
Circuits and Systems, 2012, 3, 153-160 
http://dx.doi.org/10.4236/cs.2012.32020 Published Online April 2012 (http://www.SciRP.org/journal/cs) 

A Parallel Circuit Simulator for Iterative Power Grids  
Optimization System 

Taiki Hashizume1, Masaya Yoshikawa2, Masahiro Fukui1 
1Department of VLSI System Design, Ritsumeikan University, Kusatsu, Japan 

2Department of Information Engineering, Meijo University, Nagoya, Japan 
Email: mfukui@se.ritsumei.ac.jp 

 
Received January 9, 2012; revised February 20, 2012; accepted February 28, 2012 

ABSTRACT 

This paper discusses a high efficient parallel circuit simulator for iterative power grid optimization. The simulator is 
implemented by FPGA. We focus particularly on the following points: 1) Selection of the analysis method for power 
grid optimization, the proposed simulator introduces hardware-oriented fixed point arithmetic instead of floating point 
arithmetic. It accomplishes the high accuracy by selecting appropriate time step of the simulation; 2) The simulator 
achieves high speed simulation by developing dedicated hardware and adopting parallel processing. Experiments prove 
that the proposed simulator using 80 MHz FPGA and eight parallel processing achieves 35 times faster simulation than 
software processing with 2.8 GHz CPU while maintaining almost same accuracy in comparison with SPICE simulation. 
 
Keywords: Dedicated Hardware Accelerator; Power Grids Optimization; Parallel Circuit Simulator 

1. Introduction 

With the deep submicron technologies, it has become 
possible to mount a large and high performance system 
on one VLSI chip. However, the power supply voltage is 
lowering along with shrinking of the device size. On the 
other hand, the power consumption is increasing because 
the number of transistors and the clock frequency in- 
crease. Therefore, IR-drop and electro-migration (EM) in 
the power grids make functions and devices unreliable. It 
becomes more serious problem than ever. The power grid 
optimization has become very important for ensuring the 
reliability, correctness and stability of the design. In re- 
cent years, many prior researches [1-6] have been pro- 
posed to solve the problem. A heavy simulation time is 
required to analyze the problem of heat and electromag- 
netic field [3]. Moreover, a high speed and high accurate 
circuits simulator is required for iterative optimization 
which includes execution of the simulation many times 
for its evaluation.  

Thus, several hardware accelerator approaches have 
been reported [7-12]. Lee et al. achieved 25 times high 
speed processing in the timing verification using multi 
CPU [7]. Nakasato et al. demonstrated particle simula- 
tion by floating point arithmetic on an FPGA [8]. Wata-
nabe et al. introduced parallel-distributed time-domain 
circuit simulation of power distribution networks by 
multiple PC [9]. However, no research of hardware ac- 
celerator to optimize power grids of VLSI has been re-

ported. 
This paper aims at estimating the performance im- 

provement by hardware implementation of the circuit 
simulation in the power supply wiring. We have analyzed 
accuracy, speed, and hardware resources to implement 
typical numerical analysis algorithms of circuit simula- 
tion, in cases of floating point and fixed point variables, 
software and hardware. Moreover, we propose an effi- 
cient hardware circuit simulator for power grid optimiza- 
tion. It achieves high speed simulation by adopting pipe- 
line and parallel processing. The proposed simulator in- 
troduces hardware-oriented fixed point arithmetic instead 
of floating point arithmetic. The hardware-oriented fixed 
point arithmetic realizes the high area-efficiency by re- 
ducing hardware resources, and it also accomplishes the 
high accuracy by controlling intervals of simulation. 

2. Power Grid Optimization System 

2.1. Power Grid Optimization Algorithm 

The power grid consists of two vertical and horizontal 
layers. Those are interconnected by contacts at the inter- 
section. The equivalent circuit model for proposed power 
grid optimization system is shown in Figure 1. 

Decoupling capacitors are inserted to decrease dynamic 
IR-drop and inductor noise to the power grid. At each grid 
area, four edges of resistances are placed. The capaci- 
tance which connected to each node represents the sum 
of the decoupling capacitance and the wiring capacitance.  

