
Journal of Modern Physics, 2012, 3, 221-223 
http://dx.doi.org/10.4236/jmp.2012.33031 Published Online March 2012 (http://www.SciRP.org/journal/jmp) 

Mathematical Modeling for Quantum Electron Wave 
Therapy 

Gianamar Giovannetti-Singh1,2, Sixian Zhao2 
1Department of Physical Sciences, Open University, Cambridge, UK 
2Science Department, Parkside Federation Academy, Cambridge, UK 

Email: gianamar@ieee.org 
 

Received December 30, 2011; revised February 5, 2012; accepted February 15, 2012 

ABSTRACT 

The hypothesis suggesting that the physical process of quantum tunneling can be used as a form of cancer therapy in 
electron ionization radiotherapy was suggested in the IEEE International Conference on Electric Information and Con-
trol Engineering by G. Giovannetti-Singh (2012) [1]. The hypothesis used quantum wave functions and probability am-
plitudes to find probabilities of electrons tunneling into a cancer cell. In addition, the paper explained the feasibilities of 
the therapy, with the use of nanomagnets. In this paper, we calculate accurate probability densities for the electron 
beams to tunnel into cancer cells. We present our results of mathematical modeling based on the helical electron wave 
function, which “tunnel” into a cancer cell, therefore ionizing it more effectively than in conventional forms of radio-
therapy. We discuss the advantages of the therapy, and we explain how quantum mechanics can be used to create new 
cancer therapies, in particular our suggested Quantum Electron Wave Therapy. 
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1. Introduction 

This paper builds on an earlier model suggesting that 
quantum tunneling techniques which, in theory can be 
used successfully in cancer therapy [1]. This approach 
used the wave function of an electron to calculate the 
energy needed for an electron to “tunnel” through the can- 
cerous membrane of the cell. It was suggested that this 
method could be more effective than conventional radio- 
therapy in treating cancer for the following reasons: 
 In addition, the electron beam (which tunnels) can 

travel directly to the nuclei of the cancer cells. 
 It is more direct, as instead of harming the surround-

ing cells it only targets the cancer cells through care-
ful instrumentation and accuracy.  

 According to the laws of momentum, there will be no 
impact from the electrons as they aim into the cells’ 
nuclei because if they tunnel, they must be travelling 
as a wave. 

Nevertheless, [1] only suggests a hypothesis, however 
in this paper; we calculate the probability density of a 
single electron (in one dimension) tunneling into a cancer 
cell. 

In this paper, we give accurately calculated figures of 
the probability density from the one-dimensional, time 
independent electron wave function, and we discuss the 
graph describing the electrons’ helical motion. 

2. Quantum Wave Functions 

Using the three parametric functions below, we combine 
them to create a helical graph which denotes the wave 
function, and hence the trail of an electron through space 
as a wave. 
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where x, y and z are the three Cartesian axes, M is the 
modulus of the helix, also equal to the amplitude of the 
helical wave. The parameter M is introduced to differen-
tiate between wave functions of helixes of different am-
plitudes.   is the phase of the wave. 

Given that: 
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[2], we produce a graph of the parametric Equations (1)- 
(3). 

In this case, the spiral will be no more than five times 
the diameter of the electron, therefore we can assume that 

. Using this figure, we can make calcula- 
tions for the electron gun model [3]. 
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3. Mathematical Modeling 

3.1. Quantum Physical Properties of the Electron 
Wave 10 68 4
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wave function will find the realistic most efficient dis-
tance from the tumor by carrying out a triple integration 
of the wave function through a cancer cell (assuming that 
a cell is mostly H2O), to find a probability density of the 
electron tunneling into the cell [4]. 
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Figure 1. Electron wave function helical graph for parame- 
tric wave equations x = Mcos(

We calculate the minimum and maximum energy re-
quired for the electron to be in waveform from Planck’s 
equations for the energy of a wave; E = hv [5], we calcu-
late the minimum energy, which is determined by Equa-
tion (3) because of  , the phase of the helix. 

This equation leaves us with the simple relation be-
tween the frequency (f) and the phase ( ). As the coeffi-
cient of   increases, the denominator of f divides by 
two. 
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However, the frequency of the wave is a limit because 
although it will continue to approach zero, it will never 
reach, therefore, the definitions between particle and 
wave becomes fuzzy.  

JB Hagen (2009) [6] suggested a different model for 
phase-angular frequency relation in electromagnetic waves; 
however, according to the laws of quantum mechanics, 
this is equivalent for electrons [7]. This model states that 
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We now substitute into Planck’s equation for the en-
ergy of a wave, and we obtain the values:  
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This is the minimum energy required for an electron to 
tunnel into the cancer cell. In addition, we can calculate 
the maximum energy that the electron can contain to be a 
wave. 

As the electron wave-function verges towards the limit 
of a straight line rather than the helix graph, the behavior 
of the electron begins to be more particle-like, as it no 
longer can pass through “barriers”, and must give in to the 
laws of momentum. Einstein’s equation for the momen-  

tum of particles is the following: [8].  

Therefore, we can calculate the electron’s momentum 
of impact on the cell wall. Given that the equation for  

netic energy i 21

2
E mv , we isolate v to then calcu- 

 ), y = Msin( ), z = . 

 

 

Figure 2. Cross-section view of the helix [2]. 
 
late Einstein’s equation for the momentum of a particle. 
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Therefore, by substitution, we calculate 
the electron as 0.0134850805746 ms–1. Now we can cal-
cu

the velocity of 

late the momentum of the electron to be: 
31 1

32

9.10938188 10 kg 0.0134850805746 m s

1.22840743 10 N s

 



  

  
 

3.2. Probability Density 

nal probability density of an 
barrier” into the cancer cell. 

We calculate a one-dimensio
electron appearing “past the 
We obtain this figure from the one-dimensional wave 
function:   ixx Me  1 [2], which is an exponential 
function. We can therefore plot a 2D graph which repre-
sents our pr ility nsity function [9]. 

The integral which calculates the probability 
density function is calculated between two points, 
in

obab de

 this case, the diameter of a cancer cell [10]. 
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In this example, the integral would be:  
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We calculate the integral from   ix

810 0 0
d

x
P x x  

 
2

x Me  . M is the  

1The 3D, time-dependent wave function for an electron is ψ(r,t) = 
Aei(k·r–ωt). 
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Figure 3. One-dimensional wave function graph for ψ(x). 
 
modulus, the radius from the centre of the corkscrew to 
the limit 155 10 m . 

We first normalize the equation into the form of a 
definite integral between ∞ and –∞. 
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We now obtain a numerical value fo ility 
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4. Conclusion 

We conclude this paper by providing nume
ensity of a single electron tunn
In addition, we multiply this value by
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rical values 
for a probability d
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eling 
 

the number of electrons that we will shoot into a cancer 
cell, therefore increasing the electrons’ probabilities of 
tunneling. Given that in an electron beam with the width 
of 1 cm, there can be 5 × 1013 electrons, and our beam 
can be up to 10 cm long, we therefore calculate the vol-
ume of the beam (approximating a cubic prism) as being 
10 cm3. In addition, we approximate that 1.25 × 1048 
electrons can be within the space. According to the 
probability density which we have obtained, if we multi- 
ply our value of 5 × 10–37 by 1036 (the maximum number 

of electrons which we want to use) we obtain a probabil- 
ity of 0.5, which is a figure with a reasonable probability 
to allow electron wave therapy to commence. 
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