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ABSTRACT 

The state reconstruction problem is addressed for complex dynamical networks coupled with states and outputs respec-
tively, in a noisy transmission channel. By using Lyapunov stability theory and H∞ performance, two schemes of state 
reconstruction are proposed for the complex dynamical networks with the nodes coupled by states and outputs respec-
tively, and the estimation errors are convergent to zeros with H∞ performance index. A numerical simulation demon-
strates the effectiveness of the proposed observers. 
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1. Introduction 

Complex dynamical networks have recently been a hot 
topic in science and engineering fields because it can 
describe many phenomena in nature and engineering 
[1-4]. For instance, power grid is a complex network if 
the electrical equipments are treated as nodes and the 
interactions between the equipments as edges; the indi- 
viduals are treated as nodes and the interactions between 
the individuals as edges in a community then the com- 
munity can be described as a network.  

The synchronization of a complex dynamical network 
has been reported in the latest decade including inner 
synchronization and outer synchronization [5-12]. All 
state variables are required to construct the synchroniza- 
tion controllers in [5-7,11]. In [8,10,12], partial state va-
riables are needed to construct the synchronization con-
trollers. For outer synchronization, the circumstance 
noise is considered in [9].  

Recently, topology identification, fault diagnosis and 
parameter identification [13-20] of complex networks 
have become hot topic in complex network applications, 
and network synchronization has found applications in 
these fields. For topology identification, it is assumed 
that all of the states are available for a complex network 
in [15,17-20]. For monitoring topology change of net- 
work, it is assumed that the partial state variables are 
required for the network in [14,16].  

In the above study and other fields of complex net- 

work, all or partial state variables are needed for design. 
However, for a large scale network, measuring all state 
variables is not easy or even impossible in practice, and 
locating many sensors costs much. Therefore, it is very 
important to estimate or reconstruct all state variables 
based on some limited available network information. 
For discrete complex networks, state reconstruction has 
been reported in [21]. For continuous time complex dy- 
namical networks with transmission noise, there has been 
little theoretical work on state estimation in the literature.  

Motivated by the above observations, in this paper we 
study the state reconstruction or state estimation problem 
for a complex network with transmission channel noise. 
By using Lyapunov stability theory and H∞ control the- 
ory, some state reconstruction schemes are derived for 
complex dynamical networks including state coupling 
and outputs coupling. For suppressing noise in the chan- 
nel, the integral observers [22,23] are applied and the 
estimation errors are bounded with H∞ performance. 
Some numerical examples are given to shown the effect- 
tiveness of the proposed schemes. 

The rest of this paper is organized as follows. In Section 
2, the state reconstruction of state coupling networks is 
studied and some estimation criteria are derived in the form 
of linear matrix inequality. In Section 3, the state recon- 
struction of output coupling networks is studied and some 
estimation criteria are given. Some examples are given in 
Section 4 and conclusions are drawn in Section 5. 

2. State Reconstruction of Networks Coupled  
with States 

*This work was supported in part by the National Natural Science 
Foundation of China under 60874091 and 61104103, the Natural Sci-
ence Foundation for Colleges and Universities in Jiangsu Province, 
China under 10KJB120001. Consider a general complex dynamical network consist- 
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ing of N identical nodes with states couplings, which is 
described as follows  

 
1

N

i i i ij j i
j

ix Ax f x c x y Hx


    

T n

     (1) 

where , i i1 i N   1 2, , ,i inx x x x R 
m

i

 is the state 
vector of the ith node, y R

n n
 is the output vector of 

the ith node, A R 
n n

 is the system matrix of node i, 
:f R R  is a nonlinear smooth vector field, m nH R   

is the output matrix of node i,  is the coupling 
matrix of node i, node dynamics is 

n nR 
 x Ax f x  ,  

  N Nij N N
C c R  is the coupling configuration matrix.  

If there is a link from node i to node , then 
; otherwise . Assume that C is a diffusive  

j i j 
1ijc  0ijc 

N

matrix satisfying . It is noted that the con-  
1

ij ii
j j i

c c
 

 
figuration matrix C does not need to be irreducible and 
symmetric. 

Hypothesis 1: (H1) Suppose that  f x  is Lipschitz 
continuous. That is, there exists a positive number con- 
stant α satisfying    ˆ ˆf x f x   x x  for nx R , 
ˆ nx R , where  represents the Euclidean normal. 

