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Abstract 
 
This paper presents a probabilistic algorithm to collaborate distributed sensors for mobile robot localization. 
It uses a sample-based version of Markov localization—Monte Carlo Localization (MCL), capable of local-
izing mobile robots in an any-time fashion. During robot localization given a known environment model, 
MCL method is employed to update robot’s belief whichever information (positive or negative) attained 
from environmental sensors. Meanwhile, an implementation is presented that uses color environmental cam-
eras for robot detection. All the parameters of each environmental camera are unknown in advance and need 
be calibrated independently by robot. Once calibrated, the positive and negative detection models can be 
built up according to the parameters of environmental cameras. A further experiment, obtained with the real 
robot in an indoor office environment, illustrates it has drastic improvement in global localization speed and 
accuracy using our algorithm. 
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1. Introduction 
 
Mobile robot localization is the problem of estimating a 
robot’s pose (location, orientation) relative to its envi-
ronment. The localization problem is a key problem in 
mobile robotics. There are two classes of localization 
problem, position tracking and global localization. In 
position tracking, a robot knows its initial position [1] 
and only needs to reduce uncertainty in the odometer 
reading. If the initial position is not known or the robot is 
kidnapped to somewhere, the problem is one of global 
localization, i.e., the mobile robot has to estimate its 
global position through a sequence of sensing actions [2]. 
In recent years, a flurry of publications on localization 
document the importance of the problem. Occasionally, 
it has been referred to as “the most fundamental problem 
to providing a mobile robot with autonomous capabili-
ties” [3].  

So far, virtually all existing work addresses localiza-
tion only using sensors onboard mobile robot. However, 
in robot navigation, the robot cannot always determine 
its unique situation only by local sensing information 
since the sensors are prone to errors and a slight change 
of the robot’s situation deteriorates the sensing results. 
Along with the rapid development of computer networks  

and multimedia technology, research on how to make an 
‘intelligent’ environment for the robot to fulfill the same 
functions makes sense, especially in home environment. 
In this case, various sensors are embedded into the envi-
ronment (environmental sensors), and communication 
between the robot and environmental sensors is utilized. 
Sogo et al. [4] proposed a distributed vision system for 
navigating mobile robots in a real world setting. To ob-
tain robustness and flexibility, the system consisted of 
redundant vision agents connected to a computer net-
work. These agents provided information for robots by 
organizing the communication between vision agents. 
Morioka et al. [5] defined the space in which many vi-
sion sensors and intelligent devices are distributed as an 
intelligent space. Mobile robots exist in this space as 
physical agents that provide humans with services. A 
concept called a distributed modular robot system was 
also proposed in [6]. In that robot system, a modular ro-
bot was defined as a mono-functional robot (either a 
sensor or an actuator) with a radio communication unit 
and a processing unit. Such robots were usually small 
and could be easily attached to operational objects or 
dispersed into the environment. A modular robot system 
for object transportation was developed by using several 
distributed-placed camera modules and wheel modules. 
All studies mentioned above mostly focus on the struc-
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ture of system, while don’t put forward an effective me-
thod to incorporate the information of environmental 
sensors. On the other hand, they only apply the positive 
information (it represents a sensor detects the robot) to 
localize robot, while don’t take into account how to 
make use of the negative information which represents 
that a sensor doesn’t detect the robot. 

The aim of this paper is to show how positive and 
negative information of environmental sensors can be 
incorporated in robot localization. Therefore, an efficient 
probabilistic approach based on Markov Localization 
[7-9] is proposed. In contrast to previous research, which 
relied on grid-based or coarse-grained topological repre-
sentations of the robot’s state space, our approach adopts 
a sampling-based representation [10]—Monte Carlo Lo-
calization (MCL), which is capable of approximating a 
wide range of belief functions in real-time. Using the 
positive and negative detection model of environmental 
sensors, the MCL algorithm can improve localization 
accuracy and shorten the localization time. In terms of 
practical applications, while our approach is applicable 
to any sensor capable of detecting robot, we present an 
implementation that uses color environmental cameras 
for robot localization. The location and parameters of all 
environmental cameras are unknown and need to be ca-
librated by robot. Once getting the cameras’ parameters, 
the positive and negative detection models can be at-
tained. Experimental results, carried out with two envi-
ronmental cameras fixed in an indoor environment, illus-
trate the appropriateness of the approach in robot global 
localization. 

