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ABSTRACT 

The concept of generalized order statistics has been introduced as a unified approach to a variety of models of ordered 
random variables with different interpretations. In this paper, we develop methodology for constructing inference based 
on n selected generalized order statistics (GOS) from inverse Weibull distribution (IWD), Bayesian and non-Bayesian 
approaches have been used to obtain the estimators of the parameters and reliability function. We have examined Bayes 
estimates under various losses such as the balanced squared error (balanced SEL) and balanced LINEX loss functions 
are considered. We show that Bayes estimate under balanced SEL and balanced LINEX loss functions are more general, 
which include the symmetric and asymmetric losses as special cases. This was done under assumption of discrete-con- 
tinuous mixture prior for the unknown model parameters. The parametric bootstrap method has been used to construct 
confidence interval for the parameters and reliability function. Progressively type-II censored and k-record values as a 
special case of GOS are considered. Finally a practical example using real data set was used for illustration. 
 
Keywords: Inverse Weibull Distribution; Generalized Order Statistics; Record Values; Progressive Type-II Censored; 

Balanced Type Loss Function; Bootstrap Estimation 

1. Introduction 

Udo Kamps [1,2] has introduced GOS as random vari-
ables having certain joint density function, which includes 
as a special case the joint density functions of many models 
of ordered random variables such as ordinary order sta- 
tistics (OS) (David [3], Castillo [4] and Arnold, Balakrish- 
nan and Nagaraja [5]), sequential order statistics (SOS) 
(Cramer and Kamps [6,7]), record values, Kth record values, 
and Pfeifer’s records (Nevzorov [8] and Ahsanullah [9]), 
Progressive Type-II censoring order statistics (PCOS) 
(Soliman [10-13], Balakrishnan and Asgharzadeh [14], 
and Sarhan, Ammar and Abuammoh [15]). The structural 
similarities of these models are based on the similarity of 
their joint density function. Therefore, all of these mod- 
els are contained in the model of GOS. 

For Bayesian estimates, the performance depends on the 
form of the prior distribution and the loss function assumed. 
The prior information can be expressed by the experi- 
menter, who has some belifs about the parameters of his 
parametric model. Traditionally, most authors use the sim- 
ple quadratic loss function and obtain the posterior mean 
as the Bayesian estimate. However, in practice, the real loss 
function is often not symmetric. For example, the cones- 
quences of overestimates, in loss of human life, are much 
more serious than the consequences of underestimates. In 
this case an asymmetric loss function is more appropriate. 

Recently, many authors consider asymmetric loss func- 
tions in reliability, such as [Wahed [16], Alicja [17], Abd 
Ellah [18-20] and Sultan [21]. 

In this paper based on n selected GOS from the inverse 
Weibull model, we consider the problem of Bayesian and 
non-Bayesian estimation for parameters and reliability func- 
tion of the model. This was done under assumption of dis- 
crete-continous mixture prior for the unknown parameters. 
It well know that in Bayesian setting, for making opti- 
mum decision, importance should be given on the choice 
of loss function and not just the choice of prior distribu- 
tion. So, the results are presented under the balanced ver- 
sions of symmetric and asymmetric loss functions. Pro- 
gressively type-II censored and record values as a special 
case of GOS are considered. The rest of paper is organ- 
ized as follows. In Section 2, we first present some pre- 
liminaries. 

2. Preliminaries 

2.1. The Model and the Concept of the GOS 

The IWD plays an important role in many applications, 
including the dynamic components of diesel engines and 
several data set such as the times to breakdown of an in- 
sulating fluid subject to the action of a constant tension; 
see Nelson [22]. Calabria and Pulcini [23] provide an in- 
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terpretation of the IWD in the context of the load-strength 
relationship for a component. Recently, Maswadah [24] 
has fitted the IWD to the flood data reported in Dumon- 
ceaux and Antle [25]. For more details on the IWD, see, 
for example Murthy et al. [26]. The two parameter IWD 
has probability density function (pdf) cumulative distri- 
bution function (cdf) and reliability function S(t) which 
are given respectively as 

   1= exp , 0, ,f x x x x        > 0,



 (1) 

   = exp , 0, , > 0,F x x x          (2) 

and the reliability function at time t is 

   = 1 exp , 0, , > 0,S t t t           (3) 

where   and   are scale and shape parameters re-
spectively. 