Copyright © 2012 SciRes.                                                                                   CS 



T. HASHIZUME  ET  AL. 154 

 

 Circuit Elements
MEMORY

Figure 1. Equivalent circuit model for power grids. 
 
Current source which connected to each node corre-
sponds to the current consumption of functional block of 
VLSI. These circuit elements connected with a grid are 
defined as SLOT. The power grid optimization is defined 
as a multi-objective optimization problem. First objective 
is to reduce the risk of timing error which is caused by 
transient and local IR-drop. Second objective is to reduce 
the risk of wire break which is caused by excess of elec-
tric current density at a portion of a wiring. Third objec-
tive is to reduce the risk of failing signal wiring which is 
caused by local congestion of wires. We have already 
proposed an algorithm to solve these trade-off problems 
[13-15]. It defines the optimization problem by using an 
evaluation function which unifies the risks of multiple 
objectives. The optimization is scheduled by an iterative 
improvement. Iterative operation consists of circuit si- 
mulation, evaluation of risks, and small modification of 
wire width or decupling capacitance.  

2.2. Organization of Power Grid Optimization 
System 

The power grid optimization system consists of three 
parts, the simulation part, the evaluation part and the op- 
timization part, as shown in Figure 2. A new repetitive 
optimization and evaluation function is introduced to 
improve the multiple physical issues [13]. To evaluate 
circuits, an original metrics, RISK, is defined. The pro- 
posed power grid optimization system adopts the algo- 
rithm as a base algorithm of the optimization part. Effec- 
tiveness of the power grid optimization system is deter- 
mined by communication-overhead between each part, in 
addition to the simulation accuracy and the processing 
speed.  

The simulation part is the most time consuming. It si-
mulates the circuit behavior and calculates the electric 
current of each edge and the voltage of the each node. It 
takes more than 99% of the total computation time. 
Therefore, reduction of processing time of the simulation 
part is most important from the point of high speed opti-  

Circuit
Evaluation

simulation
results

changed
elements

evaluation results

Power Grid 
Simulation

Circuit Generation

Iterative 
Optimization

 

Figure 2. Power grid optimization system. 
 
mization processing. The evaluation part defines a risk 
function for each design metric, i.e., IR-drop, EM, and 
wiring congestion, from simulation results. IR-drop RISK 
is defined as a probability of causing the timing error. An 
increase of current density raises the EM RISK and it 
cause a deterioration and disconnection of wires to be 
unable to operate. As a result, the circuit doesn’t operate. 
The wiring congestion RISK represents the proportion of 
the wiring resource in a SLOT area. It is a restriction of 
preventing from an excessive wiring and state that cannot 
be wired. Because each grid is composed of the power 
grid, decoupling capacitor and signal wire, totals of those 
areas are compared with the grid area.   

The optimization part improves IR-drop, EM and wir- 
ing congestion by changing wiring width and decoupling 
capacitance. Performance of the power grid optimization 
system is determined by communication overhead be- 
tween each part, in addition to the simulation accuracy 
and the processing speed.  

2.3. Simulation Algorithm 

2.3.1. Circuit Analysis Method 
This section summarizes typical numerical analysis me- 
thods which can be used for the power grid simulation. 
Euler method and Runge-Kutta method are typical nu- 
meric method to solve differential equations. Generally, 
small time step must be selected to analyze steadily by 
Forward Euler method (FE).  

The computation algorithm is simple and needs smaller 
hardware resources, but it may easily diverge. Runge- 
Kutta methods require complex calculation, but the si-
mulation is more stable even though we select a larger 
time step than FE. Thus, we must carefully select the 
numerical algorithm for the given problem. We have 
examined 100 or more variations of power grids and 
evaluated.  

The test data is composed of four size variations, 50 × 
50, 100 × 100, 200 × 200, 500 × 500. Also, it is com- 
posed of five RC distributions, regular, random, two 
types of hand-specified, extracted from real chips. The 
largest RC time constant was about 20 times larger than 

Copyright © 2012 SciRes.                                                                                   CS 



T. HASHIZUME  ET  AL. 155

the minimum one. 
As the results, the accuracy is almost same for each 

numerical method and we have selected FE. For the 
evaluation of numerical methods see the next section.  