This paper is organized as follows. In Section 2, the 
MCL only depending on the robot’s own sensor is intro-
duced. Section 3 extends the algorithm to integrate the 
positive and negative information coming from envi-
ronmental sensors. Experimental results are shown in 
Section 4. Finally, in Section 5, our conclusions are de-
rived. 
 
2. Monte Carlo Localization 
 
In this section we will introduce our sampling-based lo-
calization approach only depending on robot itself. It is 
based on Markov localization [7-9], which provides a 
general framework for estimating the position of a mo-
bile robot. Markov localization maintains a belief 

over the complete three-dimensional state 

space of the robot. Here,  denotes a random variable 

and  denotes the robot’s belief of being at 

location , representing its 

  rBel L

Bel L

l

 rL
  r l

-x y  coordinates (in some 

Cartesian coordinate system) and its heading direction 
 . The belief over the state space is updated whenever 

the robot moves and senses. 
Monte Carlo localization relies on sample-based rep-

resentations for the robot’s belief and sampling/importance 
resampling algorithm for belief propagation [11,12]. The 
sampling/importance resampling algorithm has been in-
troduced for Bayesian filtering of nonlinear, non-Gaussian 
dynamic models. It is known alternatively as the boot-
strap filter [13], the Monte-Carlo filter [10], the Conden-
sation algorithm [14], or the survival of the fittest algo-
rithm [15]. All these methods are generically known as 
particle filters, and a discussion of their properties can be 
found in [16]. 

More specifically, MCL represents the posterior be-
liefs  Bel L over the robot’s state space by a set of 

weighted random samples denoted . 

A sample set constitutes a discrete distribution. However, 
under appropriate assumptions (which happen to be ful-
filled in MCL), such distributions smoothly approximate 

the correct on at a rate of 

N  | 1...iS s i N 

1 N  as  goes to infinity. 

Samples in MCL are of the type 

N

,l p , where  de-

notes a robot position in 

l

- -x y   space, and  is a 

numerical weighting factor, analogous to a discrete 

probability. For consistency, we assume 

0

1

p 

1 ip
N

i
 . 

In analogy with the general Markov localization ap-
proach, MCL propagates the belief as follows: 

1) Robot motion. When a robot moves, MCL gener-
ates  new samples that approximate the robot’s posi-
tion after a motion measurement . Each sample is 
generated by randomly drawing a sample from the pre-
viously computed sample set, with likelihood determined 
by their . Let 

N
a

-valuep l  denote the , ,x y   position 

of this sample. The new sample’s  is then determined 
by generating a single, random sample from the distribu-

tion 

l

 | ,l aP l  , using the observed motion . The 

 of the new sample is . Here 

a

-vap lue 1N   P l a| ,l  is 

called the motion model of the robot. It models the un-
certainty in robot motion. 

2) Environment measurements are incorporated by 
re-weighting the sample set, which is analogous to the 
application of Bayes rule to the belief state using impor-
tance sampling. More specifically, let ,l p  be a sam-

ple. Then  

 |p P o l                (1) 

where  is a sensor measurement, and o   is normali-

zation constant that enforces 
1

. 1
N

ii
p


  |P o l , also 

called the environment perceiving  given that the ro-
bot is at position . The incorporation of sensor read-
ings is typically performed in two phases, one in which 

o
l
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 is multiplied by , and one in which the vari-

ous  are normalized. 

 |P o l

o
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-valuep

 | l

xis

For proximity sensors such as laser range-finders 
which is adopted in my approach, the probability 

 can be approximated by , which is the 

probability of observing  conditioned on the expected 
measurement  at location . The expected meas-

urement, a distance in this case, is easily computed from 
the map of the environment using ray tracing. Figure 1 
shows a perception model for laser sensor. Here the 

 is the distance  expected given the world 

model, and the  is distance o  measured by the 

sensor. The function is mixture of a Gaussian (centered 
on the correct distance ), a Geometric distribution 

(modeling overly short readings) and a Dirac distribution 
(modeling max-range readings). It integrates the accu-
racy of the sensor with the likelihood of receiving a “ran-
dom” measurement (e.g., due to obstacles not modeled in 
the map [9]). 

 | lP o o

lo

y

l

-a

 
3. Cooperative Distributed Sensor  

Localization 
 
In this section, we will first describe the basic statistical 
mechanism for cooperative distributed sensor localiza-
tion and then its implementation using MCL. The key 
idea of cooperative distributed sensor localization is to 
integrate measurements taken at different platforms, so 
that robot can benefit from information gathered by en-
vironmental sensors, which are embedded in the envi-
ronment, other than itself. The information coming from 
environmental sensors includes “positive” detections, i.e., 
cases where an environmental sensor does detect the 
robot, and “negative” detection events, i.e., cases where 
an environmental sensor does not see the robot. 
 

