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ABSTRACT 

A relation between the intervals of energy and time, derived in a former paper and associated with the electron transi-
tions on the Fermi surface of a metal, is examined in comparison with the experimental data. These data are obtained 
from the de-excitation process of electrons in metals. A comparison between theory and experiment demonstrated that 
the new relation between energy and time is fitted much better for the experimental results than the well-known relation 
due to the Heisenberg theory. 
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1. Introduction 

A well-known relation between the intervals of energy 
and time , deduced by Heisenberg [1,2], namely  

>E t  

>i ix p

                 (1) 

is often considered as analogous to the uncertainty re- 
lation represented by the intervals of the particle position 
and momentum. However, it has been stressed a time ago 
that the significance of (1) is entirely different than that 
of the formula  
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where  label the coordinates of the position 
and momentum in a three-dimensional space. In fact (1) 
concerns the exactly measured intervals of energy and 
time, whereas (2) refers to the uncertainties of the values 
of the position and momentum coordinates measured at 
the same instant of time [3-5]. Nevertheless, the uncer- 
tainty relation for energy and time similar to (2) can be 
also derived [5]. 

The aim of the present paper is to give a kind of a new 
look on the relation between  and   done from 
both the theoretical and experimental point of view. In 
fact the formula in (1) is not a unique proposal of the 
coupling connecting  and . An alternative for- 
mula can be derived when the electron transitions in the 
electron gas are effectuated in the field of the magnetic 
induction . Let us assume that  is directed along 
axis , so 

B
z zB

2

B , and simultaneously the limitations 
of the electron velocity imposed by the special theory of 
relativity are also taken into account. In this case a con- 
dition satisfied by the change of the momentum square 

Fk t at the Fermi surface within the time interval   
becomes [6]:  
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            (3) 

The momentum change in (3) can be referred to that of 
energy by multiplying the both sides of (3) by the term  

                  (4) 

For, this operation gives in place of (3) the relation  

          (5) 

if we note the well-known free-electron formula for the 
change of the Fermi energy: 
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In effect, when instead of (5) the square-root of the 
both sides of this formula is taken into account, we obtain 
a different relation between  and  than (1):  

           (7) 

A characteristic point is that (7) does not contain , 
although some limitation for the maximal value of this 
parameter and, consequently, the cyclotron frequency 0  
induced in the electron gas, is imposed by the theory [6]. 

The lack of  makes (7) a competitive expression to 
(1). Sections 2 and 3 try to clarify this competition on the 
experimental basis. 

B

2. Experimental Approach 

This approach is based on the de-excitaion process of the 
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photoelectrons [7]. In considering the decay of the mo- 
tion of a photoelectron excited originally from the free- 
electron gas we have the notion of the lifetime of that 
electron in its excited state  

=e t                   (8) 

and a reference of this lifetime to the electron mean free 
path  

=e e gl v                (9) 

gv

E

 is the group velocity of a photoelectron in its excited 
state. 

The amount of energy lost by the excited electron of 
energy  in the de-excitation process is most often in 
the range of magnitude  
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Fg  is the group velocity of an electron on the Fermi 
level. The relation in (10) holds because, due to the in- 
teraction of an excited electron with a less energetic ele- 
ctron, the photon energy is shared between two excited 
electrons [7]. 

v

el

In case a collective motion of the conduction electrons 
is taken into account, the plasmon scattering from the 
interaction of the excited electron with a set of con- 
duction electrons should be considered. In this circum- 
stanc  in (9) is modified into  
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Here pe  is coming from the plasmon scattering and 
 from the electron-electron scattering [7]. 

l

eel

coll

E

A characteristic experimental result [7,8] is that for 
large  the length el  which replaces el  in (9) tends 
approximately to a constant value independent of . 
This result substituted to (9) provides us with the relation  
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Another relation for the excited electron is its group 
velocity  

g             (13) 

because of the well-known formula for the kinetic energy. 
At the end of the de-excitation process the electron is 
close to the Fermi level, so its velocity is decreased to  

Fgv m           (14) 

In many excited cases, for example in the Auger effect 
where  of few hundreds of eV are involved, we have  