2.3.2. Evaluation of the Accuracy by Comparing with 
SPICE 

This In order to verify the proposed algorithm’s validity, 
comparative experiments are performed using the fol- 
lowing two types of circuit simulations: 1) Accuracy 
comparison between double-precision floating point 
arithmetic and SPICE; and 2) Accuracy comparison be- 
tween single-precision fixed point arithmetic and dou- 
ble-precision floating point arithmetic. The power grid 
which is used for the analysis is a structure of uniform 
RC distribution, and R and C in the power grid were 
randomly set from predefined three values. The power 
grid scale is 10 × 10 grids. The dynamic current con- 
sumption is changed in every 10 [μsec]. In conversion 
into the fixed point, the fraction part of all variables was 
set to 22-bit. Since 32-bit adders and multipliers are used 
for experiment, the overflow happened in 23-bit or more.  

Firstly, the result of experiments on each simulation 
with double-precision arithmetic is shown in Figures 3 
and 4. The step size is an important point in the transition 
analysis, and it is necessary to set it to small step to exe-
cute an accurate analysis. The small step is set 0.63 
[μsec]. The smallest RC was 20 [μsec]. All the analysis 
methods have been achieved high accuracy compared 
with SPICE.  

Next, experiments on fixed point arithmetic are exe- 
cuted by various step sizes, and the error is verified with 
the floating point arithmetic. In small step size, the 
maximum error margin and the average error margin are 
shown in Tables 1 and 2.  

In the uniform RC distribution, all nine patterns, the  
 

 

ME

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 0.1 0.2 0.3

ME

voltage[V]

0.4 0.5

Reference 
data

FE

time[msec]

ME

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 0.1 0.2 0.3

ME

voltage[V]

0.4 0.5

Reference 
data

FE

time[msec]

SPICE

SPICE
FE
ME

ME

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 0.1 0.2 0.3

ME

voltage[V]

0.4 0.5

Reference 
data

FE

time[msec]

ME

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 0.1 0.2 0.3

ME

voltage[V]

0.4 0.5

Reference 
data

FE

time[msec]

SPICE

SPICE
FE
ME

 

Figure 3. Simulation result by Euler method with small step 
size. 

RK4

RKM

voltage[V]
1

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

0 0.1 0.2 0.3 0.4 0.5

Reference 
data

RK4

RKM

time[msec]

RK4

RKM

voltage[V]
1

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

0 0.1 0.2 0.3 0.4 0.5

Reference 
data

RK4

RKM

time[msec]

SPICE

SPICE
RK4
RKM

RK4

RKM

voltage[V]
1

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

0 0.1 0.2 0.3 0.4 0.5

Reference 
data

RK4

RKM

time[msec]

RK4

RKM

voltage[V]
1

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

0 0.1 0.2 0.3 0.4 0.5

Reference 
data

RK4

RKM

time[msec]

SPICE
RK4
RKM

SPICE

 

Figure 4. Simulation result by Euler method with small step 
size. 
 
Table 1. Error by fixed point arithmetic for uniform RC 
circuit. 

 FE ME RK4 RKM 

max [%] 0.11 0.11 0.11 0.11 

Ave [%] 0.021 0.021 0.020 0.020 

 
Table 2. Error by fixed point arithmetic for random RC 
circuit. 

 FE ME RK4 RKM 

max [%] 0.057 0.057 0.058 0.057 

Ave [%] 0.0083 0.0083 0.0083 0.0082 

 
combination of the wiring resistance and the capacitance, 
are executed. Table 2 shows the maximum error and the 
average error of 100 kinds of circuit selected at random. 
The high accurate simulation has been achieved with a 
small time step.  

In fixed point arithmetic, fourth order Runge-Kutta 
Method (RK4) and Runge-Kutta marsun method (RKM) 
obtain a good result. In addition, the error of uniform RC 
distribution is larger than that of random circuit. The 
computational complexity of FE and Modified Euler 
method (ME) are small. In contrast, RK4 and RKM are 
complex for computation, though they can execute an 
accurate analysis.  

