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ABSTRACT

Multidimensional noncommutative Laplace transforms over octonions are studied. Theorems about direct and inverse
transforms and other properties of the Laplace transforms over the Cayley-Dickson algebras are proved. Applications to
partial differential equations including that of elliptic, parabolic and hyperbolic type are investigated. Moreover, partial
differential equations of higher order with real and complex coefficients and with variable coefficients with or without

boundary conditions are considered.
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1. Introduction

The Laplace transform over the complex field is already
classical and plays very important role in mathematics
including complex analysis and differential equations [1-
3]. The classical Laplace transform is used frequently for
ordinary differential equations and also for partial dif-
ferential equations sufficiently simple to be resolved, for
example, of two variables. But it meets substantial dif-
ficulties or does not work for general partial differential
equations even with constant coefficients especially for
that of hyperbolic type.

To overcome these drawbacks of the classical Laplace
transform in the present paper more general noncom-
mutative multiparameter transforms over Cayley-Dick-
son algebras are investigated. In the preceding paper a
noncommutative analog of the classical Laplace trans-
form over the Cayley-Dickson algebras was defined and
investigated [4]. This paper is devoted to its generali-
zations for several real parameters and also variables in
the Cayley-Dickson algebras. For this the preceding re-
sults of the author on holomorphic, that is (super) dif-
ferentiable functions, and meromorphic functions of the
Cayley-Dickson numbers are used [5,6]. The super-dif-
ferentiability of functions of Cayley-Dickson variables is
stronger than the Fréchet's differentiability. In those works
also a noncommutative line integration was investigated.

We remind that quaternions and operations over them
had been first defined and investigated by W. R. Ha-
milton in 1843 [7]. Several years later on Cayley and
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Dickson had introduced generalizations of quaternions
known now as the Cayley-Dickson algebras [8-11]. These
algebras, especially quaternions and octonions, have found
applications in physics. They were used by Maxwell,
Yang and Mills while derivation of their equations, which
they then have rewritten in the real form because of the
insufficient development of mathematical analysis over
such algebras in their time [12-14]. This is important,
because noncommutative gauge fields are widely used in
theoretical physics [15].

Each Cayley-Dickson algebra A, over the real field

r i P
R has 2' generators {IO,Il,---,IZ,_l} such that i, =1,

ij2 =-1 foreach j=1,2,---,2"~1, iji, =i for every
I<k=# j<2"-1, where r>1. The algebra A is
formed from the preceding algebra A, with the help of
the so-called doubling procedure by generator i2r . In par-
ticular, A =C coincides with the field of complex
numbers, A, =H is the skew field of quaternions, A,
is the algebra of octonions, A, is the algebra of seden-
ions. This means that a sequence of embeddings

e — Ar — Ar+1 — e+ EXIStS.

Generators of the Cayley-Dickson algebras have a
natural physical meaning as generating operators of
fermions. The skew field of quaternions is associative,
and the algebra of octonions is alternative. The Cayley-
Dickson algebra A, is power associative, that is,

""" =72"z" for each nnmeN and zeA . It is non-
associative and non-alternative for each r>4 . A
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conjugation z° =7 of Cayley-Dickson numbers

ze A is associated with the norm |Z|2 ='=17z.
The octonion algebra has the multiplicative norm and is
the division algebra. Cayley-Dickson algebras A, with
r>4 are not division algebras and have not multi-
plicative norms. The conjugate of any Cayley-Dickson
number z is given by the formula:

M1) 2" =& —gl.

The multiplication in A, is defined by the fol-
lowing equation:

M2) (&+nl)(y+01)= (& —dn)+ (5 +n7)]

foreach &, n, y, de A, z:=¢E+nleA,,,
C=y+dleA,,.

At the beginning of this article a multiparameter non-
commutative transform is defined. Then new types of the
direct and inverse noncommutative multiparameter trans-
forms over the general Cayley-Dickson algebras are in-
vestigated, particularly, also over the quaternion skew
field and the algebra of octonions. The transforms are
considered in A, spherical and A Cartesian coordi-
nates. At the same time specific features of the noncom-
mutative multiparameter transforms are elucidated, for
example, related with the fact that in the Cayley-Dickson
algebra A thereare 2" —1 imaginary generators

e, apart from one in the field of complex num-
1 21

bers such that the imaginary space in A has the di-
mension 2" —1. Theorems about properties of images
and originals in conjunction with the operations of linear
combinations, differentiation, integration, shift and ho-
mothety are proved. An extension of the noncommuta-
tive multiparameter transforms for generalized functions is
given. Formulas for noncommutative transforms of pro-
ducts and convolutions of functions are deduced.

Thus this solves the problem of non-commutative ma-
thematical analysis to develop the multiparameter Lap-
lace transform over the Cayley-Dickson algebras. More-
over, an application of the noncommutative integral trans-
forms for solutions of partial differential equations is
described. It can serve as an effective means (tool) to
solve partial differential equations with real or complex
coefficients with or without boundary conditions and
their systems of different types (see also [16]). An algo-
rithm is described which permits to write fundamental
solutions and functions of Green’s type. A moving bound-
ary problem and partial differential equations with dis-
continuous coefficients are also studied with the use of
the noncommutative transform.

Frequently, references within the same subsection are
given without number of the subsection, apart from
references when subsection are different.

All results of this paper are obtained for the first time.

Copyright © 2012 SciRes.

2. Multidimensional Noncommutative
Integral Transforms

2.1. Definitions Transforms in A, Cartesian
Coordinates

Denote by A the Cayley-Dickson algebra, 0<r, which
may be, in particular, H = A, the quaternion skew field
or O=A, the octonion algebra. For unification of the
notation we put A) =R, A =C.A function

f:R" > A we call a function-original, where 2<r,
ne N, if it fulfills the following conditions (1-5).

1) The function f(t) is almost everywhere conti-
nuous on R" relative to the Lebesgue measure 4, on
R".

2) On each finite interval in R each function
gj<tj): f(t,--.t,) by t; with marked all other va-
riables may have only a finite number of points of dis-
continuity of the first kind, where t= (tl,--‘,tn)e R",
t;eR, j=1,---,n. Recall that a point u, € R is called
a point of discontinuity of the first type, if there exist
finite left and right limits
limy-suyu<e,9(U) =19 (U, —0) € A and
limu->uy.u-09 (u)="g(u,+0)e A .

3) Every partial function g, (tj): f(t,-.t,) satis-
fies the Holder condition: .

‘gj<tj +hj)—gj<tj)‘§ Aj|hj| ! for each |hj|<5,
where 0<a; <1, A =const>0, §;>0 are
constants for a given t:(tl,---,tn)e R", j=1,---,n,
everywhere on R" may be besides points of discon-
tinuity of the first type.

4) The function f(t) increases not faster, than the
exponential function, that is there exist constants
C,=const>0, v=(v,,~-,V,), a,aeR, where
v, € {—1,1} for every j=1,---,n, such that
|f (t)| <C,exp((q,.t)) for each teR" with t,v; >0

foreach j=1,---,n, q, :(Vlah’""vna‘/n ) ; where

5 (xy):= Z?=1X ;Y; denotes the standard scalar pro-
ductin R".

Certainly for a bounded original f
take a, =a =0.

Each Cayley-Dickson number p e A we write in the
form ,

6) p= z;lpjij , where iio’il’m’izw} is the stand-
ard basis of generators of so that i, =1, if =-
and ij; =i; =i;i, for each j>0, iji, =—ii; for each
>0 and k>0 with k= j, p;eR foreach j.If
there exists an integral

7) B (p)=F(p) = [ f (e P04t
then F"(p) is called the noncommutative multipara-

meter (Laplace) transform at a point p € A of the func-
tion-original f (t), where

it is possible to
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=&, =& ++ o 1|2r e A s the parameter of an
initial phase, § eR for each j=0,1,- -1,

CeA, n=27-1, dt=4 (dt),

8) <p,t): po(tr+"'+t2r,1)+zj | Py
we also put

8.1) u(p.t:g)=(p.t)+< .

For vectors v,weR" we shall consider a partial
ordering

2) M(p,t)=M

for the general Cayley-Dickson algebra with 2 <r <oo.

2.1) s;:=s;(n;t):=t; +---+t, for each j=1,---,n
n=2"-1, so that s, =t +---+t,, s, =t,. More ge-
nerally, let

3) u(p t)=u(p,t;{) = p,s, +W(p,t)+¢,, where

w(p,t) is a locally analytic function, Re(w(p, )) 0
foreach peA and te R¥ Re(z):=(z+2)/2,
Z=17" denotes the conjugated number for z € A . Then
the more general non-commutative multiparameter trans-
form over A is defined by the formula:

4) R (p;¢)= Rnf(t)exp(—U(P,t;g))dt

for each Cayley-Dickson numbers pe A whenever
this integral exists as the principal value of either Rie-
mann or Lebesgue integral, n=2"—1. This non-com-
mutative multiparameter transform is in A, spherical
coordinates, when u(p,t;{) is given by Formulas
(1,2).

At the same time the components p; of the number
p and ¢, for ¢ in u(p,t;{) we write in the p-
and ¢ -representations respectively such that

5) h =[—hij+ij(2f-z) { h+> l|k(h|k)}j/z

foreach j=1,2,---,2" -1,

(Pt:8) = (P, + &) [ cos(p,S, + &, ) +iy sin(p,s, + &, )cos( PsSy +&5 ) ++++i
Sin( pz’—zszf—z +§2'—2 )COS( pzr—rszr -1 + 4/2'—1)4_ iz'—r Sin( p232 + é’z )'“Sin( pz’ —252'—2 + 42'—2 )Sin( p2r_152, -1

9) v<w ifandonlyif v; <w, foreach
j=1,---,n anda Kk exists so that v, <W,,
I1<k<

2.2. Transforms in A, Spherical Coordinates

Now we consider also the non-linear function
u=u(p,t;{) taking into account non commutativity of
the Cayley-Dickson algebra A, . Put

1) u(pt)=u(p.t;{)=p,s +M(p,t)+¢,, where

72sin(p252+§2)---

+§2r_lﬂ
6) h0=(h+(2r—2) { h+>,. 1|k(h|k)}j/z,

where 2<reN, h=hj,+- +h i (€A
foreach j, i, = |k —i, for each”’ k = 0 i, = 1,
he A .Denote F/(p;{) inmore details by

Fr(f.ups¢).

Henceforth, the functions u(p,t;{) given by 1(8,8.1)
or (1,2,2.1) are used, if another form (3) is not specified.
If for u ( p,t; & ) concrete formulas are not mentioned, it
will be undermined, that the function u(p,t;{) is given
in A, spherical coordinates by Expressions 1,2,2.1). If
in Formulas 1(7) or (4) the integral is not by all, but only
byt tj(k) variables, where 1<k <n,
I<jl)<--<jk)sn, then we denote a noncom-
mutatlve transform by Fu R (p:¢) o
o J‘k)(f u;p;$). If j()=1,- ,j(k) k, then
we denote it shortly by F(p;¢) or F*(f,u; p,é’).
Henceforth, we take é’ =0 and t, =0 and p,=0
for each 1<m e{ o (k) } if something other is
not specified.