We recall the concept of GOS (cf. Kamps [1]). 
Let and ,n N n  2 ,  1

1 2 1= , , , n
nm m m m 
  

 1, , , ,

 then 

the random variables X n m k ,  , ,  , ,X n n m k  

are called the generalized order statistics if their joint pdf 
is given by 
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2.2. Balanced Type Loss Functions 

The class of balanced type loss function (BLF) we can 
write it in the form (see Ahmadi et al. [27]). 

             , , , = , 1 ,qL q q                 
(5) 

where   estimating of parameter    ,   a prior target 

estimator of    , , 0,1  ,    being as arbitrary 

loss function in estimating     by   and  q   suit-
able positive weight function. In this paper we shall use 
balanced squared error loss (balanced SEL) and balanced 
LINEX loss function to illustrate Bayesian estimation of 
parameters of inverse Weibull. 

2.2.1. Balanced Squared Error Loss Function 
The balanced SLE is obtained with the choice of 

    2
, =       ,  and   = 1q   in (5), and given 

by 
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, , = 1L              

and the Bayes estimation of     under   , ,L      
is given by 

       , = 1 .x x E        x

)

        (7) 

2.2.2. Balanced LINEX Loss Function 
The balanced LINEX loss function with shape parameter 

( 0c c  , is obtained with the choice of 
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and given by 

  = 1q 

      

       
, , = 1

                         1 1 ,

c

c

L e c

e c

 
 

  

     

   





    
       

(8) 

and the Bayes estimation of     under   , ,L      
is given by 
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    (9) 

3. Maximum Likelihood Estimation (MLE) 

Let    1, , , , , , , ,X n m k X n n m k    are n GOS drawn from 
inverse Weibull distribution whose pdf is given by (1), 
based on this set of GOS the log-likelihood function is 
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If both of the parameters   and   are unknown, 
their MLEs, ˆ

ML  and ˆ
ML  can be obtained by solving 

the following likelihood equations 
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(12) 

The required estimates ˆ
ML  and ˆ

ML  are to be 
found by solving simultaneously the two Equations (11) 
and (12). Clearly that the calculation of the MLE requires 
iterative procedures. We can use the well known New-  ,     (6) 
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ton-Raphson technique. By moving any point along in 
the direction determined by the information matrix and 
the first derivative of the log-likelihood function, we can 
iteratively improved the starting estimates to MLE, for 
details see Lawless [28]. For a given t, the corresponding 

MLE  ˆ
ML

S t  of the reliability function  my be 

obtained by replacing 

 S t

  and   by ˆ
ML  and ˆ

ML  in (4). 

3.1. Special Cases 

In general, it is not easy to find a natural interpretation of 
generalized order statistics in terms of observed random 
samples. So, an interesting special cases such as the pro- 
gressive Type II censored order statistics and record val- 
ues have been used. These models are the most applica- 
ble general models of ordered random variables and is 
useful in reliability and life time studies. Several authors 
have addressed inferential issues based on progressive 
Type-II censored samples (for example, see Balakrishnan 
and Sandhu [14], Aggarwala and Balakrishnan [29] Ng et 
al. [30], Balakrishnan et al. [31] and Soliman [10-13]. 
One may refer to Balakrishnan [32,33] for a recent over- 
view of various developments relating to progressive cen- 
soring. Also, record values arise in a wide variety of practi- 
cal situations. Examples include industrial stress testing, 
meteorological analysis, hydrology, seismology, sporting 
and athletic events, and oil and mining surveys. Proper- 
ties of record values have been studied extensively in the 
literature. Interested readers may refer to the books by 
Nevzorov [8] and Arnold et al. [34,35]. 

In this section we will consider two special cases of 
GOS, namely, the progressively Type-II censored sample 
and lower record values. 

3.1.1. Progressively Type-II Censored Data 
A progressively Type-II censored sample is observed as 
follows: n units are placed on a life-testing experiment 
and only m ≤ n are completely observed until failure. The 
censoring occurs progressively in m stages. The m stages 
are failure times of m completely observed units. At the 
time of the first failure (the first stage), R1 of (n – 1) sur- 
viving units are randomly withdrawn from the experi- 
ment, R2 of the (n – R1 – 2) surviving units are withdrawn 
at the time of the second failure (the second stage) and so 
on. Finally, at the time of the mth failure (the mth stage), 
all the remaining (Rm – n – m – R1 –  – Rm–1) surviv- 
ing units are withdrawn. We will refer this to as progres-
sively Type-II censoring scheme (R1, R2, , Rm) Then, 
we shall denote the m completely observed failure times 





by  1 , ,

: : , = 1, 2, , .
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i m nX i m
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The progressively Type-II censored sample  
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 is a special case of the GOS with the 
parameters and = 1,2, , 1i n  = = 1,n nk R   
see Burkschat et al. [36]. 