In our preliminary experiments, FE and RK4 diverged 
on the same time step. Therefore, FE is superior to RK4 
in case of the power grid optimization problem.  

2.3.3. Simulation Flow 
Voltage and current change in each node at small time 
step is analyzed based on information of the RC distribu- 
tion, the current consumption distribution, and the supply 

Copyright © 2012 SciRes.                                                                                   CS 



T. HASHIZUME  ET  AL. 156 

voltage, etc. The simulation flow is shown in Figure 5, 
and a part of the equivalent circuit is shown in Figure 6. 

In the simulation part, the current of each wiring is 
calculated from voltage distribution and the wiring re- 
sistance. Then, the charge which accumulates in the ca- 
pacitance connected with each node is calculated, and the 
voltage is derived every small time step dT. These 
processing are iterated during simulation time for entire 
power grid Tm, and assumed to be end of simulation. To 
obtain the voltage at each node, the charge is changed by 
the inflow current Ileft and Iup, the outflow current Iright 
and Idown, and the current consumption Icon. Voltage and 
current change in each node are computed based on RC 
distribution at small time step.  

For more high speed simulation, the simulation with 
hardware is effective, but the achievement of the hard- 
ware simulator is not easy according to the restriction of 
the error margin and the hardware resource. To examine 
whether it is feasible to make the present simulation 
hardware, the accuracy of the analysis by the double- 
precision floating point arithmetic and by the single-pre- 
cision fixed point arithmetic are verified. The error mar- 
gin is caused by replacing with fixed point arithmetic. It 
is because the fixed point arithmetic can be processed at 
the same speed as the integer operation. Additionally, the 
area of the fixed point arithmetic unit is far smaller com-
pared with the floating point arithmetic unit.  
 

 

I = (V -V’) /

Q = Q + dT (Iup+Ileft -Ido

V = Q / C

 R

wn -Iright-Icon) 

Tm < T[k]
YES

NO

Tm = Tm + dT

- ’

( - - - ) 

I = (V -V’) /

Q = Q + dT (Iup+Ileft -Ido

V = Q / C

 R

wn -Iright-Icon) 

Tm < T[k]
YES

NO

Tm = Tm + dT

- ’

( - - - ) 

 

Figure 5. Simulation flow. 
 

 
Iup

Iright

Iload

 

Idown

Ileft

 

Figure 6. A part of equivalent circuit. 

3. Hardware Architecture for Power Grid 
Simulation 

The proposed simulation algorithm adopts fixed point 
arithmetic. It achieves the same processing speed as the 
integer operation, and has an advantage of area-effi- 
ciency when implementing on hardware. Fixed point 
arithmetic includes a risk of overflow; however, this risk 
is reduced by correction processing and bit shift. The 
simulation part computes the voltage and the current of 
each node of power grid, and stores the simulation results 
into memory. Furthermore, it is necessary to control the 
simulation and the memory behavior to achieve high 
speed simulation. Figure 7 shows the block diagram of 
the power grid simulation which corresponds to simula- 
tion module and memory access as shown in Figure 2. 
Control module controls state transition and timing of 
each module. Each circuit variables are stored in each 
memory. Wiring resistance and capacitance are updated 
when changing the circuit design. 

The voltage and the charge are updated whenever ad- 
vancing at a small time step. Therefore, these are stored 
in RAM. Circuit variables are fetched from the memory 
into the simulation module, and the results are written 
into memory. 

The simulation module is composed by adder, sub- 
tractor, and multiplier, and doesn’t use divider. Current is 
calculated by dividing potential difference of wiring re- 
sistance, however divider needs a lot of implementation 
areas. Therefore, divider is converted into multiplier by 
storing each reciprocal when wiring resistance and ca- 
pacitance are stored in the memory. Figure 8 shows the 
calculation procedure in the simulation module.  