2.3. Remark

The spherical A, coordinates appear naturally from the
following consideration of iterated exponents:

1) exp(il(plsl +é’l)(exp(—i3(p252+§2)(exp(—il(p3s3+§3))))
= xp((plsl+§1)(ilcos(p252+§2)+i2sin(p2s2+;’2)cos(p353+§3)+i3sin(pzsz+§2)sin(p3s3+;’3))).

Consider | the generator of the doubling procedure
of the Cayley-Drckson algebra A.,, from the Cayley-
Dickson algebra A, such that i, = '2r+j for each

j=0,---,2" —1. We denote now the function
M ( cj ) from Definition 2 over A in more details
by | M . Then by induction we write:

2) exp( ,+1M(p,t;§))=exp{ rM((ilpl+m+i2r71pzrfl)’(tl’.”’tzrfz’(tzﬁl+Sz’));(ilgl-'”mi_izﬂlé'uzrfl)

exp(—i2r+1( 2r 2r +§ )exp(— M ((il p2r+‘ i
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+ Iz’-l pz”l—l )’(tzhl’“"tz”l-l );(I1§2r+1 +

i g )
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where t=(t,--t,), n—n(r+1)—2r+1 1,
sj=sj(n(r+1);t) foreach j=1,---,n(r+1), since
Sm(n(r+l);t)_tm+ +tn(r+l)

=5, (n(r);t)+sZr (n(r+1):t)
foreach m=1,---,2" —1.
An image function can be written in the form

3) R ()= N1 (0.

where a function f is decomposed in the form

30 1 (0=,
f,:R" >R for each j=0,1,---.2"-1, F(p:{)
de-notes the image of the function-original f;.

If an automorphism of the Cayley-Dickson algebra

A s taken and instead of the standard generators
{io,-'-,izr 1} new generators {NO,---,Nzr 1} are used,

this provides also M (p,t;¢)=M (p,t;{) relative to
new basic generators, where 2 <reN . In this more
general case we denote by F"(p;¢) an image for an
original f (t), or in more details we denote it by

F'(f.u;p:0).

Formulas 1(7) and 2(4) define the right multipa-
rameter transform. Symmetrically is defined a left multi-
parameter transform. They are related by conjugation and
up to a sign of basic generators. For real valued originals
they certainly coincide. Henceforward, only the right
multiparameter transform is investigated.

2) quf (t)exp(—u ( p,t;é’))dt

where w=Re(p), since |e’|=exp(Re(z)) for each
ze A in view of Corollary 3.3 [6]. While an integral,

3) UU f(t)[aexp(—u(p,t;g))/ap]-hdt‘

exp{—v1 (W—avl)y, A (W—avn)

for each he A, since each ze A can be written in
the form z=|z|exp(M), where |z | =77€[0,0)c R,

MeA, Re(M)=(M +M)/2 0 in accordance with
Proposition 3.2 [6]. In view of Equations 2(5,6):

6) quf(t)[aexp(—u(p,t;g”))/ 6;].hdt‘

<lh| [ e exp{ v (w=a, )y, ==

Copyright © 2012 SciRes.

< .[:...J:CV exp{—v1 (W— a, )y1
=Ce " lj:[lvj (W_avj )

b (ViYa o+ VYo ) 0 (VY v )
Vo= o} dy, -y,

vy (W=, )y =0y, --dy,

Particularly, if p=(p,,p,,0,---,0) and
t:(tl,O,---,O) , then the multiparameter non-commu-
tative Laplace transforms 1(7) and 2(4) reduce to the
complex case, with parameters a,, a_,. Thus, the given
above definitions over quaternions, octonions and gene-
ral Cayley-Dickson algebras are justified.

2.4. Theorem

If an original f(t) satisfies Conditions 1(1-4) and
a <a,, then its image F" (f,u; p;g’) is A -holo-
morphic (that is locally analytic) by p in the domain
{ze A :a <Re(z)<a,},aswellasby ¢ <A, where
I<reN, 27'<n<2"-1, the function u(p,t;¢) is
given by 1(8,8.1) or 2(1,2,2.1).

Proof. At first consider the characteristic functions
o, (1), where gz, (t)=1 foreach teU ,while
o (t)— 0 forevery teR"\U,

U, .f{teR”.VjtJ—ZOV]:l, . } is the domain in the

Euclidean space R" forany v from § 1. Therefore,
D R (p:¢)=
Z[v:(vl ) (p.t:g))dt,
since A, (U mU ):0 for each v=w. Each integral

If exp

cach pe A with the real part a <Re(p)<a_,, since
it is majorized by the converging integral

_..._vn (W_avn)yn

11.[ f exp

p t;¢ )) dt is absolutely convergent for

_é’o}dy1 dyn

produced from the integral (1) differentiating by p
converges also uniformly:

H hn—l (Vn—l yn—l + Vn yn )’ hnvn yn )

4) a(JRnf(t)exp(—U(p,t;g))dt)/ap:0 and

5) o([ o f (t)exp(-u( p,t;;))dt)/af =0, while

=|h|C,e™ ﬁvj (w—aVj )_l
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for each he A . In view of convergence of integrals
given above (1-6) the multiparameter non-commutative
transform F; ( p; < ) is (super)differentiable by p and
¢, moreover, oF'(p;¢)/op=0 and

R (p:¢ )/ 0 =0 in the considered (p,¢)-represen-
tation. In accordance with [5,6] a function g(p) is
locally analytic by p in an open domain U in the
Cayley-Dickson algebra A, 2<r, if and only if it is
(super)differentiable by p, in another words A, -ho-
lomorphic. Thus, F/'(p;¢) is A -holomorphic by
peA with a <Re(p)<a, and {eA due to Theo-
rem 2.6 [4].

Corollary

Let suppositions of Theorem 4 be satisfied. Then the
image F"(f,u;p;¢) with u=u(p,t;{) given by 2
(1,2) has the following periodicity properties:

1) foreach j=1,---,n and fe2nZ;

2) foreach j=1,---,n—1 sothat ¢} =¢; and
(=0, =l (=2 for cach s# |
and s# j+1, while either p; =-p; and p; =p; for
each l#j with k=2 or p'= pé and f(t) is an
even function with k=2 by the s; =<tj +~--+tn)
variable or an odd function by s; =(tj +---+tn) with
Kk=1;

3) F”(f,u; p;§’+ni1)=—F"(f,u; p;{).

Proof. In accordance with Theorem 4 the image
F" ( f,u; p;g") exists for each
peW, ={zeA :a <Re(z)<a,} and { <A, where
1<r. Then from the 2m periodicity of sine and cosine
functions the first statement follows. From
sin(—¢)=—sin(g), cos(¢)=—cos(-¢),
sin(n+¢)=—sin(¢) , cos(g+m)=—cos(¢) we get
that cos(pjsj +§j—cos —P;s; +§Jz) ,

sin(pjsj +.§})cos(pj+lsj+1 +§}+1)

:(_Sin(_pjsj +§j2))(_cos(pj+1sj+1 +§j2+1))
and

Sin(pjsj +§})Sin(pj+1sj+1 +§}+1)

= (—Sin(—pjsj +§j2))(_5in( pj+lsj+1 +é’j2+1))

for each teR". On the other hand, either p} =-p
and p =p’ foreach = j>1 with k=2 or
p' =p° and

F(taeas) +55-8 =St ety

:(—I)K f (tl"”’sj—l _Sj’sj _sj+1’tj+1"”’tn)

2
i

is an even with k=2 or odd with k=1 function by
the s; = (tj +-~+tn) variable for each

t= (tl,-'-,tn) eR", where t, =s;-s,, for

i=l-n, s, = Sn+1(n;t3 =0 . From this and For-
mulas 2(1,2,4) the second and the third statements of this
corollary follow.

2.5. Remark

Forasubset U in A weput

mp (U)={u:zeU,z=Y wv.u=ws+w,p}

for each s# peb, where
t= ZVeb\{s,p}WVv €A

{ZE Az=Y WV,W =w, =0,W e RVVeb},

where b:= {io,il,--.,izril} is the family of standard ge-
nerators of the Cayley-Dickson algebra A, . That is, geo-
metrically 7, (U) means the projection on the com-
plex plane C, of the intersection U with the plane
ftsgp’t >t, C, = {as+bp:a,beR},since

sp’ eb:=b\{l}. Recall that in § § 2.5-7 [6] for each
continuous function f:U — A it was defined the ope-
rator f by each variable ze A . For the non-com-
mutative integral transformations consider, for example,
the left algorithm of calculations of integrals.

A Hausdorff topological space X is said to be n-
connected for n>0 if each continuous map
f:S¥ > X from the k-dimensional real unit sphere
into X has a continuous extension over R*"' for each
k<n (see also [17]). A 1-connected space is also said
to be simply connected.

It is supposed further, that a domain U in A has
the property that U is (2' —1) -connected; m, (U)
is simply connected in C for each k=0,1,---,2"",
S=ly, P=iy,, teA,, and ueC, , for which
there exists z=u+teU .

2.6. Theorem

If a function f(t) is an original (see Definition 1),
such that (F"(p;¢) is its image multiparameter non-
commutative transform, where the functions f and F/
are written in the forms given by 3(3,3.1), f (R")c A
over the Cayley-Dickson algebra A, where 1<reN,
2 <n<2 1.

Then at each point t, where f (t) satisfies the Holder
condition the equality is accomplished :

D f(t)= {[““Nn)’l I_NN"Z}(“'G(“N‘ N LA R TR p’t;‘;)}j"'jdp}

n

=:(F”)71( WFl(a+pid).utg),

Copyright © 2012 SciRes.
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where either u(p,t;¢)=
u(p.t;¢)=
the integrals are taken along the straight lines

p(‘[j): erj eA, 7, € R foreach j=1,---,n;

a, <Re(p)=a<a, and this integral is understood in
the sense of the principal value, t= (tl, -t ) eR",

dp=(-((d[pN,J)d [P.N,]).-.)d [N, ].