From Equations (11) and (12) the required estimates 
ˆ
ML  and ˆ

ML  in progressively Type-II censored are to 

be found by solving simultaneously the following two 
equations 
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The ML estimate of reliability  is given by  S t
ˆ ˆ ˆ= 1 exp( ),ML

MLML
S t t               (15) 

where ˆ
ML  and ˆ

ML  are be found from the numerical 
solution of the Equations (13) and (14). 

3.1.2. Lower k-Record Values 
Let  , 1jX j   be a sequence of independent and iden-
tically (iid) continuous random variables with cumulative 
distribution function (cdf)  F x  and probability density 
function (pdf)  .f x  An observation jX  is defined to 
be an lower record if <j iX X  for every  and an 
analogous definition can be given for upper records 
( with the inequality being reversed ). The record values 
is special case of GOS, in which if we put  

1

< .i J

=m m1 2 =
= = 1,nm   and replacing  F x  by  F x  in (10), 
then the log-likehood of lower k-record values is given by 
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the ML estimates of   and   can be obtained from 
(16) by solving the following two equations as then 
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n
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The ML estimate of reliability  is given by  S t

  ˆˆ ˆ= 1 exp( ),ML
MLML

S t t          (18) 

where ˆ
ML  and ˆ

ML  are given by (17). 

4. Bayes Estimation 

In this section, we estimate the two parameters   and 
  of IWD and The reliability  based on GOS by  S t
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considering both of balanced SEL and balanced LINEX 
loss function. Progressively type-II censored and k-re- 
cord values as a special case of GOS are considered. 

4.1. Bayes Estimation Based on GOS 

When both of the two parameters   and   are assumed 
to be unknown, Soland [37] considered a family of joint 
prior distributions that places continuous distributions on 
the scale parameter and discrete distributions on the shape 
parameter. 

Suppose that the shape parameter   is restricted to a 
finite number of values 1 2, , ,    with respective prior 
probabilities 1 2, , ,     such that 0 1j ,   
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by using the Bayes theorem, the conditional posterior 
density function of   is given by 
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On applying the discrete version of Bayes theorem, the 
marginal probability distribution of   is given by 
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 Bayes Estimation Based on Balanced S
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as 

 
 

 
11 1

1 1
ˆ ˆ= 1 ,

nmm k
j j

BS

p A D n a
  

    
     

1 1

1
=1 =0 =0 d=0

j
n

ML n a
j q q

jT 
 

 
 

(26) 

, 
=1

ˆ ˆ= 1BS ML j
j

p j              (27) 

and 

   

   
 

11

1 1

1

1
=1 =0 =0 d=0

ˆ ˆ=

 1 1
n

j
n

BS ML

mm k
j

j n a
jj q q

j

S t S t

D n a
p A

T t














,

 
  

   
     

   

(28) 

where ˆ
ML  and ˆ

ML  

,

are to be found by solving (11) 

and (12), ˆ( )MLS t  A1, pj and  jT   are given res

s Estim  on Ba

pec-
tively, b 5), (22) 3) and (25). 

4.1.2. Baye ation Based lanced LINEX 
Loss Function 

y (1 , (2

From (21) the Bayes estimates of  ,   and  S t  in 
GOS under balanced LINEX loss function can be ob

, respectively as 
-

tained

   
 

11

1 1

1ˆ 1

=1 =0 =0 d=0

1ˆ =BL c
 

log 1 ,
n

j
n

mm k
j jc ML

n a
j q q

j

p A D n a
e

T c

 











          

  

(29) 


 ˆ

=1

1ˆ = log 1
cc jML

BL j
j

e p
c

  
 ,e

 
   

 
    (

and 

30) 

     

   
 

1

1

ˆ

1
=1

11

=0 =0 =0 =11

1ˆ = log 1 1

,
!