Input variables, “Gright”, “Gdown” and “Z” show the re-
ciprocal of wiring resistance and capacitance respectively. 
In the current calculation of the hardware algorithm, only 
outflow current is computed as shown in Figure 4. Be-
cause inflow current of a point corresponds to outflow 
current of the adjacent point (left side or upper side). 
 

controller MEMORY
read / write

enable MEM
R

MEM
C

MEM
Q

MEM
V

simulation

state
machine

address
count

edge
processing

exception
processing arithmetic unit

FIFO
for timing adjustment

 

Figure 7. Block diagram of the power grid simulation.     

Copyright © 2012 SciRes.                                                                                   CS 



T. HASHIZUME  ET  AL. 

Copyright © 2012 SciRes.                                                                                   CS 

157

  

 

 

Figure 8. Calculation procedure in the simulation module. 
 

The simulation module processes the circuit variables 
from memory, and writes simulation result into the 
memory. The variables written in the memory are the 
current, the charge, and the voltage. The current is used 
to calculate the RISK, the charge is necessary for each 
grid simulation, and the voltage is both. When the edge 
of the power grid is simulated, the variable is switched to 
the exception parameter by multiplexer (MUX) because 
the adjacent SLOT doesn’t exist.  

4) Addition of each current (Iright, Idown, Ileft and Iup). 
5) Addition of Stage 4 and current source. 
6) Calculation of inflow/outflow currents in small time 

step. 
7) Computation of charge. 
8) Computation of voltage. 
Figure 9 shows the pipeline stage in the simulation 

module. All nodes of the power grid are sequentially 
simulated in the simulation module.  

Because current calculation of a node require the volt- 
age of the adjacent node, it is necessary to wait until the 
adjacent node finishes simulating, even if the node fin- 
ishes simulating. Horizontal size and vertical size of 
power grid are defined as H_SIZE and V_SIZE. In an 
ideal pipeline processing, H_SIZE times V_SIZE clocks are 
needed for the simulation of all nodes. Moreover, 8 + 
H_SIZE clocks are needed to finish eight stage pipeline 
processing of a node and the adjacent node.  

4. Hardware Algorithm 

4.1. Pipeline Processing 

Registers are inserting between each arithmetic unit to 
achieve pipeline processing. The proposed pipeline proc- 
essing is composed of eight stages, and the data of each 
SLOT is transferred to the simulation module per clock 
cycle. The simulation flow by pipeline processing is as 
follows.  

1) Each variable is stored from the memory to register. 4.2. Parallel Processing 
2) Calculation of potential difference. 

Figure 10 shows an example of which a circuit is divided  3) Calculation of each current. 



T. HASHIZUME  ET  AL. 158 

Stage 1 Stage 2 Stage 3 Stage 8 ･･･

～～

Stage 1 Stage 2 

Stage 1 Stage 2 Stage 8 Stage 1 Stage 7 

Stage 1 

･･･

･･･ Stage 6 St

node 1 

node 2 

node 3 Stage 8 age 7 

Time 

Stage 1 Stage 2 Stage 3 Stage 8 ･･･

～～ ～～

Stage 1 Stage 2 

Stage 1 Stage 2 Stage 8 Stage 1 Stage 7 

Stage 1 

･･･

･･･ Stage 6 St

node 1 

node 2 

node 3 Stage 8 age 7 

Time 

 

Figure 9. Pipeline stage of each node. 
 

  
#1 #2 #N

???

MEM 1

simulation

MEM 2

simulation

transfer circuit parameter of boundary part

SLOT

store circuit parameter 

boundary part

…

 

Figure 10. Circuit partitioning for parallel processing. 
 
into N parts to perform parallel processing. The memory 
and the simulation module are regarded as one functional 
block, and all the functional blocks are operated in paral- 
lel. The boundary of sub-circuit is overlapped, and the 
data of boundary part is stored in each memory. There is 
a point that should be considered in parallelization. For 
example, when simulating the sub-circuit No. 2, voltage 
is referred from right-hand memory to compute the out- 
flow current of right boundary part. The inflow current is 
considered to simulate the left boundary part, however 
the inflow current quotes the outflow current of the left 
node as shown in Figure 4. However, referring to the 
inflow current, it is necessary to adjust timing at Stage 2. 
Then, simulation results are referred from left-hand cir- 
cuit, and the process of timing adjustment is omitted to 
prevent performance deterioration. Therefore, the results 
of boundary part must be stored into each memory. 