Proof. In Integral (1) an integrand 7(p)dp certainly
corresponds to the iterated integral as
(---(77(p)d[plNl])---)d[pnNn],where
p=pN,+-+p,N,, p,,p,€R . Using Decom-
position 3(3.1) of a function f it is sufficient to
consider the inverse transformation of the real valued

p,t)—i—é’ or

function f;, which we denote for simplicity by f . We
put R (p:&)= [ .f; (t)exp(-u(p.t:£))dt
If n is a holomorphic function of the Cayley-

Dickson variable, then locally in a simply connected
domain U in each ball B(A,,z,,R) with the center at
z, of radius R>0 contained in the interior Int(U)
of the domain U there is accomplished the equality

(6“;077(a+§)d§}/62). 1=75(a+z), where the inte-

gral depends only on an initial z, and a final z points
of a rectifiable path in B(A,z,,R), aeR (see also
Theorem 2.14 [4]). Therefore, along the straight line
N;R the restriction of the antiderivative has the form

I n(a+N T )dz’ since

D) [} @+ 8)de = [ ia+Nie)Nyde,.
where 0n(a+2)/00=(dn(a+z)/oz). N, forthe

n

3) g, (t)= [(an) j_”N“"J( ([(21IN) fNJ L

for each positive value of the parameter 0 <b <o . With
the help of generators of the Cayley-Dickson algebra A

4) gyt

since the integral j

’’’’ ( Jexp{-uy (a+p,;¢)}dr

for any marked 0<¢ <( _,—a,)/3 is uniformly con-
verging relative to  p in the domain

a+5<Re(p)<a,-& in A (see also Proposition
2.18 [4]). If take marked t, for each k= j and
S=N; forsome j>1 in Lemma 2.17 [4] considering
the variable t;, then with a suitable (R -linear) auto-
morphism Vv of the Cayley-Dickson algebra A an
expression for V(M(p,t;g’ )) simplifies like in the
complex case with C, :=R®RK for a purely imagi-
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oS + My (P.t;8)+¢, (see § § 1 and2),

(super)differentiable by zeU function 7(z), when
z=60N;, 0eR. For the chosen branch of the line
integral specified by the left algorithm this antiderivative
i unique up to a constant from A with the given
z -representation v of the function 7 [4-6]. On the
other hand, for analytic functions with real expansion
coefficients in their power series non-commutative in-
tegrals specified by left or right algorithms along straight
lines coincide with usual Riemann integrals by the
corresponding variables. The functions sin(z), cos(z)
and e’ participating in the multiparameter non-com-
mutative transform are analytic with real expansion co-
efficients in their series by powers of ze€ A .

Using Formula 4(1) we reduce the consideration to
Xy, (t) T(t) instead of f(t). By symmetry properties
of such domains and integrals and utilizing change of
variables it is sufficient to consider U, with
v=(1,---,1). In this case J' , for the direct multi- para-
meter non-commutative transform 1(7) and 2(4) reduces
to I:I: Therefore, we consider in this proof below
the domain U, ; only. Using Formulas 3(3,3.1) and
2(1,2,2.1) we mentlon that any real algebra with
generators N, =1, N, and N; with 1<k=#] is
isomorphic with the quaternion skew field H , since
Re(N;N,)=0 and |Nj|=1, [N,[=1 and |N;N,|=T1.
Then

exp(a+Mp)exp(y+Maw) = exp((a+7/)+ M (ﬂ—i—a)))

for each real numbers «,f,7,8 and a purely imaginary
Cayley-Dickson number M . The octonion algebra O
is alternative, while the real field R is the center of the
Cayley-Dickson algebra A, . We consider the integral

(a+ p;g")exp{u(a+ p,t;é’)})n-jdp

and the Fubini Theorem for real valued components of
the function the integral can be written in the form:

[(2nN,) j dr _[ ( ([ 27N, IJ:dTIJlN;H f (r)exp{—uN (a+ p,t;é’)}exp{uN (a+ p,r;;’)})...)dp,

nary Cayley-Dickson number K, |K| =1, instead of
C:=R®Ri,, where v(x)=x for each real number
X e R .Buteachequality o=/ in A 1isequivalentto

v(a)=V(p). Then
5) Re[(Nqu)(Nle)}=Re(Nqu)=5q’,
for each q,l.

If Sj = ZOan;lijalNl > = 20s|gn;l¢jﬂlNl with
j=1 andreal numbers ¢,f €R foreach |, then

6) Re[(Nij)(Nij)} Re[S’( )} IO
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The latter identity can be applied to either

sk = k+1(pk+1 ket T+ Py n(k+1’“"tn);é/k+1Nk+1+'"+§nNn)

and
Nk k+1(pk+1 k+l+”'+pnNn’(TkH"”’Tn);§k+1Nk+l+”'+§nNn)’
or
Sk :(pk+ltk+1 +§k+l)Nk+l +"'+(pntn +§n)N
and
Nk :(pk+lTk+l+é’k+l)Nk+l+“'+(pnrn+é’n)N
where

7) I\/|k+l ( pk+lNk+1 tot pnNn’(tkH’”"tn);§k+lNk+l +"'+§nNn) 4

= ( Pr1Sipat + St ) +N, [Sin( Pri2S2kar + G2 )"'Sin( PnSnoickt &0 )J

8) sjk+1: jk+1(n’t) k+]+ +t Sk+j(n;t) Sk (n;T)—Sj(n;Z'):Sk(j—l;T):Tk+"‘+Tj_|
for each j=1,---,n—1; s, .. =S, . (nt)=t,. We  foreach 1<k < j<n.By our convention
take the limit of g, (t) when b tends to the 1nﬁn1ty s.(n;7)=s,(mz) for k<1, while s (n;z)=0 for
Evidently, k>n.Put

9) un,j(po+ijj+"'+pnNn:(Tj,"‘aTn);§o+§ij+"'+§nNn)
:§0+posl,j+Mj(ijj+...+ pnNn,(rj,--.,rn);goJr;ij+--.+§nNn)
for uy given by 2(1,2,2.1), where M, is prescribed by (7), s, ; =5, ;(n:7);

10) Un,j(po+ PN+ + pnan(Tjs“'aTn)§§o+§ij +"'+§nNn):§o+ PoS,j +ZE=j(kak +§k)N

for u=u, given by 1(8,8.1). For j>1 the parameter When t,---,t,_,t,,,-,t, and
¢, for u=uy given by 1(8,8.1) or 2(1,2,2.1) can be Pis s Pjois Pjarstee» Py variables are marked, we take the
taken equal to zero. parameter

4 :=§J’(ijj+---+ pnNn,(rj,---,rn);§0+§ij+---+§nNn)
=(§0+§ij+---+§nNn)+(a+ Po)Si + PS4 psyN
for u(p,7;¢) given by Formulas 2(1,2,2.1) or
CH= (PN +o 4 BN ()7 )G + 6N+ + 6N )
= (Lo + &Ny 4o+ LN )+ (@+ Py )Sjy + PiaTjurNy +oo+ Pz N
for u(p,z;¢) described in 1(8,8.1). Then the integral operator
| (28, [0, [ -+(am)
(see also Formula (4) above) applied to the function
f(tl,-“,tjfl,rj,-“,‘rn)exp{—UN’j(a+ Do+ PN+t pnNn,(tj,---,tn);§0+§ij+~~-+§nNn)}

exp{uN,j<a+ Py + PN+ PN (750007, )56y + 6N +---+§nNn)}
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with the parameter ¢’ instead of ¢ treated by Theo-
rems 2.19 and 3.15 [4] gives the inversion formula cor-
responding to the real variable t; for f (t) and to the
Cayley-Dickson variable p,N,+ p;N; restricted on the

complex plane C =R®RN;, since

d (‘[ +C) =dr, for each (real) constant C. After inte-
grations with j =1,---,k with the help of Formulas (6-
10) and 3(1,2) we get the following:

H %ngb(t): i:an -id I }( (|: 27[Nk+1) J.wdiHJ'_N,::rJ
f (tl’u.,tk’Tkﬂ,--.’Tn)eXp{_uN,kﬂ((a-i— p, + pkHNkH et pnNn),(tkH,..-’tn);(é’o +é/k+1Nk+1 +...+é’nNn))}

exp{uN,kﬂ ((a+ Po + pk+1Nk+1 Tt pnNn)’(TkJrlﬂ”"Tn);(é’O +§k+1Nk+1 ++§nNn)>})jjdp

Moreover, Re( fq): f, for each g and in (11) the
function f = f, stands for some marked g in accor-
dance with Decompositions 3(3,3.1) and the beginning of
this proof.

Mention, that the algebra alg, (N i» Nk,Nl) over the
real field with three generators N;, N, and N, is
alternative. The product N, N, of two generators is also
the corresponding generator (—1)5( "N, with the de-
finite number m=m(k,l) and the sign multipher
(—l)g(k’l) , where &(k,l)e{0,1}. On the other hand,

21rj

Proof. Each algebra aIgR<Nj, Ny, N,) is alternative.
Therefore, in accordance with § 6 and Formulas

1) f(t

N

2) Nj_'LNj?b[f (r)exp{—uN

for each j=1,---,n, since the real field is the center of
the Cayley-Dickson algebra A , while the functions

3 6y(1)=(2n)"| [ dr, [ i( ([fanL Jrc

hence taking the limit with b tending to the infinity im-
plies, that the non-commutative iterated (multiple) inte-
gral in Formula 6(1) reduces to the principal value of the
usual integral by real variables (z,,---,7,) and

(pl"": pn) 61(1)

2.7. Theorem

An original f(t) with f(R”)cAr over the Cayley-
Dickson algebra A with I1<reN is completely de-
fined by its image F(p;¢) up to values at points

exp{

Copyright © 2012 SciRes.

an, =(F") " (

a+p§ exp{ (a+ p,t;g”)}dplu-

N, [Nj(Nj(NkZN,))}= Ny, (N, Ny). We use decom-

positions (7-10) and take k, =1 due to Formula (11),
where Re stands on the right side of the equality, since
Re(N,N,)=0 and Re[ N, (N;(N,N,))]=0 for cach
k = | . Thus the repeated application of this procedure by
j=1,2,---,n leads to Formula (1) of this theorem.

Corollary
If the conditions of Theorem 6 are satisfied, then

RN (a+ p:¢).u.t:g).

1(8,8.1) and 2(1-4) for each non-commutative integral
given by the left algorithm we get

(a+ p,t;é’)}]exp{uN (a+ p,r;é’)}d( ijj)

Z(;I\]j {Nj (.i_N,j?b[N' f, (7)exp{-uy (a+ p,t;g)}]exp{uN (a+ p,r;é’)}dpjﬂ
= Lbb[f (r)exp{—uN (a+ p,t;C)}Jexp{uN (a+ p,r;g)}dpj

sin and cos are analytic with real expansion coeffi-
cients. Thus

v (@+ .t ) exp{uy (a+ p,r;{)})-~-jdp, ~-dp,

of discontinuity, where the function u(p,t;¢) is given
by 1(8,8.1) or 2(1,2,2.1).

Proof. Due to Corollary 6.1 the value f(t) at each
point t of continuity of f(t) has the expression
throughout | F'(p;¢) prescribed by Formula 6.1(1).
Moreover, values of the original at points of discontinuity
do not influence on the image F'(p;¢), since on
each bounded interval in R by each variable t; a
number of points of discontinuity is finite and by our
supposition above the original function f(t) is 4,—
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almost everywhere on R" continuous.

2.8. Theorem

Suppose that a function (F(p;¢) is analytic by the
variable pe A inadomain

={peA:a <Re(p)<a,},where 2<reN,
2l<n<2 -1, f(R")cA,,either
u(p.t:¢)=(p.t)+¢ or
u(p,t;g):= RS +M(p,t;{)+¢, (see § § 1 and 2).

