dia-
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gram for the vehicle on curved track is put forward to 
simulate the nonlinear critical speed. 

2. Dynamic Model of Heavy-Haul Vehicle on 
Curved Track 

A curved track contains three main elements such as ra-
dius, cant, and gauge. When a heavy-haul vehicle with 
full freight passes through the small-radius curved track, 
the interaction between the wheel and the rail is very 
serious, as causes the track vibrating obviously. Figure 1 
indicates a measured result [11] of dynamic gauge en- 
largements on a small-radius curve track. It can be seen 
from the Figure 1 that the dynamic gauge enlargement is 
very clear and the maximum value is close to 3.5 mm. 

Therefore, for an analysis on the vehicle dynamic per-
formance, including the stability on the curved track, it is 
very necessary to take the dynamic vibration of the track 
into account. 

2.1. Coordinate Systems 

The descriptions of the configuration and the orientation 
of the railway vehicle on the track are related to the defi-
nition of coordinate systems. In order to describe the 
absolute motion of the heavy-haul vehicle on a curved 
track, two coordinate systems are needed: the inertial 
coordinate system and the body fixed coordinate system. 
Only taking a wheelset on a curved track for an example, 
the coordinate systems are shown in Figure 2, where the 
inertial coordinate system (Oi, Xi, Yi, Zi) is located on the 
center line of the track and can not move with the 
wheelset, and the wheelset fixed coordinate system (Ow, 
Xw, Yw, Zw) is located in the mass center of the wheelset 
and can move with the wheelset. In addition, the positive 
directions of y in both systems are toward the inner rail 
of the curved track or the right rail of the tangent track. 

Relative to the inertial system, any of the vehicle body 
has six DOFs, including three DOFs of transfer motions 
in longitudinal (X), lateral (Y), and vertical (Z), three 
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Figure 1. Measured result of dynamic gauge enlargements 
on the small-radius curve track. 

 

Figure 2. Coordinate systems on curved track. 
 
DOFs of a pitch motion (), a rolling motion (), and a 
yaw motion (). The absolute motion of the body of the 
vehicle is the vector sum of the transfer and the rotation 
motions. The relationship between the inertial system 
and the body fixed system is shown in Figure 3 [12], in 
which, p stands any point of a body, the vector rp (Oi, Xi, 
Yi, Zi) in the inertial system stands for its static and spa-
tial position, the vector rp (OB, XB, YB, ZB) in the body 
fixed system stands for its dynamic and spatial position 
with respect to the inertial system, rc is the transfer 
vector in the body fixed system with respect to the iner-
tial system, and ri is the absolute vector of a body. 

So, ri is calculated by: 

 i c B p p    Ar r r r              (1) 

in which, AB is the rotation matrix in the body fixed sys-
tem with respect to the inertial system and is formed as 
following: 
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where,  is the angle difference of two coordinate sys-
tems caused by the superelevation (around X axis),  is 
the angle difference of two coordinate systems (around Z 
axis), in addition, these parameter values are determined 
by the line type of the curved track. 

According to the Equation (1), all the absolute vectors 
of vehicle bodies can be calculated. If a body A and a 
body B are conjoined by a suspension, the relative dis-
placement of the suspension points between A and B is 
given by: 

AB B A   r r r                 (2) 

in which, the rA and rB stand for the absolute vector of 
body A and body B, respectively. 

Therefore, the relative velocity of the suspension points 
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Figure 3. The vector of body with respect to the inertial 
system. 
 
between A and B is also given by: 

 Ad

d
B

AB t


 

r
v                  (3) 

If the stiffness matrix and the damping matrix in this 
suspension are K and C, respectively, the force of the 
suspension points is calculated as following: 

AB AB   F K r C v             (4) 

2.2. Model of Heavy-Haul Vehicle 

Figure 4 shows a three-piece structure of a heavy-haul 
vehicle which includes two side frames and one bolster. 
Nowadays, the three-piece structure is widely applied in 
the heavy-haul vehicle in CR. In order to reduce the un-
sprung mass, the elastic rubber is set in the axle-box, as 
is the primary suspension. Apart from this, the compo-
nents of the structure are similar to those introduced by 
Xia [13]. 

The vehicle is modeled as a multi-body dynamic sys-
tem, as is shown in Figure 5. In Figure 5, Z, Y and Φ 
denote the DOFs of vertical, lateral and roll motions of a 
component; subscripts c, t and w represent carbody, side 
frame and wheelset; subscripts L and R denote the left 
and right side respectively; Ksz and Csz are the vertical 
stiffness and damping of the secondary suspension; Ksy 
and Csy are the lateral stiffness and damping of the sec-
ondary suspension; Kpz and Cpz are the vertical stiffness 
and damping of the primary suspension; and Kpy and Cpy 
are the lateral stiffness and damping of the primary sus-
pension. 