For most networks, all of the states are generally not 
available. To reconstruct the states of network (1), out- 
puts i  are transmitted from (1) to the observer through 
the transmission channel. In the practical engineering, 
there exists noise in the transmission channel. Therefore, 
the measurements received by the observer are charac- 
terized by 

y

 1,2, ,i i i y Hx w i N              (2) 

where m
iy R  is the actual measurement outputs and 

 are the noises in the transmission channel.  iw
Hypothesis 2: (H2) Suppose that the disturbances in 

the transmission channel are bounded, i.e., there exists a 
positive constant d such that iw d . 

To reconstruct all the states of (1), the following ob- 
server is presented 

   

 
1

ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ

N

i i i ij j i i i
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z y Hx w z y Hx l z z
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  (3) 

where , 1, 2, ,i N  ˆ n
ix R

ˆi

 is the state estimated for 
ith node in the network (1), my R  is the output vector 
of the ith in (3), n m

iK R   and  are the observer 
gain matrices to be determined. 

m m
il R

Remark 1: The observer (3) is different from the tradi- 
ional proportional observer because its controller is the  t

integral of the measurements [22,23]. The states recon- 
structed by (3) can better converge to the states of (1) 
since the disturbance is not amplified if a large propor-
tional gain iK  is used [8].  

The aim is to determine appropriate observer gain ma- 
trices n m

iK R   and  such that the recon- 
structed states 

m m
il R 

ˆix  approach the network states ix . 
Define the state errors  

ˆ
1, 2, ,

ˆ
i i i

zi i i

e x x
i

e z z

 


 
 N             (4) 

Then it follows from (1) and (3) that 

   
1

ˆ

             1, 2, ,

N
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j
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e Ae f x f x c e K e

e He w l e i N


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TT
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  

 0D I  and . Then (5) can be 
rewritten as 

 , ,

N

diag P P  


N



 
1

ˆ, T
i i i i ij j i i

j

E BE F x x c GE Dw K D E

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i  (5) 

Then we will derive iK  to guarantee that i  are con- 
vergent to zeros when 

E
0iw  , and i  are convergent 

to zeros with 
E

H  performance  , characterized by the 
following inequality, when  and 0iw  iw d . 

     2 2  2

0 0
d d 0 0i i iE t t w t t E


     (6) 

Theorem 1: Suppose that H1 and H2 hold. If there ex- 
ist matrices 0TP P  ,  1, 2, ,i M i   N and a con- 
stant 0   such that the following inequality holds 

     0C P C P
T

                (7) 

where   2 2T Tdiag PB B P I P I DD P I          

 2 2
1 1 , ,T T T TDM M D PB B P I P I DD P I        

T T

 

N NDM M D 

0iw

, then the error dynamical system (6) 
will converge to zeros with H∞ performance γ when 

 . Consequently, network (3) can estimate the state 
of network (1) with H∞ performance γ when 0iw   and 

1
i iK P M . 

Proof: Define a Lyapunov function .  
1

Differentiating V along the error dynamical system (6) 
nd using Hypothesis 1, one obtains 

N
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
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Define . Using (8), one obtains  1 , ,
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From (10) and Lyapunov stability theorem,  are ex- 
ponentially convergent to zeros when i . Under 

, integrating (10) from 0 to ∞ yields that 

iE
0w

 0 0iE  H  
performance  . The proof is completed. 

To easily solve the matrix inequality, Schur comple- 
ments lemma [9] is used here. Then (8) is transformed 
into the following linear matrix inequality 

    
  1

0

T

T

C P C P

I DD


        
  
    

T

(10) 

where   2 2
1 1 ,T Tdiag PB B P I I DM M D        

2 2T T T , N NPB B P I I DM M D     

 , ,diag P P  
, and  

. 

3. State Reconstruction of Networks Coupled  
with Outputs 

Next, we consider a complex dynamical network consist- 
ing N identical nodes coupled with the outputs charac- 
terized by 

 
1

N

i i i ij j i
j

ix Ax f x c Ly y Hx


       (11) 

where . n mL R 
The outputs i  are disturbed by noise when they are 

transmitted from network (12) to the observer. Therefore 
information received by the observer is characterized by 
(2). The observer is designed as the following form 

y

   

 
1

ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ

N

i i ij j i i i
j
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z y Hx w z y Hx l z z
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where n m
iK R   and m m

il R   are the observer gain 
matrices to be determined. Then one can obtain the error 
dynamics 
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Let , then (14) can be rewritten as  
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where 
0

0 0

L
L

 
  
 

 and  0H H . Consequently,  

atrices determine m iK  such that error dynamics (15) is 
H  stable with pe ance, that is, observer (13) re- rform

f construct the states o network (12) with H  perform- 
ance. The fo ing theorem gives the criteria of deter- 
mining matrices i

llow
K . 