 

Figure 1. Perception model for laser range finders. 

3.1. Positive Detections 
 
When one environmental sensor detects the robot, sam-
ple set is updated using the detection model, according to 
the update equation 

                  ,rr r m m m

l

Bel l Bel l P L l L l r Bel l


   
(2) 

Notice that this equation requires the multiplication of 
two densities. The crucial component is the probabilistic 

detection mode       ,r mP L l L l r  m  which describes 

the conditional probability that robot is at location , 
given that sensor  is at possible location l

l
m   and 

perceives robot with positive measurement . From a 

mathematical point of view, our approach is sufficiently 
general to accommodate a wide range of sensors for ro-
bot detection, assuming that the conditional density 

 mr

      ,r m mP L L r  is adjusted accordingly. However, for 

environmental camera it is not necessary to build the 

probabilistic detection mode       
 m

,m l r

Bel

r mP L l L   and 

the environmental camera localization model  l  

respectively. As a substitute, joint detection model 
               | ,r rm m m

l

P L l r P L l L l r Bel l 


    m  

 (3) 

is constructed directly according to the environmental 
cameras’ parameters. Before integrating positive infor-
mation of environmental cameras into robot’s belief, the 
cameras’ parameters need to be calibrated by robot. 
 
3.1.1. Camera Self-Calibration 
In our method, all parameters of the environmental cam-
eras are unknown in advance and their visual fields are 
not overlaid each other. So, in order to apply them to 
localize the robot, each camera’s parameters need to be 
calibrated at first. Assuming that the system is always 
ready for using in different environments, calibration 
instruments (such as patterns and measuring devices) 
may more or less hinder portability. Our objective is to 
introduce a self-calibration concept [17] into the system 
and take the mobile robot as a calibration instrument. 
Because the visual fields of all cameras are not overlaid, 
each camera’s calibration is independent.  

During the calibration, the robot location is known. 
When the robot moves depending on laser and odometry 
in visual field of any environmental camera, the camera 
does detect the robot and gathers the relative data be-
tween the robot global location and detected image pix-

Copyright © 2010 SciRes.                                                                                 WSN 



Z. W. LIANG  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                 WSN 

350 

els. The sample space of relative data is designed to sat-
isfy a condition that the distance between two neighbor 
global locations of relative data is more than 0.2 m. Once 
the number of relative data sums up to a threshold which 
is set as 200 in this paper, camera calibration can be 
conducted. Because the mobile robot always moves in a 
plane, the coplanar camera calibration method of Tsai is 
adopted here [18]. 

In addition, unlike ordinary calibration devices, the 
mobile robot is much less accurate when moving. As the 
most distinct point of the robot’s error, it is cumulative 
and increase over time or repeated measurements. 
Moreover, the random motion input of the robot, which 
may take too much time, is not suitable for our method. 
For all these reasons, robot’s motion during calibration 
process should be designed to avoid serious calibration 

error and to meet the accuracy demands of calibration. In 
our method, the robot in the cameras’ visual field moves 
as a zig, which is shown in Figure 2. 
 
3.1.2. Detection 
To determine the location of the robot, our approach 
combines visual information obtained from environ-
mental cameras. Camera images are used to detect mo-
bile robot and determine the position of the detected ro-
bot. The two rows in Figure 2 shows examples of cam-
era images recorded in a room. Each image shows a ro-
bot, marked by a unique, colored marker to facilitate its 
recognition. Even though the robot is only shown with a 
fixed orientation in this figure, the marker can be de-
tected regardless of the robot’s orientation. 

To find the robot in a camera image, our approach first 

 
(a)                                                            (b) 

 

 
(c)                                                            (d) 

Figure 2. Image sequences of successful detecting the robot which moves as a zig. 
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filters the image by employing local color histograms 
and decision trees tuned to the colors of the marker. 
Threshold is then employed to search for the marker’s 
characteristic color transition. If found, this implies that 
the robot is present in the image. The small black points, 
superimposed on each marker in the images in Figure 2, 
illustrate the center of the marker as identified by this 
distributed environmental camera. 