In massively parallel computing approach, e.g. GPGPU, 
similar synchronization technique is discussed to hold the 
important data in shared memories. In our FPGA ap- 
proach, the structure of the shared memories are struc- 
tured as we like, thus, in general, more efficient data 
communications are possible. 

5. Experimental Results 

5.1. Evaluation of Pipeline Processing 

To evaluate the speed of the proposed hardware simula- 
tor, FE is described in C language with fixed point, 
which is functionally equal to the hardware simulator. Bit 
shift is executed to prevent overflow after multiply op- 
eration. The simulation is executed with fixed time step. 
The FE program in C language is executed on HP 
xw9400Workstation with Dual-Core AMD Opteron Pro-
cessor2220 2.8 GHz and 8 GB RAM. The test data for 
accuracy evaluation is given by an RC circuit as shown 
in Figure 1, and the circuit scale is 100 × 100 grids. The 
value of resistance is selected from 2, 3, 4 [mΩ], and the 
value of each capacitance is selected from 10, 30, 60 
[μF]. 

The supply voltage is 1 [V]. The results of SPICE si-
mulation by the same circuits are used for the reference 
data. SPICE performs Backward Euler method and Tra-
pezoidal method  [14]. These analytical methods real- ize 
high accuracy, however take a lot of processing time, in 
general. For speeding up the simulation, SPICE dy- 
namically selects the time step size. The maximum error 
ratio in the all node voltage is evaluated by comparing 
the FE and SPICE.  

First, pipeline processing is achieved as one of the 
speed-up techniques with hardware. The architecture de- 
scribed in Section 4 is achieved with Verilog HDL. Then, 
the speed performance of the power grid simulation by 
three processing, software, non-pipeline, pipeline, are 
compared as shown in Table 3. The processing time of 
software shows the result of single thread execution. That 
of HDL is calculated by number of clock times multi- 
plied by the clock period of the FPGA. Target FPGA for 
logic synthesis is “EP2S180F1020C3, Stratix II, AL- 
TERA”. Quartus II 7.1 is used as a logic synthesis tool. 
Non-pipeline processing is achieved about 1.2 times 
faster than software. As a result, the maximum frequency, 
26 [MHz], was low because some operations had been 
executed with one clock. Inserting the register between 
each arithmetic unit, pipeline processing achieved about 
three times faster than non-pipeline processing. The 
maximum clock frequency and the latency are 80 [MHz] 
and 101 [nsec] by pipeline processing. In this experiment, 
32-bit multiplication has become critical path because the 
pipeline stage was delimited between each arithmetic 
unit. About dividing the pipeline stage, there is leeway 
for improvement.  

Next, the circuit scale has been changed. Table 4 shows 
the speed gain by the hardware implementation. Experi- 
ment has been executed on large power grid to compare 
simulation time. The speed gain tends to be high in large 
scale circuit, and the hardware simulator has achieved 
4.5 times faster processing speed than software. 

Copyright © 2012 SciRes.                                                                                   CS 



T. HASHIZUME  ET  AL. 159

Table 3. Speed gain by pipeline processing. 

 Time [sec] Frequency [MHz] 

C 8.0 [N/A] 

Non-pipeline 6.4 26 

Pipeline 2.1 80 

 
Table 4. Speed estimation by changing circuit scale. 

Circuit scale C [sec] HDL [sec] 

100 × 100 8.0 2.1 

200 × 200 38 8.3 

300 × 300 85 18 

500 × 500 252 52 

5.2. Evaluation of Parallel Processing 

This section described parallel processing of the power 
grid simulation. The simulation module by pipeline 
processing in previous section is connected in parallel. 
The entire circuit scale is changed from 50 × 50 to 500 × 
500, and the speeding gain by the parallel processing is 
shown in Table 5. Figure 11 shows the processing time 
and speed ratio when the circuit scale is set to 500 × 500 
grids. The bar chart indicates the processing time. The 
line charts and shows the speeding up ratio when the 
number of partitions is expanded. 