Let F'(p;¢) be written in the form
WF(Ps¢)= NFU”’O(p;§)+ nF(p;<), where
W’ (p:¢) is holomorphic by p in the domain

n

a <Re(p).Letalso F™(p;¢) be holomorphic by
p inthe domain Re(p)<a.,.Moreover, for each
a>a, and b<a_ thereexistconstants C, >0,
C,>0 and ¢, >0 and g >0 such that

1) | NFU”’O(p;§)|£Caexp(—ga|p|) for each peA

with Re(p)>a,

2) | ! p§)|§Cbexp(—gb|p|) for each peA
with Re( p)<b, the integral,

3) J' . J.le WFE(w+ p;¢)dp converges abso-

lutely for k=0 and k=1 and each a <w<a,
Then F/'(w+p;¢) is the image of the function,

4) f(t)—[(2n)ll\~lnf_N;Z]( ([(271 I } (W p; ¢ )exp{u (W+p,t;§)})---jdp

W (w+ p;g’),u,t;g).

Proof. For the function F™(p;¢) we consider
the substitution of the variable p=-g, —a_, <Re(g).
Thus the proof reduces to the consideration of

WF(W+p;¢) . An integration by dp in the ite-
rated integral (4) is treated as in § 6. Take marked
values of variables p,,-+-, p; ;, P;,;,"**» P, and
'[1,'--,tjfl,'[jﬂ,---,tn ,where s, =s, (n;z) for each
k=1,--,n (see § 6 also). For a given parameter

&= (G + N+ SN, )+ (W by )s
+ PjaSj Ny -+ PN
for u(p,z;¢) prescribed by Formulas 2(1,2,2.1) or
< :=(§0+§.N.+--~+§nNn)+(w+ Po)Sin

+ pj+1Tj+1Nj+l +eeet pnTnNn

for u(p,t;¢) given by 1(8,8.1) instead of ¢ and any
non-zero Cayley-Dickson number S e A, we have

limey o< Br,+¢7 /[ e+ ¢ ] =1

For any locally z-analytic function g(z) in a do-
main U satisfying conditions of § 5 the homotopy
theo-rem for a non-commutative line integral over A,
2<r, is satisfied (see [5,6]). In particular if U con-
tains the straight line w+RN; and the path

7,( ) ¢V +tN;, then '[_NN"Zg(z)dz:.[y_g(w+z)dz,
] ]

1) f(t)=(2n)" J'Rn nF (W ps¢)exp{u(w+ p,t;¢)}dp, -

Proof. In accordance with § § 6 and 6.1 each non-
commutative integral given by the left algorithm reduces

2) (2m) Nj

Copyright © 2012 SciRes.

R (w+ ps¢)exp{u(w+ p,t:)fd( N ) = (22) ' [

when Q( )—0 while |z| tends to the infinity, since
| £ | is a finite number (see Lemma 2.23 in [4]). We
apply this to the integrand in Formula (4), since
F(w+p;¢) is locally analytic by p in accord-
ance with Theorem 4 and Conditions (1,2) are satisfied.
Then the integral operator [(Zan)_] _[NNJZ} on the

]

j -th step with the help of Theorems 2.22 and 3.16 [4]
gives the inversion formula corresponding to the real
parameter t; for f(t) and to the Cayley-Dickson va-
riable p,N,+ p;N; which is restricted on the com-
plex plane C, R(—B RN; (see also Formulas 6(4,11)
above). TherefJore an apphcatlon of this procedure by
j=1,2,---,n as in § 6 implies Formula (4) of this
theorem. Thus there exist originals f' and f' for
functions F(p;¢) and (FM(p;¢) with a choice
of We R in the common domain
a <Re(p)<a,.Then f=f"+f" is the original for
F'(p;¢) due to the distributivity of the multi-
plication in the Cayley-Dickson algebra A, leading to
the additivity of the considered integral operator in
Formula (4).

Corollary
Let the conditions of Theorem 8 be satisfied, then

dp, = (F") " ( WF(w+ psg).utsd).

to the principal value of the usual integral by the cor-
responding real variable:

WF (W pi¢)exp{u(w+ p,t;¢)}dp;
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for each j=1,---,n. Thus Formula 8(4) with the non-
commutative iterated (multiple) integral reduces to For-
mula 8.1(1) with the principal value of the usual integral
by real variables ( P,y Py ) .

2.9. Note
In Theorem 8 Conditions (1,2) can be replaced on
> e 010

where Cp ) = {ZeA |Z| ).a <Re(z)<aﬁl} isa
sequence of intersections of spheres with a domain W ,
where R(n)<R(n+1) for each n, lim,,.R(n)=c.
Indeed, this condition leads to the accomplishment of the
A analog of the Jordan Lemma for each r>2 (see
also Lemma 2.23 and Remark 2.24 [4]).

Subsequent properties of quaternion, octonion and
general A, multiparameter non-commutative analogs of
the Laplace transform are considered below. We denote
by:

2) W ={peA:a(f)<Re(p)<a,(f)} adomain
of F'( p,é’) by the p variable, where a=a(f)
and aL1 =a ,(f) areasin § 1. For an original

[l f () + By (t))exp(-u(p.t:))dt = [ f (t)exp(-u(p.t:))dt+ [ . Ag(t

converges in the domain

W, nW,

We have teR", 2"'<n<2"—1, while R is the
center of the Cayley-Dickson algebra A . The qua-
ternion skew field H 1is associative. Thus, under the
imposed conditions the constants «,f can be carried
out outside integrals.

2.11. Theorem

Let a=const>0, let also F"(p;{) be an image of
an original function f (t) with either u:<p,t)+cj or
u given by Formulas 2(1,2) over the Cayley-Dickson
algebra A with 2<r<ow, 2" <n<2"—1. Then an
image F”(p/a;g)/a” of the function f (at) exists.
Proof. Since
s +§ =p,(sj/a)+¢,

j= nwhere SA

1) F(( t)/at)

( j/a)sg +¢; for each

isosp=s(mt),

3) f (t);(ul___’1 (t) we put

={peA :a(f)<Re(p)}.
that is a_, =0 . Cases may be, when either the left hy-
perplane Re(p)=a, or the right hyperplane
Re(p)=a, is (or both are) included in W, . It may
also happen that a domain reduces to the hyperplane

W, ={p:Re(p)=a =a_}.
2.10. Proposition

If images F'(p;¢) and (G](p;¢) of functions
originals f (t) and ¢ (t) exist in domains W; and
W, with values in A, where the function u(p,t;{)
is given by 1(8,8.1) or 2(1,2,2.1), then for each
a,feA in the case A)=H; as well as f and g
with values in R and each o,feA or f and ¢
with values in A and each «,f <R in the case of
A with r >3 the function
a B (p:¢)+ B (G, (p:;¢) is the image of the func-
tion af(t)+Ag(t) inadomain W AW, .

Proof. Since the transforms ~ F, (p ¢ ) and

G (p;¢) exist, then the integral

)exp(—u ( p,t;;))dt

={peA max(a(f).a(g))<Re(p)<min(a,(f).a,(g))}.

s;=s;(nir) , 7;=at; for each Then

changing of these variables implies:
[oof (at)e )t = [ £ (r)e Pz [a"

=F"(p/a;¢)/a"

due to the fact that the real filed R is the center Z(A,) of
the Cayley-Dickson algebra A, .

j=1,-.n.

2.12. Theorem

Let f(t) be a function-original on the domain U,
such that of (t)/ot, also for k=j-1 and k=j
satisfies Conditions 1(1-4). Suppose that u(p,t;{) is
given by 2(1,2,2.1) or 1(8,8.1) over the Cayley-Dickson
algebra A with 2<r <o, 27" <n<2"—1.Then

),U; p; é“) —Frd (f(t)lul‘m’l (tj),U(p,tj;é”);p;C)

+|:po +kZJ:kaek } R (f (t) 2, , (1).u p;éf)

inthe A, spherical coordinates or

Copyright © 2012 SciRes.
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1.1) F(( v/ot) z, (0.0 pg)— F““J(f(t);(ulw (tj),u(p,tj;g“);p;g“)

+[p0+ijeJF”(f(t);{ULm’l (t),u; p;;’)

inthe A Cartesian coordinates in a domain th = (tp"'»t,—a"'»t
={peAr :max(al(f),al(af/atj))< Re(p)}, where K>1.

Proof. Certainly,
2) of (t(s))/as, = of (t)/at, and

2.1) of (t)/at; =0 (oF (t(s)) /s, )(ds, ft;) = ) o (t(s)) fos,

s 4=8-5,, Formulas 30(6,7) [4] we have the equality in the A
=0 for each 1>1. From spherical coordinates:

't =0), S, =—0/0¢, for each

n-*vj

for each j=2,---,n, since t;=s;-s
where s; =s;(n;t), s

n+l
3) 8exp(—u(p,t;§))/@sj =-pyd, exp(—u(p,t;())— ijeJ_ exp(—u(p,t;g)),
since exp(—u(p,t;{))=exp{—posl—§O}exp(—M (p,t;g")),
6exp(—p031 —é’o)/(%j =—Pyd | eXp(—pOSI _go)v
6[cos(pjsj+§j)—sin(pjsj+cjj)ij]/asjzaexp( pjs]+§ )/85
=—pjijexp(—(pjsj+§j)ij)=—pj exp(—(pjsj+§j—n/2) j)
:—pj[cos(pjsj+é’j—1t/2)—sin<pj5j—i—é’j—1t/2)iJ]:—ijej [cos(pjsj+§) sin pJSJ+;’ J]
since s; and s, are real independent variables for each k # j, where &;, =0 for j=k,while 6;; =1,
3.1) Sej [cos(pjsj+§j)—sin(pjsj+§j)ij]=—6[cos(pjsj+§) sin pjsl+§ J/@g”
=[cos(pjsj+§j—n/2)—sm(pjsj+§j—n/2)lj]

Inthe A Cartesian coordinates we take t; instead of s; in(3.1). If ¢(Z) is a differentiable function by z; for
each j, ¢'Ar—>A z; = p;t; + &, then

3.2) aexp /8 qt ——q[dexp /df] (z)/azj)pj
~ap, [znzlz:;i(@: () <a¢<z>/azj))<5<2>>""'k/“l_¢
= —qp; ( aexp )/551) P; qe exp(—¢(2)),

where either q=1 or q=-1,since z;/0¢; =1. and

That is Sfej exp(—ij (¢j +g; )) = eXp(—ij (¢j +g; +X“/2))

3.3) s:j exp(—ik (@ +§k)) =0 for each j#k=>1 and
for each non-negative real number x>0, ¢ and

iti ber x>0,
any posi lee num .er ) ¢ €R, where S =S, (cjj), the zero power S! =1
3.4) Se,— exp(—lj (¢j +¢; )) = exp(—lj (¢j ey X“/z)) is the umt operator: : .

35) Sy, g U(PLS) = g P00 8 {ioaj,l cos(p;s, +&,)+(1-3;, )iy sin(ps, +¢)--cos(p;s; +&;)

22
+{ Zik Sin( p.S, +§1)"'COS( PiiSiar S )}"'izr1 Sin( V) +§1)"'Sin( p2r7132r71 +§2r71)
Py
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in the A spherical coordinates, where either =1 or
g=-1 and

3.6) /(<)) =¢&(¢;—xa/2)
for any function & (é’ j) and any real number XeR,
where j>1. Then in accordance with Formula (3.2) we
have:

3.7) Sqej exp(—u ( p,t;;’)) =

o — k . n-1-k
(@) @ @) o
&=-u(p,t:;¢)
for u(p,t;{) given by Formulas 1(8,8.1) in the A
Cartesian coordinates, where either q=1 or q=-1.