There are eleven principal components, including one 
carbody, two bolsters, four side frames, and four wheel-
sets. It is shown that the carbody is connected to the bol-
ster via the center plates modeled as a spherical joint. 
Because the radius of the spherical joint is small com-
pared with the other dimensions of the carbody, and the 
effect of the friction produced by the spherical joint on 
the roll rotation of the carbody and the bolster is ne-
glected. But the effect of the friction torque on the yaw 
rotation is still considered. In the secondary suspension, 
the bolsters are elastically connected to the side frames 
by springs vertically, and a one-dimension model without 

Centerplate

Wheel

Axle

Primary suspension

Secondary suspension

Side frame

Bolster

 

Figure 4. The construction of the heavy-haul vehicle in CR. 
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Figure 5. Description of heavy-haul vehicle dynamics model 
with end view. 
 
stick mode is applied to simulate the dry friction in the 
wedge damper system. The primary suspension is mod-
eled as the parameters of Kp and Cp in longitudinal, lat-
eral and vertical. 

All of components are assumed to be rigid. The DOFs 
of a heavy-haul vehicle are given in Table 1, where the 
total DOFs are 47. 

2.3. Model of Track 

A five-parameter model [9,10] is adopted to model the 
railway track, as is shown in Figure 6. The rail is mod-
eled as a Bernoulli-Euler beam discretely supported at 
masses. The three layers of discrete springs and dampers 
represent the elasticity and damping effects of the rail 
fastening, the ballast, and the subgrade respectively. 

2.4. Model of the Wheel-Rail Contact 

The wheelsets provide the supports for the entire vehicle 
and supply the contact forces that keep the vehicle sys-
tem on the track. A new model of three-dimensional 
geometrical contact between wheel and rail [10,14] is  
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Table 1. DOFs of a heavy-haul vehicle. 

Component Long. Lat. Vert. Roll Pitch Yaw

Carbody - Yc Zc c c c 

Bolster 
(i = 1, 2) 

- - - - - Bi 

Front side frame 
(i = 1, 2) 

XtFi YtFi ZtFi - tFi tFi

Rear side frame 
(i = 1, 2) 

XtRi YtRi ZtRi - tRi tRi

Wheelset 
(i = 1 - 4) 

- Ywi Zwi wi wi wi

 

 

Figure 6. Description of a five-parameter track model. 
 
adopted. All the contact parameters are calculated online, 
including the contact point and its curvature, the conicity, 
and so on. The normal force of wheel-rail contact is de-
scribed by a non-linear Hertzian contact theory, and the 
tangential force is calculated by a Shen-Hedrick-Elkins 
formula [15]. 

3. Reason of Hunting Motion of Heavy-Haul 
Vehicle on Curved Track 

When a heavy-haul vehicle negotiates a curved track at a 
low speed, some unbalanced centrifugal forces will ap-
pear in the vehicle system due to the multiple effects 
such as speed, curve radius, superelevation, and so on. 
Under the action of the unbalanced centrifugal forces, 
wheelsets will deviate from the track centerline. Both the 
theoretical and experimental results [11] show that the 
lateral shifts of wheelsets are bigger than 4 mm usually. 

Figure 7 illustrates the theoretical result of the conic-
ity for the wheel tread of LM and the rail profile of the 
heavy-haul railway. During the curved negotiation, the 
lateral shifts of wheelsets are bigger than 4 mm. So the 
conicity value is more than 0.1, as can help to improve 
the self-steering ability of the wheelset. It is worth point-
ing out that the conicity value of the curved track is big-
ger than the value of the tangent track. In addition, as for 
the vehicle system on the curved track, the lateral shift is 
a kind of outside excitation, and the wheelset centerline 
is not under the radial situation, and the wheelset angle of 
attack, i.e. the angle between the wheelset axis and the 
radius of the curve, will appear on the wheelset. 

Consequently, under the effects of the large conicity, 

 

Figure 7. Conicity versus lateral shift of wheelset. 
 
the excitation of the lateral shift, and the wheelset angle 
of attack, the hunting motion appears easily for the 
wheelsets of a heavy-haul vehicle. Especially for the 
wagons assembled with the worn components and the 
worsened suspensions, the hunting stability on curved 
track is much worse. 