BL

n

j
n

cS t c

jBL
j

sm m k
j

n a
jq q d s

j

S t e p A e
c

D n ac

s T st


 







 

 



 
    

 


  
  

       



  

(31) 

where ˆ
ML  and ˆ

ML  are to be found by solving (11) 
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A1, pj and  jT ˆ( ) ,MLS t  and (12),  are given respec-
tively, by  , (23) and (2

4.2. Special 

In this ion we will co o special cases of 
gos, the pr  type-I d sample and lower 
record val

ro y T

 (15), (22)

Cases 

subsect
ogressively
ues. 

g l
tions (2

5). 

nsider tw
I censore

(28) th
4.2.1. P ressive ype-II Censored Data 
From Equa 6), (27) and e Bayes estimates 
of  ,   and  S t  in progressively type-II censored 
data under balanced SEL, are given respectively by 

 
 

 1

1

1
=1 =0 =0

1

= 1 ,
j

n

BS ML n a
j q q
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  

 
 

  (32) 
3 1n p A D
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 
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and 
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And Fr tions (29), (3 1) 
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
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S t S t

(34) 

the Bayes es-
 ,   and ogressively type-II 

er balan ss function, given 
respectively by

 S t  in pr
ced LINEX locensored data und
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ower k-Record Values 
21), (22) and (27) in Lower k-record values the 

Bayes estimates of 

4.2.2. L
From (

 ,  S t  and   under balanced 
SEL, given respectively by 
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Similarly From (21), (22) and (27) in Lower k-record 
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where 

 
 

 
6

1

=1

      =

and = .

j j

j

j

a cn
jj j j j

j n a
jj

n j

n

j i
i

n aA b e
p

a kx b
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





  








 

 


 



   (45) 

5. Bootstrap Statistical Inference 

The bootstrap is a resembling method for statis
. It is commonly used to estimate confidence in-
 but it can also be used to estimate bias and vari-

ance of an estimator or calibrate hypothesis tests. Boot-
strapping is carried out by having an original data set 

tical in-
ference
tervals,

1 2, , , nX X X
cumulative distributio

 and sampling from an estima
n function (cfd) of

te of the 
 1 2, , , nX X X  

 The re-sam- 
i2,  , Xin), i = 

 

such that there
pled 

 are H re-sampled data sets.
data set will be denoted as Xi = (Xi1, X

1, 2,  , H. Inferences for the quantity    , where 
  is the vector of parameters, generally employ a test 
statistic, denoted as  1 2ˆ = , , , nT X X X  . In order to 

estimate the sampling distribution of ̂ , two methods 
are employed, the nonparametric and parametric bootstrap 
methods. The parametric bootstrap method involves having 
a mathematical model whose parameters that completely 

 probability density function (pdf) of 1,determine the X  

2 , , nX X , while the nonparametric one  
there is not an explicitly given mathematical model to 
use, but it is assumed that the re-sampled data sets are 
independently and identically distribute he fol- 

is used 

d (iid). T
lo

o

when

wing algorithm to describe the percentile bootstrap 
method as: 

Algorithm A: Percentile bootstrap alg rithm 
1) From an original data set 1 2, , , nX X X , draw H 

independent bootstrap samples 1X  , 2X  ,  , HX   with 

replacement, each of size n. 

2) Compute ˆ
i
  and ˆ

i
  , i = 1, 2, , H in progris- 

seve type II censored from numerical solution of (13) and 
(14), and from numerical solution of (17) in lower record 
values. 

3) Calculate the mean of all values in ̂   and ̂  . 

4) Sort th ˆ ˆe values 1, , H   ˆ ˆ and 1, H    in cend-

in

boo strap con-

as

g order to obtain the bootstrap samples 

 [1] [ ]ˆ ˆ, , H    and  [1]ˆ ˆ, ,   [ ]H  

5) A two-sided 100 1 
fidence interval for 

 %  percentile t  
  and   is defined, respectively, 

by 
    1 22ˆ ˆ, ,

HH        and     1 22ˆ ˆ, ,
HH        

(See Efron [38] and Efron et al. [39] for detailed dis-

cu

In this section, xample have been included in an 
attempt to illustrate the use of lower record values and 
pr  censored in

6.1. Lower Record V

E

 Nelson [22], concerning the data on time to 
d between electrodes at a 
he 19 time to breakdown 

Then the real data set from Inverse Wiebull distribu-

8, 0.124, 0.031, 0.136, 0.154, 

ssion). 