The integration by parts theorem (Theorem 2 in § 11.2.6
on p. 228 [18]) states: if a<b and two functions f

9 [, (o (0 )ew(-u(p:))dt -

SRINI

§1 28 2128, >0 (

(o ()08 Jexp(-u(p.t ) as, |t

J+1

and g are Riemann integrable on the segment [a b]
F(x)=A+[ f(t)dt and G(x)=B+[g(t)dt, where
A and B are two real constants, then

jF x)dx = F | jf

Therefore, the 1ntegrat10n by parts gives

4) [ (F (1)/2t; Jexp(-u(p.t:¢))dt
=1 (t)exp(‘”(p,t;é“))ﬂjj
I L (D(0exp(-u(p,t:¢))/at; ) |t

Using the change of variables t+> S with the unit
Jacobian 9(t,,---.t,)/(s;,-++,s,) and applying the Fu-
bini’s theorem componentwise to  f;i; we infer:

(1)/2t; Jexp(-u(p.t:£))ds

__U:...J':f(tj)exp(—u(p,tj;é’))dtl} {p0+Z:pk ek]f J' f exp (p,t;é’))dt

inthe A, spherical coordinates, or

5.1) jul,___’l(af (t)/et; Jexp(-u(p.t:£))dt

=—U:J.:f (tj)exp(—u(p,tj;.{))dtj}+[po +p;S,, }J.:J‘:f (t)exp(-u(p.t:¢))dt

inthe A Cartesian coordinates, since dexp(—(Pp,s, +¢;))/t;

g):j:j:f (t))exp(-u(p.t's¢))at’
- I:dt] ...j:dtj,,j:dtm "‘I:(dt

Formula (1), where

6) Fn—l;lj (f (tj )ZUL.‘.‘l’u(p’tj;é/); p;

is the non- commutative transform by
= (b0t
Remark
Shift operators of the form &(x+¢)=exp(¢d/dx)&(x)
in real variables are also frequently used in the class of
infinite differentiable functions with converging Taylor
series expansion in the corresponding domain.

It is possible to use also the following convention. One
can put

cos(¢ +¢,)=cos(4 +§1)COS(V/2)”'COS(V/2LI)> .,
sin (¢ +¢;)-+-cos (¢ +<i)
:sin(¢1 +é’])..-cos(¢k +§k)COS(Wk+1)"'COS(W2r_1),

where ;=0 for each j>1, 2<k<2"-1,
T cos(4+¢,)=0 foreach j>1 and 1>1,

so that

Copyright © 2012 SciRes.

=-p, exp(—( posl—l-g“o)) for each 1< j<n. This gives

f (tj )exp(—u(p,tj;g))

T sin(¢ +¢,)- cos(% +¢)=0 for each j>k and
|>1 where T E= TI 1(T f) is the iterated compo-
sition for |>1 le N Then Tje” uP) gives with

t;
such convention the same result as S e u(ptc) , SO one

—u p,t;;—i- 1/2
can use the symbolic notation TJ e (Pt 4) ( i) .

But to avoid misunderstanding we shall use S, and
T, inthe sense of Formulas 12(3.1-3.7).

It is worth to mention that instead of 12(3.7) also the
formulas

1) exp(pji, +--+ Py, ) = cos(#)+ M sin(4) with
(/5::¢(p)::[pl2 ot pﬂm and
M = (pji, +--+ pyiy)/¢ for ¢=0, € =1;
2) dexp(pyiy+--+ Py ) /0P,
=[-sin(9) #)]p,/¢
+(4i; ~Mp; )¢ sin(¢)

+M cos(
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and 8(pjtj+§j)/8§j =1 can be used.

2.13. Theorem

Let f(t) bea function-original. Suppose that

u(p,t;¢) is given by 2(1,2,2.1) or 1(8,8.1) over the

Cayley-Dickson algebra A with 2<r<o. Then a
(super) derivative of an image is given by the following
formula:

1) (F" (f(t),us ps¢)/ap)-h=—F"(f(t)s,U; ps¢ )Ny =S, F (F(t)s,u; ps¢)hy ==, F"(f(t)s,.;ps¢)h,

inthe A spherical coordinates, or

11) (oF

inthe A Cartesian coordinates for each
h=hyi, +---+hji, € A, where hy,---,h, eR,
2" <n<2"—1, peWw,.

Proof. The inequalities & (f)<Re(p)<a,(f) are
equivalent to the inequalities
a (1 (D) <Re(p)<a, ()
limye exp(—b|t|)|t| =0 foreach b>0.An image

((j f(t)exp(-

|t|) , since

u(p.t:¢)) dt /ap)

vel-1,13"
= J' f
Due to Formulas 12(3,3.2) we get:
3) (6 exp(—

inthe A spherical coordinates, or

4) (aexp(—u(p,t;g))/ﬁp)-h = —exp(—u(p,t;{))slh0

inthe A Cartesian coordinates.
Thus from Formulas (2,3) we deduce Formula (1).

2.14. Theorem

If f(t) isafunction-original, then

1) F”(f(t_f),u;p;cj)=F”(f(t),u;p;§+<p37])

for either
PyS, +M (p’t§§)+§o or

i) u(p,t;¢)=
3 F (e e )= [

(8 exp

=S, exp(—

"(f(t).u; p;.{)/@p).h:—F”((f(t)s,,u;p;g’))ho—selF”(f(t)t,,u;p;g’)h, —e= 8, FU(f (), ps¢)h,

F" ( f (t),u; p;{) is a holomorphic function by p for
a (f)<Re(p)<a,(f) byTheorem 4, also
U:e‘“t"dt‘ <o foreach ¢>0 and n=0,1,2,---.

Thus it is possible to differentiate under the sign of the
integral:

Z (G(I f exp (p,t;é’));(uvdt)/ﬁp)h

u(p.t:¢))/ap)-hdt.

u(p,t,é’))/ﬁp)h = —eXP(_U(p,t;é/))%ho _Se] eXp(—U(p,t;é/))Slhl _"'_Sen eXp(—U(p,t;é’))thn

S, exp(

u(p.t;<))th,

i) u(p.t:g)=(p.t)+¢ over A with 2<r<o
in a domain peW, ,where eR", 2" <n<2"-1,

2) (p.7]=pyS; + PS ++++ S,y with
s;=s;(n;z) foreach j in the first (i) and
<p,‘[] < ,‘[) in the second (ii) case (see also Formulas
1(8), 2(1,2,2.1)).

Proof. For p in the domain Re(p)>a, the iden-
tities are satisfied:

U(p,t§§))t1

*U( p,t;C)dt

[, f (t)e-u(p,s;g ag=F((t,, )00 p;§+<p,r]),

due to Formulas 1(7,8) and 2(1,2,2.1,4), since
posl(n t)+§o posl(n §)+§0 + posl(n T) and
+4; = Pjé; +(§ +P;7; ) and

pjsj(n;t)+§j =p;s, (n;f)+(§j +p;s; (n:7)) for each
j=1,---,2" =1, where t=¢&+7. Symmetrically we get
(2) for U, instead of U .. Naturally, that the mul-
tiparameter non-commutative Laplace integral for an
original f can be considered as the sum of 2" in-

Copyright © 2012 SciRes.

tegrals by the sub-domains U, :

4) [of (t)exp(-u(p.t:£))dt

= > f f(t exp (p,t;é’));(uv (t)dt
ve{-1,1}"
The summation by all possible Ve{—l,l}n gives
Formula (1).
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2.15. Note

In view of the definition of the non-commutative trans-
form F" and u (p,t;¢) and Theorem 14 the term
i+ +§ ; has the natural interpretation as the
initial phase ofl a retardation.

2.16. Theorem

If f(t) is a function-original with values in A for

2) Fn (eb(tl +4..+tn)f ( )ZU

2<r<ow, 2"'<n<2"-1, beR,then

D) " (), psg ) = F(f (1), p-big)
for each a_, +b>Re(p)>a +b, where u is given by
1(8,8.1) or 2(1,2).

Proof. In accordance with Expressions 1(8,8.1) and
2(1,2,2.1) one has

u(p,t;¢)=b(t, +--+t,)=u(p-b,t;{). If
a_, +b>Re(p)>a +b, then the integral

U p; g") J f(t)e bt +-+tn) exp(—u(p,t;é’))dt

[, f (t)exp(_u(p_b,t;g))dt: (f(t);guv( ).u; p—b:¢)

converges. Applying Decomposition 14(4) we deduce
Formula (1).
2.17. Theorem

Leta function f(t) be a real valued original,

F(p;¢)=F" (f (t);u; p;;’) , where the function

u(p,t;¢) is given by 1(8,8.1) or 2(1,2,2.1). Let also

G(p;¢) and q(p) be locally analytic functions such
)i sl ) =

that
G(p:¢)exp(-u(a(p).7:¢))
for u :<p,t)+§ or

) F'(g(t,
u:po(t1+---+tn)+M(p,t;§)+§0,then
2) E" (jRng(t,r) f(r)dz;u; p;;)
=G(p;<)F(a(p):<)

for each peW, and q(p)eW,, where 2<r<ow,
27 <n<2 1.

Proof. If peW, and q(p)eW,, then in view of
the Fubini’s theorem and the theorem conditions a change

n-1

1) lim {[ P, + pISel] P.Se, +* PuSe, Fr(pg)+ D (-1)"

p—o m=0

1< <ip_mEmIgh <<l <mgl, # jﬂ Va,p

or

LD g{[ P+ S, |[ Po+ S, [ P+ puS,, |

15j1<~-<jn_msn;lgll<~-<lm£n;la¢jﬂ va,p
(1 (0
for u(p,t;¢) given by 1(8,8.1), where

f (0) = limteul,___,l;taof (t) )
p tends to the infinity inside the angle

Copyright © 2012 SciRes.

of an integration order gives the equalities:
jRn( L0(te)f (r)dr)exp(—u(p,t;;’))dt
= [ (w0 (t.2)exp(-u(p,t:))dt) f (2)dr
= RnG(p;g)exp(—u(q(p),z’;{))f(r)dr
=G(p:¢) [ f (7)exp(-u(a(p).7:¢)de
=G(p:<)F(a(p):).

since t,7 €R" and the center of the algebra A is R.