Once a robot has been detected, the current environ-
mental camera is analyzed for the location of the robot in 
image coordinates. Then transform the detection pixels 
in image coordinates to positions in world coordinates 
according to the calibrated parameters of the camera. 
Here, tight synchronization of photometric data is very 
important, especially because the mobile robot might 
shift and rotate simultaneously when it is sensed. In our 
framework, sensor synchronization is fully controllable 
because all data is tagged with timestamps. 
 
3.1.3. Joint Detection Model 
Next, we have to devise a joint detection model of the 

type . To recap,  denotes a posi-

tive detection event by the m-th environmental camera, 
which comprises planar location of the detected robot in 

world coordinates. The variable  describes the loca-
tion of the detected robot. As described above, we will 
restrict our considerations to “positive” detections, i.e., 
cases where an environmental camera did detect a robot.  

    |rP L l r  mr

 rL

The joint detection model is trained using data. More 
specifically, during training we assume that the exact 
location of robot is known. Whenever an environmental 
camera takes an image which is analyzed as to whether 
robot is in its visual field, it is to exploit the fact that the 
locations of robot are known during training. Then, the 
image is analyzed, and for detected robot global location 
is computed according to the calibrated parameters of the 
environmental camera above. This data is sufficient to 
train the joint detection model 

      

    
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22
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(4) 

where , 
1 0 0

0 1 0

 
  
 

A
2

2

0

0
x

y




 
  

 
 , 

 

Figure 3. Gaussian model representing camera’s detection 
error. 
 
coordinates, and the y-axis the y direction error. The pa-
rameters of this Gaussian model has been obtained 
through maximum likelihood estimation [19] based on 
the training data. As is easy to be seen, the Gaussian 
model is zero-centered along both dimensions, and it 
assigns low likelihood to large errors. Assuming inde-
pendence between the two errors, we found both errors 
of the estimation to be 15 cm. 

To obtain the training data, the “true” location was not 
determined manually; instead, MCL was applied for po-
sition estimation (with a known starting position and 
very large sample sets). Empirical results in [20] suggest 
that MCL is sufficiently accurate for tracking a robot 
with only a few centimeters error. The robot’s positions, 
while moving at speeds like 30 cm/sec through our envi-
ronment, were synchronized and then further analyzed 
geometrically to determine whether (and where) the ro-
bot is in the visual fields of environmental cameras. As a 
result, data collection is extremely easy as it does not 
require any manual labeling; however, the error in MCL 
leads to a slightly less confined joint detection model 
than one would obtain with manually labeled data (as-
suming that the accuracy of manual position estimation 
exceeds that of MCL). 
 
3.2. Negative Detections 
 
Most of the techniques of state estimation use a sensor 
model that update the state belief when the sensor reports 
a measurement. However it is possible to get useful in-
formation of the state from the absence of environmental 
sensor measurements. There are two main reasons for 
environmental camera not to measure the robot marker. 
The first one is that the robot marker is not in the field of 
view of the environmental camera and the second one is 
that the environmental camera is unable to detect the 
robot mark, due to occlusions. 

2
x  and 2

y  

represent mean square error in x  direction and  

direction respectively. Let  as coordinate origin, 

and the Gaussian model showed in Figure 3 models the 
error in the estimation of robot’s location. Here the 

y
 mr

x -axis represents the error of x  direction in the world  
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This situation of no detecting a robot mark can be 
modeled by considering the environmental camera field 
of view and by using an obstacle detection to identify 
occlusions as shown: 

              | , , obsr r m r mBel L l Bel L l T r L l    v m

m

m

(5) 

where 

, 

 represents the negative information of envi-

ronmental sensor,  describes the visibility area of 

the sensor and  represents the occlusion area. 

        
   

   

0     and obs
| , ,obs

1     or obs

m
m r m m

m

l l
T r L l

l l


    
 

v
v

v

 mr -thm
 mv

 obs m

The negative information has been applied to target 
tracking using the event of not detecting a target as evi-
dence to update the probability density function [21]. In 
that work negative information means that the target is 
not located in the visual area of the sensor and since the 
target is known to exist it is certainly outside the area. 

