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ABSTRACT 

In this paper, a hybrid method is introduced briefly to predict the behavior of the non-linear partial differential equa- 
tions. The method is hybrid in the sense that different numerical methods, differential transform and finite differences, 
are used in different subdomains. Our aim of this approach is to combine the flexibility of differential transform and the 
efficiency of finite differences. An explicit hybrid method for the transient response of inhomogeneous nonlinear partial 
differential equations is presented; applying finite difference scheme on the fixed grid size is used to approximate the 
space discretisation, whereas the differential transform method is used for time operator. Comparison of the efficiency 
of the different approaches is a very important aspect of this study. In our test cases, the hybrid approach is faster than 
the corresponding highly optimized finite difference method in two dimensional computations. We compared our hy- 
brid approach’s results with the exact and/or numerical solutions of PDE which obtained from Adomian Decomposition 
Method. Results show that the hybrid approach may be an important tool to reduce the execution time and memory re- 
quirements for large scale computations and get remarkable results in predicting the solutions of nonlinear initial value 
problems. 
 
Keywords: Hybrid Differential Transform/Finite Difference Method; Nonlinear Initial Value Problems; Numerical  

Solution 

1. Introduction 

Many problems in mathematical physics, theoretical phys- 
ics, chemical physics and theoretical biology are modeled 
by the so-called initial value and boundary value pro- 
blems in the second-order nonlinear partial differential 
equations. Nonlinear equations also cover the cases of 
the following types: surface waves incompressible fluids, 
hydro magnetic waves in cold plasma, acoustic waves in 
inharmonic crystal, etc. However, these equations are 
difficult to be solved analytically and sometimes it is 
impossible then application must be made with relevant 
numerical methods such as shooting method, finite dif-
ference etc. In recent years, differential transform method 
has been used to solve this type of equation [1-11]. 

The differential transform method is a numerical me-
thod based on Taylor expansion. This method constructs 
an analytical solution in the form of a polynomial which 
is widely equivalent explicit form of solution. The main 
advantage of this method is to solve both linear and non-

linear equations without linearization. Using differential 
transform method, we can avoid from complexity of ex-
pansions of derivatives and compute derivatives as sym-
bolically. 

When solving initial value problems, the truncation 
error produced by the finite difference method is greater 
than that produced by the differential transform method. 
Hence, in this work we develop a hybrid method which 
combines the differential transform and the finite differ-
ence method. Using this hybrid method, numerical solu-
tion can be obtained from a simple iterative procedure. 
The hybrid method has an advantage to solve nonlinear 
equations is examined without using linearization. In the 
literature, there are other hybrid methods. For example, 
the method used by Beilina’s [12] study includes both the 
finite difference and finite element methods. 

2. Differential Transform Method 

We introduce the main features of the differential trans-
formation method [1,5,6,11] according to the differential 
transform of the nth derivative of a function in one vari-*Corresponding author. 
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able defined as follows: 
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In Equation (1),  y x  is the original function,  Y n  
is the transformed function and the differential inverse 
transform of  is defined as follows:  Y n
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In real applications, function is expressed by a finite 
series and Equation (2) can be written as 
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From Equation (1), we obtain 
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Actually Equation (4) implies that the concept of dif-
ferential transform is derived from Taylor series expan-
sion. Although DTM is not able to evaluate the deriva-
tives symbolically, relative derivatives can be calculated 
by an iterative way which is described by the trans-
formed equations of the original function. In this study 
Equation (4) also implies 
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is negligibly small. In fact k is decided by the conver-
gence of natural frequency. 

After taking differential transformation with respect to 
time variable, we apply finite difference method to PDE 
with respect to x variable and their derivatives. The re-
gion 0 x a   is divided into several equal intervals 
and each interval has a width h. Take second order accu-
rate central difference approximation with respect to the 
first and second order derivatives, equations are rewritten 
and computed iteratively. The solutions are compared 
with the other published numerical solutions of these 
equations. 

3. Illustration of Hybrid Method 

To show the effectiveness of the proposed hybrid differ-
ential transform method and to give an understandable 
overview of the methodology three different models of 
nonlinear differential equations with different initial and 
boundary conditions will be discussed in the following 
section. Then our results are compared with published 
work of Wazwaz [13] in which Adomian decomposition 
method was used to solve the same equations. 

Example 1: 

The function u satisfies the nonlinear equation 
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The initial condition  4 1u x x  ,  0 1x  , 0t   
and the boundary conditions  at  and 1, 
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where  ,F x k  is differential transformation of  ,u x t . 
Then the central finite difference method is applied to the 
Equation (7), we get 
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(8) 

where    , ,i iF k F x k  ix ih . The initial and bound-
ary conditions are 

 0 0, 0,1, 2,F k k               (9) 

  0, 0,1, 2,MF k k             (10) 

   2
0 4 4iF ih ih              (11) 

The process of programming consists of three major 
steps. First,  0iF  are determined from the initial con-
ditions as well as the boundary conditions. Secondly, for 

0k  ,  1iF  can be calculated using the iteration for-
mula of Equation (8) together with the initial and bound-
ary conditions (9)-(11) and  iF k

 ,u x t

 for  can be 
achieved sequentially following the same iteration proc-
ess. Finally, the solutions of  at time 