2.18. Theorem

If a function f(t)

. is original together with its

derivative 0" f ) /as or

" (t) x X, 1() 8t atn,where R (p,g“) is an image
function of f(t X, over the Cayley-Dickson algebra
Ar with 2<reN’, 2 <n<2" -1, for
=P, +M(p.t; §)+§0 given by 2(1,2,2.1), then

[po 1,1+|o,-lseh}|o,-zsej2‘~|ojn7msej_ R (p®; C)}:( )™ £ (0)e "),

n-1

R (pg)+ 2 (1)

m=0

[po +P; Sejl J[po + pizsejz -..[po + pernSejn_rn :|Fun—m ( p(');.{)}

|Arg(p)| <m/2-6

for some 0<d&<m/2, £j£2'—1,
p('):ZJ 0.5x() pJIJ, (1)=(1,,---,1,). If the restriction

APM



S. V. LUDKOVSKY 77

f(t)L- =0,

ji =0 =0;tk =30sz{jl,~~-,jm}

exists forall 1< j,

2) }]ig{[pw PiS, | PaSs, -+ PuSs,

<.--<j.<n,then

R (pg)+ ”z< 1y

<< <jp_msnlsh <<l <n;l, = jﬂ Va,p

DICIDY

I<jj<..<jp<n

f t| e
( )th :0,---,tjm =0t =coVke{ ji, -, jm }

inthe A spherical coordinates or

2'1) %Jiir(l){[ Py + plse1 j||:po + pzse2:|"'[po + pnse :| (p §)+

1< j1 << jn—m < Il <<l <ngl, ¢jﬂ Ya,p

n-1

=20 X

m=0 I€jj<.<jp=n

f(1)| e
t, =0ty =0t =oovkeljy o dmb

in the A, Cartesian coordinates, where p — 0 inside
the same angle.
) [o

3) F"((aF (1)/2s,)

= limteU] ..

|:po + pjlsejl :H:po + pjzse

Lj + pjsej]F

i (1)

ity D0t 05ty Vke{ ji,e

n-m .
|:p0 Ljj + pj1 Sejl :| pjzsej2 pjnim Sejn—m Fu (p( )ag)}

-u(0,0.)

>

-1

M

(-1)"
[p0+pJn e 7m}Fun7m(p(”;§)}

0

|_|§

-u(0,0,£)

Proof. In accordance with Theorem 12 the equality
follows:

(O, , Ou(P6).pS)

for u=u(p,t;{)=
3.0 F((of (¢
i (f (') 2, su(pots0); p;é)

inthe A Cartesian coordinates, since

3.2) of (t /as =—of (t)/at,_, +of (t)/et,
for each j> 2, of(t /as = of (t)/at, ,
where p= p0+p1|1+ +p,12rleAr,
Pos- ’p2'71 ’ {IO’ ”’izrfl}

Cayley-Dickson algebra A,, s,,, =0 for each |>1, the
Zero power S0 =1 is the unit operator. For short we
write f 1nstead of fx, " . Thus the limit exists:

4 F (£ (), (pt’ ¢)im¢)=
hmj d -t [dty, [ (dty )

(e (-u(p.5)

Mention, that

(...((tl)z)...)j = (0,0, 4, <, =0)

are the generators of the

Copyright © 2012 SciRes.

oS +M(p,t;{)+¢, inthe A spherical coordinates, or

Vo), (Duspsg) = po+pS,, [P (10, (D.u(p.t:S). pic)

forevery 1< j<n,since t =S5, —S,,, foreach
1<k <n. We apply these Formulas (3,4) by induction

j=l-n, 27'<n<2 -1, to 8"f(t)/os,os, ,
-, oI (t) /s, -0s, of (t)/as, instead of
of (t)/os; .

From Note 8 [4] it follows, that in the A, spherical
coordinates
SET

o (GLICTE R PN Ty

:0’

alsointhe A, Cartesian coordinates

lm (" F (vt ot D, v pic)

p—>wo,|Arg(p)
=0,

which gives the first statement of this theorem, since

u(p,0,¢)=u(0,t;¢)=u(0,0,£) and
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R (p" i) = £(0)e ), while F/(p:¢) is de-
fined for each Re( p) >0.

If the limit  f (t<j>) exists, where
t = (1, ;0,8 Tt = 0) , then

) gim [t [ty [ty () £ (Oesp(-u(pt:6) = (£(190) 0t ): ic).

(i)
2
Certainly, (---((t<1> )< >)j = (tl,---,tn it =00ty = oo) for each 1< j <n. Therefore, the limit exists:

lim
p—0,/Arg(p)i<m/2-5

=k (0" (t)/as, s, )e @ dt =" (-1)"

m=0 1€fj<<jn<n ]

R (pd)+ 2 ()"

-y +ps. 1p.s. --ps
p_}oyArlgl(rlI)I)qﬂﬁ{[ B+ PiS,, | PsSe, - PiSe

Ijj < <jpmEml<h<-<lp<n;ly # jg Vo,

from which the second statement of this theorem follows
in the A spherical coordinates and analogously in the
A Cartesian coordinates using Formula (3.1).

2.19. Definitions

Let X and Y betwo R linear normed spaces which
are also left and right A modules, where 1<r. Let
Y be complete relative to its norm. We put
X=X ®,-®, X is the k times ordered tensor
product over R of X . By Lq’k(X®k,Y) we denote a
family of all continuous Kk times R poly-linear and A,
additive operators from X®* into Y . Then
Ly (X®.Y) is also a normed R linear and left and
right A module complete relative to its norm. In
particular, Lq’l(X,Y) is denoted also by Lq(X,Y).
We present X as the direct sum
X=Xy @ @®X, i, , where X,,---,X

. . araaf-
wise isomorphic real normed spaces. If
AeL,(X,Y) and A(xb)=(Ax)b or A(bx)=b(Ax)
for each xe X, and be A, then an operator A we
call right or left A -linear respectively. An R linear
space of left (or right) k times A poly-linear ope-
rators is denoted by L, (X®k,Y) (or L (X®k,Y)
respectively).

We consider a space of test function D := D(R”,Y)
consisting of all infinite differentiable functions
f:R"—>Y on R" with compact supports. A sequence
of functions f, € D tends to zero, if all f, are zero
outside some compact subset K in the Euclidean space
R", while on it for each k=0,1,2,--- the sequence
{fn(k) :neN! converges to zero uniformly. Here as
usually f®(t) denotes the k-th derivative of f, which
is a times R poly-linear symmetric operator from
(R”) to Y, thatis

o, are pair-

Copyright © 2012 SciRes.

|:p051sj1 + pjl Seh :| pjz Sejz pjn—m Se;

Jo (071 (1)/0s; -5, Jexp(=pys ¢, =M (P.:¢)

f(t)|
( )t-l =0ty =0t =00 VKe{ j -, jm }

m=0

(B3¢ )+ (1) £ (0)e .

Jh-m

FO).(hy b )= £ (1) (M hygy ) €Y
foreach h,,---,h, € R" and every transposition
O':{l,---,k} —){1,~--,k} , o 1is an element of the sym-
metric group S,, teR".For convenience one puts
f© = f . In particular,

(1), (e8| = F (1) at, ot
forall 1< j, -+, j, <n, where
e; =(0,---,0,1,0,---,0) e R" with 1 on the j-th place.

Such convergence in D defines closed subsets in this
space D, their complements by the definition are open,
that gives the topology on D . The space D is R
linear and right and left A, module.

By a generalized function of class D':= [D(R”,Y )}
is called a continuous R -linear A, -additive function
g:D — A . The set of all such functionals is denoted by
D'. That is, g is continuous, if for each sequence
f, e D, converging to zero, a sequence of numbers
9(f,)=:[0,f,)e A converges to zero for n tending
to the infinity.

A generalized function @ is zero on an open subset
V in R",if [g,f)=0 foreach feD equal tozero
outside V . By a support of a generalized function g is
called the family, denoted by supp(g), of all points
teR" such that in each neighborhood of each point
tesupp(g) the functional g is different from zero.
The addition of generalized functions ¢,h is given by
the formula:

1) [g+h,f)=[g,f)+[h,f).

The multiplication g € D' on an infinite differen-
tiable function W is given by the equality:

2) [gw, f)=[g,wf) either for w:R" —> A and
each test function f € D with a real image
f (R” ) cR, where R is embedded into Y ; or
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w:R" >R and f:R" Y.

A generalized function g’ prescribed by the equa-
tion:

3) [g’, f)::—[g,f') is called a derivative g’ of a
generalized function g, where f'e D(R”, L, (R",Y )),

g’e[D(R”,Lq(R”,Y))] .

Another space B:= B(R”,Y) of test functions con-
sists of all infinite differentiable functions f :R" —>Y
such that the limit 1im‘t|w|t|m £ (t) =0 exists for each
m=0,1,2,---, j=0,1,2,---. A sequence f,eB is
called converging to zero, if the sequence [t[" 7 (t)
converges to zero uniformly on R”\B(R”,O,R for
each m, j=0,1,2,--- and each 0 <R <+, where
B(Z,z,R):= {ye Z:p(y,2)< R} denotes a ball with
center at z of radius R in a metric space Z with a
metric p . The family of all R-linear and A, -additive
functionals on B is denoted by B'.

In particular we can take X =A", Y=
1<a,f €Z . Analogously spaces D(U, Y)
[D(U.Y)], B(U,Y) and [B(U.Y ] are defined for
domains U in R" for example, U =U, (see also §
1).

A generalized function f € B' we call a generalized
original, if there exist real numbers a, <a_ , such that
for each a, <w_,,w,---,w ,W, <a, the generalized
function

A’ with

4) f(t)exp(—(qv,t));(Uv is in [B(U Y)] for all
V:(Vn"‘»Vn)» v e{—l,l} for every j=1,---,n for
each teR" with t,v; 20 foreach j=1,---,n, where

a, (vwvl,- VW,

9nvn

) By an image of such original we

call a function.

5 F'(f.u;p;¢)= [ f ,exp(—u(p,t;(;))) of the vari-
able pe A with the parameter ¢ € A, defined in the
domain W, ={peA :a <Re(p)<a,} by the fol-
lowing rule. For a given peW, choose
a <Ww,--,W, <Re(p)<w,,---,w, <a,,then

6) [f,exp(—u(p,t;c:)))::
Zv[fexp( a,,t) )e {—[U(p,t;g)—(qv,t)}}luv)
since exp{—[u p,t;é’)—(qv,t)}}eB(Uv,Y),

where in each term

[ f exp(—(qv,t)),exp{—[u ( p,t;g")—(q\,,t)]} Au, )

the generalized function belongs to [B(UV,Y)]’ by Con-
dition (4), while the sum in (6) is by all admissible
vectors VE{—I,I}n.

2.20. Note and Examples

Evidently the transform F"(f,u;p;¢) does not depend

on a choice of {W_,w,,--,W_ ,W,}, since

[ f exp(=(a,.t).exp(~[u(p.t:6)~(a,.1)]) 2,
=t exp(=(a,-t) = (b,.1))exp(~[u(p.t:$) = (A1)~ (B, 1)]) 2, )

foreach beR" such that
a, <w,+b, <Re(p)<w_+b <a,

for each j=1,---,n, because exp(—(bv,t)) eR. At the
same time the real field R is the center of the Cayley-

Dickson algebra A, ,where 2<reN.
Let 6 be the Dirac delta function, defined by the
equation

DF) [5(1).4(1)):=4(

0) foreach ¢eB.Then

1) F" (5“) (t_T)aU; P,g) = zve\q,u”[é‘(j) (t —T)exp(—(qv,t)),exp(—[u( p7t;§)_(qut):|)7(uv)

E

- (_1)j o) exp(—[u( p’t;g)])t:r

since it is possible to take —oo<a <0<a_, <o and
w, =0 foreach k e{—l,l,—2,2,---,—n,n} , where

2) F"(8(t-7),u;p;¢) = exp(-u(p,z:¢)).