In robot localization domain, the work of Hoffmann 
et al. [22] on negative information in ML considers 
negative information the absence of landmark sensor 
measurements. Occlusions are identified using a visual 
sensor that scans colors of the ground to determine if 
there is free area or obstacle. The environment is soccer 
field in green with white lines. So, if a different color is 
identified, it means that an obstacle could be occluding 
the visibility of a landmark. 

In the cooperative distributed sensor localization 
problem for mobile robot, negative information can also 
mean the absence of detections (in the case that an envi- 

ronmental sensor does not detect the robot), which con-
figures a lack of group information. In this case, the neg-
ative detection measurement can provide the useful in-
formation that the robot is not located in the visibility 
area of an environmental sensor. In some cases, it can be 
essential information as it could improve the pose belief 
of the robot in short time. 

Our contribution in this paper is the proposal of a neg-
ative detection model and its incorporation into MCL 
approach based on distributed sensors. Consider an en-
vironmental camera, within a known environmental and 
its field of view as shown in Figure 4(a). If the envi-
ronmental camera does not detect the robot, negative 
information is reported, which states that the robot is not 
in the visibility area of the camera, as depicted in Figure 
4(a). 

The information gathered from Figure 4(a) is true if 
we consider that there are no occlusions. In order to ac-
count for occlusions it is necessary to sense the environ-
ment to identify free areas or occupied areas. For envi-
ronmental cameras, we apply background subtraction 
approach described in [23] to detect the occupied areas. 
If it is identified as an occupied area it means that the 
robot could be occluded by an obstacle. In this case, it is 
possible to use geometric inference to determine which 
part of the visual area can be used as negative detection 
information, as shown in Figure 4(b). 
 
3.3. Cooperative Distributed Sensor Localization 
 
According to above positive and negative information, 
the cooperative distributed sensor localization algorithm 
for robot is summarized in Table 1. 

 

 
(a)                                                           (b) 

Figure 4. (a) Negative information; (b) Occlusion in the field of view. 
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Table 1. MCL algorithm to cooperate distributed sensors. 

for each location  do                                                         /*initialize the belief*/ l

                      0

r rBel l P L l   

end for 
forever do 
  if the robot receives new laser inputs  do                                       /*apply the laser perception model*/ o

       for each location  do                      l
         r rBel l P o l Bel l  

       end for 
   end if 
  if the robot receives new odometry readings  do                                 /*apply the motion model*/ a

       for each location  do                     l
         ,r r

l

Bel l P l a l Bel l


        

end for 
  end if 

if the robot receives positive information from the -th environmental sensor do         /*apply the positive detection model*/ m

       for each location  do                      l
                  ,r r r m m m

l

Bel l Bel l P L l L l r Bel l


     

       end for 
   end if 

if the robot receives negative information from the -th environmental sensor do       /*apply the negative detection model*/ m

       for each location  do                      l
              | , ,obsr r m r mBel L l Bel L l T r L l    v

 

m  

       end for 
   end if 
end forever 

4. Experimental Results 
 
In this section we present experiments conducted with 
real robot. The mobile robot used is Pioneer3 DX, which 
is equipped with a laser sensor. In whole experiments, 
the number  of samples is fixed to 400. Figure 5(a) 
shows our experimental setup along with a part of the 
occupancy grid map used for position estimation, and 
that two cameras are fixed on the wall applied to detect 
and localize the robot. Figure 5(a) also shows the visual 
fields of the two environmental cameras (the purple rec-
tangle regions) and the path from A to C taken by Pio-
neer 3 DX with laser sensor, which was in the process of 
global localization. Figure 5(b) represents the uncertain 
belief of the robot on point A from scratch. 

N

In order to evaluate the benefits of collaborative dis-
tributed sensor localization for robot, three different 
types of experiment are performed using the above de-
ployment. The first one is that the robot performs global 
localization by using the positive information of envi-
ronmental cameras, and the field of each camera is not 
occupied. The second one is to use positive and negative 
information of environmental cameras whose fields of 
view are not occupied for robot localization. Compared 
with the second one, the only difference of the last one is 

that visual area of camera one is partly occupied. 
 