Furthermore, a numerical example of the hunting mo-
tion of a heavy-haul vehicle with no freight is given, in 
which, the radius is 600 m, the superelevation of outer 
rail is 55 mm, the negotiation speed is 85 km/h, the tran-
sitions are made of parabolic curves, and other dynamic 
parameters are evaluated [10,16]. The calculated results 
of the lateral shift of the wheelset are presented in Figure 
8, including the time and frequency domain results. It can 
be seen from Figure 8(a) that the phenomenon of the 
hunting motion appears at the point of spiral to curve, at 
the point of curve to spiral, and in the whole circular line, 
and there is lateral and periodic oscillation on the wheel-
set. Under this situation of the hunting motion, the 
dominant frequency of the lateral shift is circa 6.5 Hz, as 
is shown in Figure 8(b). 

According to the following formula 
v

f
                     (5) 

in which,  stands the wave length, v is the vehicle speed, 
and f is the dominant frequency. 

So, the hunting wave length is circa 3.6 m corre- 
spondingly, which is quite close to the hunting wave 
length on a tangent track [17]. 

Figure 9 shows the calculated results of the wheelset 
lateral force under this condition of the hunting motion. 
It is noticeable that the lateral interaction forces between 
the wheel and the rail change severely and fluctuate pe-
riodically when the phenomenon of the hunting motion 
of the wheelset appears. The main reason is that, due to 
the effects of the lateral shift and wheelset angle of attack, 
the severe impact contact may happen between the root 
of the wheel flange and the rail side. 
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Figure 8. Calculated results of lateral shift of wheelset on 
curved track, (a) Response in time domain, (b) Response in 
frequency domain. 
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Figure 9. Calculated results of wheelset lateral force. 
 

Figure 10 shows the lateral displacement of outer rail 
under this case. It can be seen that there is lateral and 
periodic oscillation on the outer rail during the hunting 
motion of the wheelset. However, due to the centrifugal 
forces, the rail will not go back to its resting position. 

4. Bifurcation Diagram for Heavy-Haul 
Vehicle on Curved Track 

The results [16,17] have proved that once the hunting 
motion of a vehicle occurs on a tangent track, the wheel-
set will have a lateral and periodic motion, and there is a 
stable limit cycle relative to the track centerline. The 
lateral stability characteristic could be described as an 
“S” shape curve, as is shown in Figure 11 [2,16,17],  

 

Figure 10. Calculated results of lateral displacement of 
outer rail. 
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Figure 11. Typical bifurcation diagram for nonlinear vehi-
cle system on tangent track. 
 
where the solid line and the dashed line represent the 
stable and the unstable limit cycle, respectively. 

Whereas, according to the calculated results mentioned 
above, when the hunting motion occurs on a curved track 
for the wheelset, there is a lateral and periodic oscillation 
deviating from the centerline of the track. Meanwhile, 
due to the deviation of the wheelset from the track cen-
terline, two stable limit cycles relative to the centerline of 
the track can be observed simultaneously, as is shown in 
Figure 12. One stable limit is defined as “large ring”, 
which represents the motion state of the wheelset with 
the largest amplitude of the lateral shift. The other stable 
limit is defined as “small ring”, which describes the mo-
tion state of the wheelset with the smallest amplitude of 
the lateral shift. Besides, the dashed line in Figure 12 
represents the boundary between the “large ring” and the 
“small ring”. 

So, on the basis of the typical bifurcation diagram on 
tangent track (shown in Figure 11) and the motion char-
acteristics on a curved track (shown in Figure 12), the 
bifurcation diagram of nonlinear vehicle system on a 
curved track can be obtained, as is shown in Figure 13, 
where the solid lines (CD and C′D′) and the dashed lines 
(BD and BD′) also represent stable and unstable limit 
cycle, respectively, and the horizontal line (AB) indicates 
the equilibrium position of the system deviating from the  
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Figure 12. Wheelset lateral shift versus velocity with hunt-
ing motion. 
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Figure 13. Bifurcation diagram for nonlinear vehicle system 
on curved track. 
 
track centerline. 

In Figure 13, the abscissa denotes the train speed; the 
ordinate denotes the amplitude of limit cycle vibration 
depending on the system disturbances, e.g., the amplitude 
of the lateral displacement of the leading wheelset. When 
the train speed V is less than VD, the system vibration will 
stabilize to the equilibrium position for any external dis-
turbances, as is similar to the diagram on tangent track 
(shown in Figure 11). When the train speed V is larger 
than VB, two stable limit cycles will be observed no mat-
ter what amplitude of the external disturbance is. How-
ever, in the interval VD < V < VB, the situation of system 
vibration will depend on the amplitude of the external 
disturbance. 