In the general case:

3) F (076 (t)/os! o5 us ps¢ ) =
0<k; < jp

inthe A spherical coordinates, or

Copyright © 2012 SciRes.

= (T e

reR" is the parameter, 0] :=d' / 8t1j1 --@tljl . In parti-
cular, for j=0 we have
In
( anen ) exp(—é’o -M ( paosg))
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3.0) B (9(t)/at) —athup:g) = (p+ piS, ) (po+ P, )" (P + 1S, )" exp(-u(p.0:0))

inthe A Cartesian coordinates, where
Ji+o+ s :|j , ki, ], are nonnegative integers,

|
2"'<n<2 -1 =11/ m!(l-m)!| denotes the bi-
n , (mj /[m( m)} enotes the bi

nomial coefficient, 0!=1, 1!=1, 2!1=2;
I'=1-2-----1 foreach 123, s;=s,(nt).

The transform F"(f) of any generalized function
f is the holomorphic function by peW; and by
¢ € A, since the right side of Equation 19(5) is holo-
morphic by p in W, and by ¢ in view of Theorem
4. Equation 19(5) implies, that Theorems 11-13 are

accomplished also for generalized functions.

For a, =a_, theregion of convergence reduces to the
vertical hyperplane in A over R. For a, <a, there
is no any common domain of convergence and f(t)
can not be transformed.

2.21. Theorem

If f(t) is an original function on R", F"(p;¢{) is
its image, G'j‘f(t)/ﬁsﬂl---as;" or a”‘f(t)/at,’l---atn‘“
isan original, |j|=j, +-+]j,, 0< ., j,€Z,
2""'<n<2"—1;then

D F (Mt (t)/ash ash uipig)= ¥ (L] (03, ) (aSs ) (RS, ) (£ (8 i)

kl

o<k <ij)

for u(p,t;¢)=p,s, +M(p,t;¢)+¢, givenby 2(1,2,2.1), or

it

1) F"(a“'f(t)/atlj'--'&J”,U; p;§)=(p0+plSel) (p0+pZSez)h...(pOernSen)j" FP(f(t).u;p:¢)

for u ( p,t;g’) given by 1(8,8.1) over the Cayley- Dick-
son algebra A with 2<r <o. Domains, where For-

mulas (1,1.1) are true may be different from a domain of

the multiparameter noncommutative transform for f ,
but they are satisfied in the domain a <Re(p)<a_,
where

a, =min(aﬁl(f),a71 (6‘m'f (t)/aqﬁlml ---8¢nm"):|m|s|j|,0s m, < j,vl);

a = max(a1 (). (0™ 1 (t)/og g™ ):|m] <|K|.0 < m, < j,vl),

if a <a, ,where ¢, =s; or ¢, =t; foreach j cor-
respondingly.
Proof. To each domain U, the domain U_, sym-

2) JR” (0f (t)/0s; JeP2ds = JRn (of (t)/os; )e P dt

" =@ [T e e fos, Jas,

= IRM (dtj )[f (t)e‘”(p’m]

—o0

is satisfied in the A spherical coordinates, since the

absolute value of the Jacobian ot 8(tj,sj) iS unit.

Since for a <Re(p)<a, the first additive is zero,

while the second integral converts with the help of

Formulas 12(2,2.1), Formula (1) follows for k=1:

metrically corresponds. The number of different vectors
Ve {—1,1}n iseven 2". Therefore, for
u=pyt+¢,+M(p,t;{) due to Theorem 12 the equality

3) F"(of (t)/os;.u: p:¢) =
podi i F"(F(1).u: pi¢)+pyS, F( (1), 0 pid)

To accomplish the derivation we use Theorem 14 so
that

l,i_rf(}[':n(f (1),u;p:¢)—F" (f (t-re;),u; p;é’)]/z’
:hm[F”(f(t),u; p;;)—F”(f (t),u; p;§+r(p0+ P -+ pjij))}/r

70

70
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= llmj nf (t)|:eu(P‘l;() _e—U(P,t;§+r(Po+pli1+--.+Pjij)):|Tldt
R 2
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where e; =(0,---,0,1,0,---,0) € R" with 1 on the j-th
place. If the orlglnal 6“‘f( )/ 65” 851” exists, then
o™ f (t /8Sm‘~ -0s;" is continuous for 0<|m|<|j|—
with 0< m, < j, for each 1=1,---,n, where f’:=
The interchanging of [lim._ and I , Mmay change a
domain of convergence, but in the indicated in the
theorem domain &, <Re(p)<a._,, when it is non void,
Formula (3) is valid. Applying Formula (3) in the A
spherical coordinates by induction to

(o™ (1)/es o <|m| <[ .0 < m, < 1)

with the corresponding order subordinated to

oVt (t) / osjt---0s | or in the A Cartesian coor-

dinates using Formula 12(1.1) for the partial derivatives
(0™ f (t)/as™ a5y :|m| <[|.0 < m, < ji¥)

with the corresponding order subordinated to

ot (t )/6‘[” --0t)" we deduce Expressions (1) and (1.1)
with the help of Statement 6 from § XVIL.2.3 [19]
about the differentiation of an improper integral by a
parameter and § 2.

2.22. Remarks

For the entire Euclidean space R" Theorem 21 for
of (1) / s, gives only one or two additives on the right
side of 21(1) in accordance with 21(3).

Evidently Theorems 4 ll and Proposition 10 are
accomplished for = 9 (f,u; P; g’) also.

Theorem 12 is satisfied for F 0% and any
je{j( Yoo ik )},sothat
5 =5 (kit)=tj, +-+t;,, for each 1<I<k,

P, =0 and ¢, =0 for each 1<mg{j(1),-, j(k )}
(the same conventlon isin 13, 14, 17, 21, see also below).
For F07% iy Theorem 13 in Formula 13(1) it is

1 F(( 0/2t) 2,

natural to put t, =0 and h, =0 foreach

I<m g{j(l),---, j(k)} , so that only (k+1) additives
with hy, hj(l),-- ;N on the right side generally may
rerkntam_ Theorems 14 and 17 and 21 modify for

F 50509 putting in 14(1) and 17(1,2) and 21(1)

t. =0 and 7. =0 respectively for each

e (i) (6))

To take into account boundary conditions for domains
different from U,, for example, for bounded domains
V in R" we consider a bounded noncommutative mul-
tiparameter transform

D F(f()xm.upd) =R (f(t).up).

For it evidently Theorems 4, 6-8, 11, 13, 14, 16, 17,
Proposition 10 and Corollary 4.1 are satisfied as well
taking specific originals f with supportsin V .

At first take domains W which are quadrants, that is
canonical closed subsets affine diffeomorphic with

Q" HJ ][ i J],Where —o<a; <b; <o,
[aj, J] {XeR:aj stbj} denotes the segment in

R . This means that there exists a vector we R" and a
linear invertible mapping C on R" so that

il R
C(W)-w=Q. We put =ttty oty = ay),
th —(t Sttt =bj) Consider

t=(t, --,tn)eQ”.
2.23. Theorem

Let f(t) be a function-original with a support by t
variables in Q" and zero outside Q" such that

of (t)/et; also satisfies Conditions 1(1-4). Suppose that
u(p,t;¢) is given by 2(1,2,2.1) or 1(8,8.1) over A
with 2<r <o, 2™ <n<2"—1.Then

(0092 = B (1(07) g (1) i J P (10 7 (1) s

J{po +kilpksek}F” ( F(t) 7 (1)1 p;é“)

inthe A, spherical coordinates, or

Fooi? (f () 2o (7). p;C)— Froi (f () 2 (£ 1 p;§)+[Po +p;S, }Fn ( F(t) 2 (1)-U5 p;é)

in the A Cartesian coordinates in a domain W c A ;
if a;=—0 or b; =+, then the addendum with t'!
or tJ correspondmgly is zero.

Proof. Here the domain Q" is bounded and f is
almost everywhere continuous and satisfies Conditions

2 [ (e

where t=(t,--,t

(t)/atj )exp(—u(p,t;é’))dt

») - Then the Fubini's theorem implies:

Copyright © 2012 SciRes.

:f(t)exp( (p,t,é’ |t i _-[ [

1(1-4), hence
f (t)exp(—u( p,t;é’)) el (R",/in,/-\)

for each pe A, since exp(—u(p,t;g“ )) is continuous

and supp(f(t))=Q".
Analogously to § 12 the integration by parts gives

(p.t:¢))/at, )} dt

(Gexp(
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3) [o(of

(t)/at;Jexp(-u(p.t))dt= [ [ [0 [

aj_178j4+1 78

[L.( (t)/atj)exp(—u(p,t;é’))dtj}dtj

= l:J.teQn,tjbj f (t”)exp(—u( p’tjﬁz;g))dtj]_[IteQ",tj:aj f (tj’l)exp(—u( p’tj’l;é,))dtj:|

e Ins, [ Qe (u(po)a

inthe A, spherical coordinates or

3.) [ (0f (t)/at; )exp(-u(p.t:0))at

T O)ep(u(p )t |- [

J{po s, :|J‘blljbf (t)exp(~u(p.t:¢))dt

inthe A Cartesian coordinates, where as usually
= (bt 0.t et ) dE) = dt-edty (dt, -t
This gives Formulas (1,1.1), where

4) F”’“‘j'k(f(t"’k);{ n(t"’k),u(p,t“‘;é’);p;é”)

j - II I (tj’k)exp(—u(p,tj’k;é’))dtj’k

aj_1vaj41va
is the non-commutative transform by e,
2"'<n<2"—1, dt'* is the Lebesgue volume element
on R"'.

n-1

1) lim {[ Py + pISel] P,Se, ** PaSe, F(p;¢)+ (_1)m

p— m=0

I<jp<<jp-msnlsh<-<lp<nil,#jg Va.p

inthe A spherical coordinates, or

|:p0 Lj; + pjlsejl :| pjzsejz

f (t”)exp(—u(p,tj’l;é’))dtj}

]

2.24. Theorem

If a function f(t)y ,(t) is original together with its
derivative 0" f (t);(Qﬁ (t)/as1 .--0s, or

" (t) g (t)/atl--‘atn , where F(p;¢) is an image

function of f(t)l n(t) over the Cayley-Dickson
Q

algebra A with 2<reN, 2"'<n<2"-1, for the
function u(p,t;{) given by 2(1,2,2.1) or 1(8,8.1),
Q”=H?Zl[0,bj], b, >0 foreach j,then

P Se

n

(90| = (1) 1 (0)e e

fnem

n-1

) gr}o{[ P+ BiS, [ Po+ RS,y | P+ puS,, JRI(P0)+ X (1)

Z I:po"'pjlsej :||:p0+pjzsej :|'“|:p0+pjn7m
1) << <1<l <<Ip <n:l, # 5 Va. 1

inthe A Cartesian coordinates, where
f(0) = limicgni50f (1),
p tends to the infinity inside the angle

2) F”’“‘j'k(f(t"’k);{ () u(ptg): pic)

_ j-1 j+1
) jbmk g "t - j dt, j dt;,
where B, =a;=0, B;,=b;>0, k=1,2. Mention,

that

({1 =)

for every 1< j<n. Analogously to § 12 we apply

Copyright © 2012 SciRes.

m=0

n-m( (). _(_1\"! -u(0,0;8)
S (| B C TR IOL

|Arg |<n/2 S forsome 0<6<m/2.
Proof In accordance with Theorem 23 we have
Equalities 23(1,1.1). Therefore we infer that

f (dt,) f (t)exp(-u(p.t:¢)),

Formula (2) by induction j=1,---,n, 2"'<n<2" -1,

to

f(t(s))/as, -0
oo Of (t(s))/asn

LM (t(s))/es;
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instead of 8f /E)SJ , 8=
applying to the partlal derlvatlves

" (t)/ot,--at, -, 0" (L))ot -0t e Of (1) 0t
instead of of (t)/et,

s;(m;t) as in § 2, or

correspondingly. If s; >0 for

some j=1,then s, >0 for Q" and

ol o
lim po s g)—O for such t", where
t=(t,t), ()=(,1), [I|=]+-+I,
t('):(tf”-- ) t(')—a for =1 and t(')—bJ

lim  F" ((6”

p—oowo,|Arg(p)l<n/2-8

inthe A spherical coordinates and

F((o"f (/e

m
p—ow,|Arg(p)l<n/2-6

in the A Cartesian coordinates, which gives the state-
ment of this theorem.