4.1. No Occlusions and Only Using Positive  

Information 
 
Before robot passes point B (shown in Figure 6(a)), the 
robot is still highly uncertain about its exact location 
only depending on its onboard laser sensor. The key 
event, illustrating the utility of cooperation in localiza-
tion, is a detection event. More specifically, the envi-
ronmental camera 1 detects the robot as it moves through 
its visual field (see Figure 7). Using the joint detection 
model described in Section 3, the robot integrates the 
positive information into its current belief. The effect of 
this integration on robot’s belief is shown in Figure 6(b). 
As this figure illustrates, this single incident almost 
completely resolves the uncertainty in robot’s belief and 
shortens the time of robot global localization effectively. 
 
4.2. No Occlusions and Using All Information 
 
It can be seen from Figure 8(a) that the particles existing 
in the visibility area of two cameras are disappeared due 
to using the negative information. After five seconds, the 
effect of this integration on robot’s belief is shown in   
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v(1) 

v(2) 
Camera 1 

Camera 2 

 
(a)                                                           (b) 

Figure 5. (a) Experimental setup; (b) The sample cloud represents the robot’s belief on point A from scratch. 
 

 
(a)                                                           (b) 

Figure 6. (a) Sample set before passing point B; (b) Achieved localization by integrating the positive information of camera 1. 
 

 

Figure 7. Detection event of camera 1 on robot passing point B. 
 
Figure 8(b). Compared with experiment one, Localiza-
tion results obtained with negative detection information 
into robot global localization are more accurate and pro-
vide the ability to localize robot more quickly. 

4.3. Occlusions and Using All Information 
 
In this experiment, we take into account the camera one 
being occupied by a people. The camera one applies 
background subtraction approach described in [23] to 
detect the occupied areas. The detection result is shown 
in Figure 4(b). Due to the occlusion, the particles exist-
ing in the occupied areas are still reserved (see Figure 
9(a)). After ten seconds, the effect of robot’s belief is 
described in Figure 9(b). From the experiment, it can be 
seen that though the camera one is partly occupied, the 
accuracy of the localization is still greatly improved us-
ing the negative detection information compared with 
experiment one. 
 
4.4. Localization Error Analysis 
 
In the case of no occlusions, we conducted ten times for 
the first two experiments and compared the performance 
to conventional MCL for robot which ignores environ-
mental cameras’ detections. To measure the performance 
o localization we determined the true locations of the  t 
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(a)                                                           (b) 

Figure 8. (a) The particles represent the robot’s belief by integrating the negative information of two cameras; (b) Archived 
localization after five seconds. 
 

 
(a)                                                           (b) 

Figure 9. (a) Particles set after integrating negative information of two cameras among which the camera 1 is occupied by a 
people; (b) Archived localization after 10 seconds. 
 
robot by performing position tracking and measuring the 
position of each second. For each second, we then com-
puted the estimation error at the reference positions. The 
estimation error is measured by the average distance of 
all samples from the reference position. The results are 
summarized in Figure 10. The graph plots the estimation 
error (y-axis) as a function of time (x-axis), averaged 
over the ten experiments, along with their 95% confi-
dence intervals (bars). Firstly, as can be seen in the fig-
ure, the quality of position estimation increases faster 
when using environmental camera detection (positive 
information) than one without environmental cameras. 
Please note that the detection event typically took place 
14-16 seconds after the start of each experiment. Sec-
ondly, as can be also seen in the figure, the quality of 
position estimation increases much faster when using all 
information of environmental cameras. Obviously, this 
experiment is specifically well-suited to demonstrate the 
advantage of positive and negative information of envi-
ronmental cameras in robot global localization. Of 
course, the performance of our approach in more com-
plex situations, especially highly symmetrical and dy-

namic environments, is more attractable to solve robot’s 
global localization. 
 

 

Figure 10. Comparison of localization error using three 
localization algorithms. 
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5. Conclusions 
 
In this paper we presented an approach to collaborate 
distributed sensors for mobile robot localization that uses 
a sample-based representation of the state space of a ro-
bot, resulting in an extremely efficient and robust tech-
nique for global position estimation. Here we use envi-
ronmental cameras whose parameters is unknown in ad-
vance to determine robot’s position. In order to apply 
environmental cameras to localize the robot, all parame-
ters of each environmental camera are calibrated inde-
pendently by robot. During calibration, the robot local-
ization is known and can navigate by its onboard laser 
sensor. Once calibrated, the positive and negative detec-
tions of the environmental cameras can be applied to 
localize robot. Experimental results demonstrate that, to 
combine all information of environmental cameras, the 
robot’s belief can reduce its uncertainty significantly. 
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