Theorem 2: Suppose that H1 and H2 hold. If there ex- 
ist matrices P P 0T  ,  1, 2, ,iM i N   and a con- 
stant 0   such that the following inequality holds 

     0
T

C PLH C PLH            (15) 

where   2 2T Tdiag PB B P I P I DD P I         

 2 2
1 , ,T T TM D PB B P I P I DD P I1

TDM        
T T

  

) N NDM M D   
will converge to 

then the error dynamical system (15
the zeros with H  performance γ 

when 0iw  . Consequently, observer (13) can estimate 
the state of network (12) with H  performance γ when 

0iw   and 1
i iK P M . 

The proof of Theorem 2 is sim r to that of Theorem 1, 
omitted

ila
so it is  here.  

Using Schur complement lemma, one obtains the fol-
lowing linear matrix inequality 

    T
C PLH C PLH     

  1
0

TI DD

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(16) 

where  2 2
1 1 ,T Tdiag PB B P I I DM M D          

2 2T T T

T

 and  N NB P I I DM M D     , PB

 , ,diag P P   . 
Remark 2: In this section, the complex dynamical 

netw ed ork coupl with the outputs is considered because 
this kind of networks is practical in engineering for sav- 
ing communications and sensors. When the transmission 
channel is ideal, the observer (13) can reconstruct the 
states of network (12) with exponential convergence. 
When the transmission channel is noisy, the observer can 
reconstruct the states of network (12) with H  per- 
formance. 

4. Numerical Simulations 

ples are given to dem- 
sed state reconstruct- 

In this section, some numerical exam
onstrate the effectiveness of the propo
tion scheme for complex dynamical networks. In the net- 
work, chaotic Lorenz system is taken as the node dynamics. 

Lorenz chaotic system is a well-known typical bench- 
mark chaos, which can be described by the following [10] 
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Figure 1. Errors between small world network (1) and ob-
server (3). 
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where a, b and c are parameters. When a = 10, b = 28 
and 
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8 3c   , the system (18) is chaotic. 
For any two state vectors ix  and jx  of the Lorenz 

syste chaotic attractor is bounded m, since in a certain re- 
gion, there exists a constant   satisfyi  ng ikx   and 

jkx   for 1,2,3k  . Then one gets the following 

   
 
 

2

2

1 2 1 2

2

i j

i i j j

i j i j

f x
x x x x

x x x x 


 

   

    (18) 

Then the Lorenz system satisfies the Hypothesis H1. 
The complex dynamical network is assumed to contain

 by
G

1 3 1 3j j i ix x x x
f x


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 10 nodes and transmission noise is characterized

uass stochastic noise with mean 0 and magnitude 0.1. 
The other parameters of networks are  1 0 0H  , 

 1 1 1diag  , and  1 1 1
T

L  . The initial val-
ues of networks are randomly evaluated in

network c  states is consid-
ered. Using MATLAB LMI toolbox, one obtains 

 [0, 1]. 
A small world oupled with

2   

10.6167 4.8627 0.0003 0.1234

4.8627 2.2281 0.0008 0.0354

   
  

0.0003 0.0008 0.5995 0.0014

0.1234 0.0354 0.0014 20.6716

P  
  

  

 

16230.5230

35426.0276

56.9691

322.2331

K

 
  
 
 
 

 

The simulation results are shown in Figure 1. From Fig- 
ure 1, one can see that the error dynamics converge to 
zeros although there is transmission noise. 

5. Conclusion 

nd the output 
re both considered. To attenuate noise 
 channel, integral observers are used 

In this paper, we study the problem of state reconstruct- 
tion for a complex dynamical network under noisy cir- 
cumstances. The state coupling network a
coupling network a
in the transmission
and estimation errors with H∞ performance index are 
obtained. Some examples are given to demonstrate the 
effectiveness of the proposed scheme. 
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