It also can be seen from Figure 13 that, given an ex-
ternal disturbance with a large disturbance and an initial 
speed being lower than VD, if the vehicle speed is in-
creased little by little, two stable limit cycles will appear 
simultaneously when the speed is VD, and the ordinate 
values at points D and D′ are the amplitudes of the limit 
cycles. On the contrary, given an external disturbance 
with a large disturbance and an initial speed being higher 
than VB, if the vehicle speed is reduced step by step, two 

stable limit cycles will disappear immediately when the 
speed is VD and the system vibration will stabilize to the 
equilibrium position at points D and D′. 

So, according to the bifurcation diagram for nonlinear 
vehicle system on the curved track, the speed VD at 
points D and D′ is called the nonlinear critical speed, and 
the speed VB at point B is called the linear critical speed. 

5. Nonlinear Critical Speed of Heavy-Haul 
Vehicle on Curved Track 

In order to calculate the nonlinear critical speed of a 
heavy-haul vehicle on a curved track accurately, the points 
D and D' in Figure 13 should be found out. Therefore, 
the “Speed Reducing Method” (SRM) put forward in 
paper [17,18] is adopted here. It is noticeable that the 
value of the initial external disturbance should be more 
than 8mm for a curved track. 

Using the SRM, the nonlinear critical speed of a 
heavy-haul vehicle on a curved track can be calculated. 
Taking a typical heavy-haul vehicle running on a curved 
track in CR for an example, the dynamic parameters are 
the same as those referred above, the radius of the curved 
track is 600 m and the superelevation is 55 mm. Figure 
14 shows the dynamic response of the lateral shift of the 
wheelset when the speed is reduced from 140 km/h to 42 
km/h gradually. It can be seen from Figure 14 that, at 
speeds ranging between 140 km/h and 76.4 km/h, there 
are the lateral and periodic oscillation on the wheelset 
and there are two limit cycles with amplitudes of about 
10 mm and 7 mm respectively, and when the speed is 
76.4 km/h, the lateral shift of the wheelset will stabilize 
to equilibrium position suddenly. So, it can be deduced 
that the nonlinear critical speed of the vehicle is 76.4 
km/h under these given situations. 

On the basis of the research experience and results, 
Wang [19] has pointed out that the ratio of the nonlinear 
critical speed to the largest operating speed should be 
more than 1.2. Consequently, for a curved track with a 
radius of 600 m and a superelevation of 55 mm, the 
maximum negotiation speed of this heavy-haul freight 
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Figure 14. Wheelset lateral shift versus speeds of heavy- 
haul vehicle on curved track. 
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wagon should be 61 km/h. However, according to the 
code for design of railway line [20], it is prescribed that 
the maximum negotiation speed of a freight truck on this 
curved track is 65 km/h. Moreover, the practical opera-
tion experience also proves the fact that the negotiation 
speed usually reaches 65 km/h on this curved track. Thus, 
when a freight vehicle passes through this curved track 
with a speed of 65 km/h, the nonlinear critical speed of 
the vehicle should be more than 76.4 km/h. That is to say, 
the lateral stability of this type vehicle cannot meet the 
real requirement for the curved track, and the hunting 
motion appears usually. 

Furthermore, compared with the results in paper [17] 
that the nonlinear critical speed of this heavy-haul vehi-
cle on a tangent track is 134 km/h, it can be concluded 
that the nonlinear critical speed of a vehicle on a curved 
track is lower than that on a tangent track. In other words, 
the performance of the lateral stability on a curved track 
is worse than that on a tangent track. 

6. Conclusions 

1) Due to effects of various factors such as the large 
conicity, the excitation of the lateral shift and the wheel-
set angle of attack, the hunting motion appears easily 
when a heavy-haul vehicle negotiates a curved track at a 
low speed. Under this situation of the hunting motion, 
there are two stable limit cycles relative to the track cen-
terline, as is different with the phenomenon on a tangent 
track where there is one stable limit cycle. 

2) The nonlinear critical speed of the heavy-haul vehi-
cle on the curved track can be calculated by the SRM. As 
for the curved track with a radius of 600 m and a su-
perelevation of 55 mm, the nonlinear critical speed of the 
heavy-haul vehicle is 76.4 km/h, which is lower than the 
speed on the tangent track. 

3) Finally, for the curved track, much attention should 
be paid to the lateral stability, as well as the running 
safety. 
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