 1 1

2 2FE EE E =          (15) 

because FE
E

 is so small that it can be approximately 
neglected in comparison with large . For example, in 
the metallic Cs examined in the photoexcitation process, 

FE
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 is smaller than 1.6 eV [9]. Consequently, due to (8), 
(13) and (15):  
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because  in (13) is approximately equal to  . 
A characteristic point is that the result obtained in (16) 

differs from the expression on the left-hand side of (7) 
only by a constant factor. In effect, because e  is a 
constant and e

colll
= t E , the relation (16) between    

and t —considered with the accuracy to a constant 
coefficient—becomes much similar to that obtained in 
(7). By applying (16) in (7) we obtain the formula  
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A numerical check of validity of this relation is done 
in Section 3. 

3. Discussion 

The experimental result obtained for  in (16) is as 
follows [7,8]: 

        (18) 

The value can be subsequently substituted into (17). In 
view of the fundamental constants of nature used in the 
calculations we obtain  
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which implies that relation (17) is satisfied, at least in the 
examined case. 

Considering the relations between energy and time, 
there is, however, nothing special in the photoexcitation 
of a metal electron. Another well-known excitation can 
be, for instance, due to external electric field effect on 
the electrons. For very pure metals, the effect offers an- 
other mean free path of the electron than that considered 
in (17). This path, which is characteristic for the con- 
duction process in a given metal, is due to electron in- 
teraction with the phonon medium combined with the 
medium of other electrons. The path length labelled by 

e , is an equilibrium parameter for electron transport 
in the electric field, virtually independent of the field 
strength. As a result, instead of (17), we arrive at the for- 
mula:  

cond
eff1/2

1
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Here eff  is the effective electron mass in the condu- 
ctivity process. 

m

As the tansport involves mainly the electrons close to 
the Fermi level, we have  
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        (21) 

where e  is the relaxation time characteristic for 
conduction. The formula (21) transforms (20) into  
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equivalent to a simple relation  
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For  cm/s, F  and 

e  at room temperature, as valid for 
most metals [9], the relation (23) is obviously satisfied 
by the experimental data. 

1010 k
1510 s cond = 1

A separate estimate of e  alone can be done on the 
basis of (3). This parameter is also assumed to appro- 
ximate the decay time of the excited electron:  

              (24) 

For zk  close to Fk

2= 2

 we can put  
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where zk  is considered to be a small fraction of the 
Bloch vector component zk : 
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we have put z  and  is the edge length of a 
cubic metal volume. As a result, the relation (3) becomes  
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Therefore, we should have:  
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For  cm and  we obtain from 
(28) the condition  

= 1

             (29) 

which is a number approaching rather perfectly the 
experimental value  for metals [9]. e

Let us note that the formula (1) which is in compe- 
tition with (7) gives  
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Here 
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on condition the equality F zk k  is applied for zk   
calculated in (26). A substitution of (28a) into (1a) gives  
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This result exceeds by many orders a typical experi- 
mental e  in metals measured at normal conditions 
characterized by the room temperature; see [9] and (29). 

A comparison of the Heisenberg relation (1) with the 
present one in (7) can be done also by considering an 
individual electron excitation due to the electric field 
effect. In this case from (1) and the experimental  
put for   we have  
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which is an unrealistically high energy. On the other hand, 
formula (7) gives:  
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which is a much more reasonable value for an elementary 
excitation energy of an electron in the conduction 
process. In fact, a low excitation energy at the Fermi 
level is that entering (28a):  
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This is close to the result in (31). 

4. Conclusions 

The experimental results obtained for parameters related 
to the de-excitation of electrons in metals seem to favou- 
rite much more the relation (7) between  and   
than the relation given in (1). A problem may arise, how- 
ever, as to what extent the formula (7) can be useful in 
the case of non-free-electron transitions. 

Another point concerns an agreement between (31) 
and (32). A so good agreement is probably an accidental 
since e  is a parameter strongly dependent on the 
temperature , especially at low . For T nearly 273 
K, as usually used in the presentation of the experimental 
data, the dependence of e  on T  is rather weak. 
Consequently, the same dependence should apply to the 
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