6. Application Example 

 two e

ogressive type II  estimating the parameter 
and reliability. 

alues 

xample 1. (Real data) 
We consider the real data set from Wiebull distribution 

as given by
breakdown of an insulating flui
voltage of 34 KV (minutes). T
are 

0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 
33.91, 32.52, 3.16, 4.85, 2.78, 4.67, 1.31, 12.06, 36.71, 
72.89. 

tion are 
1.04, 0.24, 5.26, 1.2

0.121, 0.029, 0.0314, 0.32, 0.21, 0.36, 0.214, 0.76, 0.082, 
0.027, 0.013. 

Therefore, we observe the following lower record val-
ues: 

1.04, 0.24, 0.124, 0.031, 0.029, 0.027, 0.013. 
We can obtain the values of  ,j ja b  by using the 

expected values of the reliability  S t ; 

 

    

1
exp

=

j
a aj j
j jb b  

=

1 exp d

, > 0.

j

E S t

t

t

 

= 1 1
j

j

j
a

a

t







jb



 

 

 

  (46) 

w suppose that the prior beliefs about the distribu-
tio   and 





 
  





 
  
 

No
n enable one to specify two values  S t1 1, t
  2 2,t t . Then the values of S ,j jb  

are no 
used to

a n by obtained 
numerically from (46). If there 

ca
prior beliefs, a

 estimate the two 
 

etric approach can be nonparam
values of  S t  by using 

  0.625
= = .

0.25i i

n i
S t X

n

 


         

See Martez and Waller [40]. 
By using the nonparametric approach of the reliability 

function ,  

 (47) 

we set t1 = 0:.031 and t2 = 0.124 in (47), we get
S(t1) = 0:5 and S(t2) = 0.36. 

For =10 concerning the value of the MLE of the pa-
rameter   which be found by solving the Equation (17), 

 ˆ = 0.585ML , we assume that j  takes the values: 

(0.3 (0.05) 0.75) with equal probabilities each of 0.1. 
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Then the values of the hyper-parameters ,ja  jb  at each example 1. 
0 13; ; ; 0.0307; ; ; ; 

0.1 ; 0.1 .1 21 4;  0 36; ; 
1. 28 6. Thi dat c fro e I  
W ll d tio  t

value of j  are obtained by solving the
tio thod. 

 following equa-
ns using Newton-Raphson me

0.031
1 1 = 0.5,

j
j

a

jb

  
   
 

 

0.124
1 1 = 0.36.

j
j

a

b

  
     

j 
ws the values of the per-parameters and Table 1 sho hy

posterior probabilities obtained for each j . 
By using the algorithm A and the entr  of Table 1, 

the boots p estimate, the ML estimate and the Bayes 
estimates of 

ies
tra

 ,  , and  S t  are presented in Table 2. 
By using a rd values in Algo-

rithm A the confidence intervals of 
 the real d ta of lower reco

 ,  , and  S t  
are presented in Table 3. 

6.2. Progressive Type II Censored 

Example 2. (Real data) We will take the same values in 

ter nd the pos-
te

 
Table 1. Prior information, hyper-parame s a

rior probabilities. 

j vj βj aj bj Pj vj 

1 0.1 0.30 0.539. 2.182 0.116 0.0103* 

2 0.1 0.35 0.440 1.775 139 0.26

3 0.1 0.40 0.375

0. 0* 

 1.508 0.145 0.0655*

4 0.1 0.45 0.327 1.320 0.137 0.1640* 

122 0.4140* 

7 0.1 0.60 0.242 0.984 0.083 2.6000* 

0.208 0.854 0.050 10.600* 

0  0.  0.  0.  40. * 

5 0.1 0.50 0.293 1.180 0.

6 0.1 0.55 0.265 1.071 0.103 1.0400* 

8 0.1 0.65 0.224 0.913 0.065 6.6000* 

9 0.1 0.70 

10 0.1 .75 195 803 038 100

*In ates  u 4

 
Ta M ay  bo p es s of  
S( ith ω 

ML Boot .)BS )BL  

dic  that the value m ltiply by 10 . 

ble 2.
t) w

 The 
 t = 0.5

L, B
 and 

es and
= 0.2. 

otstra timate θ, β and

 (.)  (.) strap (  (.  

     0.  1 c = 5 c = c = 1.5

θ 550 737 42 4160. 0. 0. 8 0.  0.405 0.394

β 585 715 65 656

) 562 45 45 451

0. 0. 0. 9 0.  0.652 0.649

S(t 0. 0. 3 0. 7 0.  0.445 0.439

 
 confidence intervals of θ, Table 3. Two-sided 90% and 95%

β and S(t) by bootstrap estimate. 