2k 

t  can be 
approximated by the partial sum of Equation (2). These 
solutions are adopted as the initial values in the next time 
interval. We get some solution series which are evaluated 
up to 20k  . Comparison of numerical solution of 
nonlinear PDE with the Maple 11 solution is shown in 
Table 1. According to the table, the simulation results 
are very compatible with the Maple solutions. 
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Example 2: 
Let us consider the following inhomogeneous initial 

value problem 
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Substituting the differential transformation  ,F x k  
of  into Equation (12) gives,  ,u x t
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After discretizating with central difference formula the 
PDE becomes, 
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and initial condition is 

 0iF 0                 (16) 

where   is Kronecker Delta Function and  
   , ,i iF k F x k  ix ih . 
Using second order finite difference method boundary 

values were obtained as follows, 
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Evaluating the recurrence relation in Equation (15) and 
transformed initial condition (16) and computed bound-
ary values,  iF k  for  are easily obtained and 
use the inverse transformation rule in DTM. Then we had 
the numerical solution and compared with other pub-
lished work of Wazwaz [13]. As shown in Table 2, our 
simulation results exactly coincide with the ADM solu-
tions. 

2k 

Example 3: 
We will consider the following nonlinear inhomoge-

neous advection problem 
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with initial condition 

   ,0 cos .u x x            (18) 

Using differential transform method to time variable  

Table 1. Comparison of numerical results with the Maple 
11 solution at t = 0.01. 

x Hybrid Maple 11 Error 

0.0 0.0000000 0.0000000 0.0000000 

0.05 0.2909183 0.2909181 2 × 10–7 

0.1 0.4319186 0.4319185 10–7 

0.15 0.5415206 0.5415205 10–7 

0.2 0.6323455 0.6323454 10–7 

0.25 0.7078180 0.7078179 10–7 

0.3 0.7690838 0.7690837 10–7 

0.35 0.8165639 0.8165638 10–7 

0.4 0.8504209 0.8504208 10–7 

0.45 0.8707191 0.8707191 0.0000000 

0.5 0.8774831 0.8774830 10–7 

 
Table 2. Comparison of numerical results with ADM solu-
tions at t = 0.002 for h = 0.1, ∆t = 0.0001. 

x Hybrid ADM Error 

0.0 0.0020002 0.002 2 × 10–7 

0.05 0.0021025 0.0021025 0 

0.1 0.0022103 0.0022103 0 

0.15 0.0023236 0.0023236 0 

0.2 0.0024428 0.0024428 0 

0.25 0.0025680 0.0025680 0 

0.3 0.0026997 0.0026997 0 

0.35 0.0028381 0.0028381 0 

0.4 0.0029836 0.0029836 0 

0.45 0.0031366 0.0031366 0 

0.5 0.0032974 0.0032974 0 

 
for linear and nonlinear terms of equation, (17) gives 
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where  ,F x k  is the differential transform of  ,u x t . 
After using central finite difference method for deriva-
tives according to x variable 
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(20) 

and initial condition is 

   0 cosiF ih                (21) 

Equation (19) is an iterating process and using this 
process we get numerical solutions as in Table 3 for 

 and . We compare the solutions of 
Hybrid Differential Transform with the solutions of 
Adomian Decomposition Method (Wazwaz [13]). As 
shown in Table 3, the error between the simulation and 
ADM results is quite small. 

0.1h  0.0001t 

Tables 1-3 show the exact values, the approximation 
solutions obtained from the hybrid differential transform 
method and the absolute errors that results from compar-
ing the approximate solutions and the Maple 11 or ADM 
solutions. The Hybrid Method results agree with the pub-
lished work of Wazwaz [13], who considered the same 
equations, for nonlinear initial value problems to six de-
cimal places after rounding. 

4. Conclusions 

The hybrid method is employed to predict nonlinear par-
tial equations. Some simulation results are illustrated and 
discussed to compare with other published work. Three  
 
Table 3. Comparison of numerical results with ADM solu-
tion at t = 0.001. 

x Hybrid ADM Error 

0.0 1.0000010 0.9999995 1.5 × 10–6 

0.05 0.9987007 0.9986997 10× 10–6 

0.1 0.9949048 0.9949038 10 × 10–6 

0.15 0.9886220 0.9886211 9 × 10–7 

0.2 0.9798683 0.9798674 9 × 10–7 

0.25 0.9686653 0.9686645 8 × 10–7 

0.3 0.9550412 0.9550404 8 × 10–7 

0.35 0.9390301 0.9390293 8 × 10–7 

0.4 0.9206717 0.9206711 6 × 10–7 

0.45 0.9000122 0.9000116 6 × 10–7 

0.5 0.8771032 0.8771026 6 × 10–7 

advantages that are briefly explained in this study of this 
method are as follows: 

1) The hybrid method provides an iterative procedure 
to calculate the numerical solutions; therefore, it is not 
necessary to carry out complicated symbolic computa-
tion. 

2) From the nonlinear partial differential equations 
considered, it has been shown that the proposed method 
can obtain very accurate numerical approximation. 

3) The last and most important advantage is that we do 
not use linearization in solution procedure. Moreover we 
can avoid some complex operation therefore; the Hybrid 
Method provides an iterative procedure to calculate the 
numerical solutions without using linearization. 

It may be concluded that this method is very powerful 
and efficient in obtaining numerical solutions for these 
types of partial differential equations with initial condi-
tions. 
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