The speeding up ratio is set on the basis of the process- 
ing time at one block. A high parallelism have achieved 
without saturation even if the number of partitions in- 
creased. About 7.9 times speeding up has been achieved 
when the power grid had been divided into eight. When 
the number of division circuits is defined as N, the speed 
improvement of proposal algorithm expect as shown in 
(1).  

   1 1 H_SIN   ZE 1 H_SIZE       (1) 

Increasing the number of division circuit influence 
speed improvement because the boundary parts are over- 
lapped. Table 6 shows the result of logic synthesis when 
simulating 100 × 100 grids and divided into eight. The 
usage rate of DSP is comparatively high. Therefore, it is 
necessary for higher parallel processing to improve the 
algorithm or apply to larger scale FPGA. 

6. Conclusions 

In this paper, we have proposed an efficient hardware 
circuit simulator for power grid optimization. The pro- 
posal technique achieves high accuracy and high speed 
simulation by adopting fixed point arithmetic and parallel 
processing. 

In the evaluation experiment of accuracy, we have 
evaluated four type’s analysis method by comparing the  

Table 5. Speed gain by changing the number of partitions. 

 2 3 4 5 6 7 8 

50 × 50 2.0 2.9 3.8 4.6 5.5 6.3 7.1 

100 × 100 2.0 2.9 3.8 4.8 5.6 6.2 7.1 

200 × 200 2.0 3.0 3.9 4.9 5.9 6.8 7.7 

500 × 500 2.0 3.0 4.0 5.0 5.9 6.9 7.9 

 
Table 6. Result of logic synthesis of eight parallel simulation 
modules. 

Logic 14,546 [LEs] (10%) 

Memory 4.3 [Mbit] (45%) 

DSP (9-bit) 524 (68%) 

Max frequency. 80 [MHz] 

 

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

time

speed ratio

time[sec] 

No. of partition

speed ratio 

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

 

time

speed ratio

time[sec] 

No. of partition

speed ratio 

  

Figure 11. Circuit partitioning for parallel processing. 
 
functionally equal program and SPICE. The FE achieves 
high accuracy simulation by several different experi- 
ments, i.e., in different time steps, floating point or fixed 
point. 

Next, we have evaluated the speed gain by pipeline 
processing and parallel processing. The proposed power 
grid simulation algorithm performs 4.5 times faster 
processing than software processing. In addition, eight 
parallel processing achieves 7.9 times higher speed than 
one unit processing. Therefore, the proposed power grid 
simulation using 80 MHz FPGA achieves 35 times high-
er speed than software processing with 2.8 GHz CPU 
while maintaining the high accuracy.  

In the future, we will implement the proposed hard- 
ware algorithm onto a Compute Unified Device Archi- 
tecture (CUDA) platform.  

REFERENCES 

[1] D. A. Andersson, L. J. Svensson and P. Lasson-Edefors, 

Copyright © 2012 SciRes.                                                                                   CS 



T. HASHIZUME  ET  AL. 

Copyright © 2012 SciRes.                                                                                   CS 

160 

“Noise-Aware On-Chip Power Grid Considerations Using 
a Statistical Approach,” Proceedings of International 
Symposium on Quality Electronic Design, San Jose, 
17-19 March 2008, pp. 663-669.  

[2] S. W. Wu and Y. W. Chang, “Efficient Power/Ground 
Network Analysis for Power Integrity-Driven Design 
Methodology,” Proceedings of Design Automation Con-
ference, San Diego, 7-11 June 2004, pp. 177-180. 

[3] A. Muramatsu, M. Hashimoto and H. Onodera, “Effects 
of On-Chip Inductance on Power Distribution Grid,” 
IEICE Transactions on Fundamentals of Electronics, 
Communications and Computer Sciences, Vol. E88-A, 
No. 12, 2005, pp. 3564-3572. 

[4] Y. Zhong and M. D. F. Wong, “Thermal-Aware IR Drop 
Analysis in Large Power Grid,” Proceedings of Interna-
tional Symposium on Quality Electronic Design, San Jose, 
17-19 March 2008, pp. 194-199. 