 90% P. Interval Length 95% P. Interval Length 

θ [0.0166, 0.1611] 1.1445 [0.0137, 1.2682] 1.2545 

β [0.  1. 0. [0.  1.662 1.2495 

S(t) [0.0515, 0.7914] 0.7399 [0.0391, 0.8252] 0.7861 

4323, 5526] 1203 4133, 8] 

.0 0.027 0.029 0.0314  0.082 0.121
24 36; 0 54; 0. ; 0.21  0.24; .32;0.  0.76

04; 1.
iebu

; 5.2
istribu

s 
n then

a have 
he

ome m th nverse
 MLEs of   and  , using 

a Newton-Raphson method are obtained as ̂  = 0.635814 

and ̂  = 0.825806, so  ˆ
ML

 S t = 0.620 , at t = 0.6. 

e w pe l to e 
va o ra

716

W ill use the ex cted va ue of  S t  find th
lues f the hyper-pa meters ja  and jb  for n  Know

j , =j 1, 2, ,10 . 

 0.0314 = 0.76  = 0.214 =t=t , 0.4and S 0 ,  S

These two prior probabilities are substituted into (46), 
where ja  and jb  are solved numerically for each given 

j , = 1, 2, ,10j   using Newton-Raphson methods (in 
Table 4). 

Table 5 shows the values of the hyp -param ers and er et
posterior probabilities obtained for each j . 

By using the algorithm  the entries of Table 5, 
the b tstrap estimate, th  estimate and the Bayes

 A and
oo e ML  

estimates of  ,  , and  S t  are prese in Table 6. 
 

 t

nted 

Table 4. Progressive ype II censored sample (m = 8, n = 9) 
from Nelson (1982). 

i 1 2 3 4 5 6 7 8 

xi,m,n 5.26 1.28 1.04 0.76 0.36 0.21 0.15 0.14 

Ri 0 3 0 3 0 0 5  0 

 
Table 5. Prior information and posterior probabilities. 

j vj βj aj bj Pj vj 

1 0.1 0.60 4.264 20.090 0.007 2.075*

2 0. 0.65 4 11.459 0.029 2.635*1 2.36

5 0.1 0. 067 5.681 5.392*

912 5. 846*

801 4. 691*

8 0.1 0.95 0. 4.226 0.143 11.035*

*

10 0. 1. 0. 3. 0. 17. *

3 0.1 0.70 1. 8.296 0.063 3.345*

4 0.1 0.75 0.293 6.667 0.097 4.247*

661 

80 1. 0.125

6 0.

7 0.

1 

1 

0.85 

0.

0. 026 

565 

0.143 6.

8.90 0. 0.148

715 

9 0.1 1.00 0.648 3.970 0.130 14.009

1 05 594 773 113 786

*Ind tes tha alue ly b

Tab 6. Th L, B st m f θ  
S(t) with t =  and 0.2

p

ica t the v  multip y 103. 

 
le e M ayes and boot rap esti ates o , β and

 0.6  ω = . 

 (.)ML (.)Bootstra (.)BS (.)BL   

    c = 0.5 c = 1 c = 1.5

θ 0.635 0.7213 0.547 0.542 0.538 0.534

β 0.825 0.

S  0. 0.

8322 0.869 0.867 0.864 0.862

(t) 621 6331 0.564 0.562 0.561 0.559
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Table 7. Tw ded  and 95% c nc rv
β and (t) by bootstr stimate  

95% P. Interval Length 

o-si  90% onfide e inte als of θ, 
 S ap e .

 90% P. Interval Length

θ [0.1825, 1.4766] 1.2940 [0.0815, 1.5356] 1.4541 

β [0.4576, 1.4485] 0.9908 [0.4148, 0.7870] 1.3722 

S(t) [0.3171, 0.8592] 0.5420 [0.1838, 0.8709] 0.6871 

 
B  using e real ata of rogr ty

sam le in Algorithm A the confid
y  th  d p essive 

ence in
pe II ce
tervals 

nsored
of 

 
p  , 

 , and ar nt Ta

E C
neralized Order Statistics,

[2] U. ra of l-
ize ,” ic , 
269 0 8

 S t  e prese ed in ble 7. 
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