[5] B. Yu and M. L. Bushnell, “Power Grid Analysis of Dy-
namic Power Cutoff Technology,” Proceedings of Inter-
national Symposium on Circuits and Systems, New Or-
leans, 27-30 May 2007, pp. 1393-1396. 

[6] C. Mizuta, J. Iwai, K. Machida, T. Kage and H. Matsuda, 
“Large-Scale Linear Circuit Simulation with an Inversed 
Inductance Matrix,” Proceedings of Asia and South Pa-
cific Design Automation Conference, Kanagawa, 27-30 
January 2004, pp. 511-516. 

[7] P. M. Lee, S. Ito, T. Hashimoto, J. Sato, T. Touma and G. 
Yokomizo, “A Parallel and Accelerated Circuit Simulator 
with Precise Accuracy,” Proceedings of International 
Conference on VLSI Design, Bangalore, 7-11 August 
2002, pp. 213-218. 

[8] N. Nakasato and T. Hamada, “Acceleration of Hydrosy-
namical Simulations Using a FPGA Board,” Institute of 
Electronics, Information and Communication Engineers 
Technical Report, Vol. 105, No. 515, 2006, pp. 19-24. 

[9] T. Watanabe, Y. Tanji, H. Kubota and H. Asai, “Paral-
lel-Distributed Time-Domain Circuit Simulation of Power 

Distribution Networks with Frequency-Dependent Pa-
rameters,” Proceedings of Asia and South Pacific Con-
ference on Design Automation, Yokohama, 24-27 January 
2006, pp. 832-837. 

[10] Y. Gu, T. Vancourt and M. C. Herbordt, “Improved In-
terpolation and System Integration for FPGA-Based Mo-
lecular Dynamics Simulations,” Proceedings of Interna-
tional Conference of Field Programmable Logic and Ap-
plications, Madrid, 28-30 August 2006, pp. 1-8.  
doi:10.1109/FPL.2006.311190 

[11] L. Zhuo and V. K. Prasanna, “High-Performance and 
Parameterized Matrix Factorization on FPGAs,” Pro-
ceedings of International Conference of Field Program-
mable Logic and Applications, Madrid, 28-30 August 
2006, pp. 363-368. doi:10.1109/FPL.2006.311238 

[12] M. Yoshimi, Y. Osana, Y. Iwaoka, Y. Nishikawa, T. Ko-
jima, A. Funahashi, N. Hiroi, Y. Shibata, N. Iwanaga, H. 
Kitano and H. Amano, “An FPGA Implementation of 
Throughput Stochastic Simulator for Large-scale Bio-
chemical Systems,” Proceedings of International Con-
ference of Field Programmable Logic and Applications, 
Madrid, 28-30 August 2006, pp. 227-232.  
doi:10.1109/FPL.2006.311218 

[13] H. Ishijima, T. Harada, K. Kusano, M. Fukui, M. Yoshi-
kawa and H. Terai, “A Power Grid Optimization Algo-
rithm with Consideration of Dynamic Circuit Opera-
tions,” Proceedings of Synthesis and System Integration 
of Mixed Information, Nagoya, 3-4 April 2006, pp. 446- 
451. 

[14] Y. Kawakami, M. Terao, M. Fukui and S. Tsukiyama, “A 
Power Grid Optimization Algorithm by Observing Tim-
ing Error Risk by IR Drop,” IEICE Transactions on 
Fundamentals, Vol. E91-A, No. 12, 2008, pp. 3423-3430. 

[15] T. Hashizume, H. Ishijima and M. Fukui, “An Evaluation 
of Circuit Simulation Algorithms for Hardware Imple-
mentation,” Proceedings of Synthesis and System Inte-
gration of Mixed Information, Hokkaido, 15-16 October 
2007, pp. 322-327. 

 
 

http://dx.doi.org/10.1109/FPL.2006.311190
http://dx.doi.org/10.1109/FPL.2006.311238
http://dx.doi.org/10.1109/FPL.2006.311218