2.25. Theorem

Suppose that f(t ) . (t) isan original function,
F"(p;¢) s its image, 8“'f() ()/6tJl oth s

an original, |j|— i+t For 0<,j, €2

27'<n<2" -1, —w<a <h <o foreach

k=1,--,n, ()=(l,--1), L, €{0,1,2}, W=Afor
a = max(a (a‘m‘ f /atml
a, :min(af ( (8““‘ f /8’(m1

If a, =—o0 and b, =+ for Q" with a given k,
then I, =0 . If either a >-0 or b, <+ for a
marked k,then |, €{0,1,2}. We also put
h. =h (1) =sign(l,) for each k, where sign(x)=-1
for x<0, sign(0)=0, sign(x)=1 for x>0,

h=h(l), |n|=|h]++|h],
(17) = (1sign(j, ).+ 1,sign( j, ))-
Let the vector (l) enumerate faces 8Q(,) in 9Q.,
for [h(1)|=k=>1,s0that 6Q¢, =], .. Q)
oQq, NoQy,, =D for each (I);t(m() (see also more
detailed notations in § 28).
Let the shift operator be defined:

1) F" (a“'f(

* 2

1<(1j)]; my +y +hy = ji :0<my; 0<q ; hy =sign(l ji, ): A =0 for Iy jy =0, for each k=1,--

Y oM pmy omy = nshdi Al (40D
( 1) RellRe; RennF (5 f(t )ZaQ(lj)

Copyright © 2012 SciRes.

f(t)/os, -

=2, 1< j<2"—1. Therefore,

lim z (—1)‘I| f (t“))e'“(p‘t“);o

P*wlje{lz; j=1,-n

= (_1)” f (O)E*U(O,O;f)’
since U(p,0;¢)=u(0,0;¢), where
f ((I) ) = limeeqntt® f (t) .

In accordance with Note 8 [4]

for Ij

8s,) 7 (1).u(p.t:¢): p;g“)zo

Q

1~--6tn)lQn (t),u(p.t:<); p;§)= 0

bounded Q".Let W ={peA :a <Re(p)} for

b, =c for some k and finite a, for each k ;
={peA :Re(p)<a,} for a =-o for some k

and finite b, for each k;

={peA:a <Re(p)<a,} when a =- and
b=+ forsome k and I; t® :(tf'),---,trﬂ') .
We put t" =t and g, =0 for I, =0, t" =a,

for 1. =1, tV=hb for I

=2 ) (q):(qls""qn) )
la| =0, +--+0,,

oty )| < il,0< m, < j ¥k},
:n):|m|s|j|,0gmkgjkw) if a<a,.
F(p:¢)=
also the operator @, > —oo

(SO) S F (P:¢):= Sy S, F (P3¢,

where  (m)=(m,,---,m ) e[0,0)" =R" , S(km) Sem
for each positive number 0 <keR, S;=

F(p:&—(iym +--+i,m ) m/2),

I is the unit
operator for (m)=0 (see also Formulas 12(3.1-3.7)).
As usually let e =(1,0,---,0), --- ,e,=(0,---,0,1) be
the standard orthonormal basisin R" so that
(m)=me +--+me,.

Theorem. Then

(1) Ao u (P ): psg ) = RIRE <-REF"(1(1) 2, (1)1 P3¢

-n;(1ef0,1,23"

) (t(lj))/athl atq” ,U; p; ;)
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for u ( < ) in the A spherical coordinates or the
A Cartesian coordinates over the Cayley-Dickson algebra
A with 2<r <o, where

L) R, :=py+pS, +pS, s = s
R, = po +p]Sel +pZSeZ +“.+an

n n

inthe A4, spherical coordinates, while

2) [, [(6'”"“ !
= Jprr g (" )[(a"”'f IR P )J k

U

(e)/orr - us o o -

is satisfied for 0<m, <j, for each k=1,---,n with
|m| < | j| . On the other hand, for p e W additives on the
right of (2) convert with the help of Formula 23(1). Each
term of the form

[orr 0 (27)

|:(aqf(t(l))lag(n[) (t(l))]/athl ...atgn e“(lhtsﬁ)}

can be further transformed with the help of (2) by the
considered variable #, only in the case /, =0.
Applying Formula (2) by induction to partial derivatives

ol ffoth o, M f ook,

12)9 Rez :p0+p2S€2’ I Re] :p0+ane1 in

the A, Cartesian coordinates, ie. R, =R, (p) are
J J

operators depending on the parameter p. If /1 =oo
for some 1< j<n, then the corresponding addendum
on the right of (1) is zero.

Proof. In view of Theorem 23 we get the equality

at):"n )e—u(pgl;l) j| dr

et g (A1 )( (s (/e o ) [ae o /azk]dzk)

14 and Remarks 22 we deduce (1).

2.26. Theorem
Let f(1)xy

A, with 2<r<o,
2(1221)or1(881)

1) g(t f j £ (x)dx, then
2) F'(fa, () pi€)

- Rel Rez Re”F" (g(t);{Uly.“J (t)’u’p’é/)

in the domain Re(p)>max(a,,0), where the operators
R, are given by Formulas 25(1,1,1.2).

e

- (t) be a function-original with values in
27" <n<2 —1, u is given by

o’ f / at,{” ,-+-,0f /0t, as in § 21 and using Theorem Proof. In view of Theorem 25 the equation
3 F' (S, (0a50:8) = R R, R, F" (g(0).05 p3)
+ > (_1)‘”)‘ R R ---Rf"F”“h")‘(g(t”)),u;p;;),
1<|1]; 0<my, <1;my +hy =15 by, :sign(lk ); for each k=1,--n;q=0,--,q,=0 "
is satisfied, since 0"g /at 1)(t), £=0,+,¢,, =0 for each j22 in the 4, Car-

where j, =1,--,j, =1, l =1 for each ] 1
tion (3) is accomphshed in the same domain
Re(p)>max(a,,0), since g(0)=0 and g(r) also ful-
fills conditions of Definition 1, while
a,(g)<max(a,(f),0)+b for each b>0 , where
a, € R. On the other hand, g(¢) is equal to zero on
ou, .., and outside U.., in accordance with formula
(1), hence all terms on the right side of Equation (3) with
|{|>0 disappear and supp(g(t)) cU,..., . Thus we get
Equation (2).

-,n. Equa-

2.27. Theorem

Suppose that F* (p;é’) is an image

Fot (f(t);(U1 " (t),u; p;$) of an original function
f(t) for u given'by 2(1,2,2.1) in the half space
W:={peA, :Re(p)>a1} with 2£r<oo

=0, -, p,=0; §=m/2, Cia =m/2 for
each j=2 inthe A  spherical coordmates or

Copyright © 2012 SciRes.

tesian coordinates;

1) the integral j ’F , p0 +2z;¢ )dz converges,
where p = p, +p111 4. “+pi, €4, p;eR for each
j=0,--,2" =1, 27" <k<2 -1,

U,. 1::{(11, 0, )€R 11, >0,--,1, >0} . Let also

2) the function F* (p;¢) be continuous by the va-
riable pe A on the open domain W , moreover, for
each w>aq, there exist constants C, >0 and ¢, >0
such that

3) |F" (p;cf)| <C,'exp(-¢,|p|) for each peS,, .,
Sy={zed, :Re(z)zw}, 0<R(n)<R(n+1) for
each neN, lim,.R(n)=o0,where a is fixed,
¢ =Goig +o+6;i, € 4, ismarked, {; €R foreach
j=0,---,k . Then

4 [P (py+z¢)dz =
Pjlj

Sfej Jaet (f( Zu, . /fj,u s é’)

APM



S. V. LUDKOVSKY 85

where p, =0,---,p, ;=0 foreach j>2;
¢ =m/2,--,¢,,=n/2 and & =s,;(k;t) in the 4,
spherical coordinates, while ¢, =0,---,£; ;=0 and
&, =t, in the 4, Cartesian coordinates correspondingly
foreach j>1.

Proof. Take a path of an integration belonging to the
half space Re(p)>w for some constant w > g,. Then

IUL___Jf(f)eXP(—u(p,t;é))dt

SC-[UI 1exp(—(p0 a)(t+-+1,))dt <o
converges, where C=const>0, p,2w. For ¢,>0
foreach j=1,---,k conditions of Lemma 2.23 [4] (that
is of the noncommutative analog over A, of Jordan’s
lemma) are satisfied. If t;, >, then s, >0, since all
t,,++,t, are non-negative. Up to a set oU, , of A,
Lebesgue measure zero we can consider that

4, >0, >0. If s, >0, then also s, > . The
converging integral can be written as the following limit:

5) [VF (py+2:¢)dz
JJ

= lim J.pl’F (p0+z .{)exp( K|Z|)

0<x—0

for 1< j<k, since the integral J'_S;[Fk (W+Z;§)]d2

is absolutely converging and the limit
1im,(_)0exp(—ic|z|)=l uniformly by z on each com-
pact subset in 4, , where § is a purely imaginary
marked Cayley-Dickson number with |S | =1. Therefore,
in the integral

6) [ F* (py+2:{)dz =
Pjty

Jp,,(jul ]f [exp(—u(p0+z,t;§)”dtjdz

the order of the integration can be changed in accordance
with the Fubini’s theorem applied componentwise to an
1ntegrand g =gy, +--+g, with g, e€R foreach
/= N

7 J.:Z;Fk (Do +2:¢)dz
dt(jzl’jf (t)exp(—u(p0 + z,t;é’))dzj
=y, (t){I x?_[e"(%“m]dz}dz.

Pjlj
Generally, the condition p, =0,--,p, ;=0 and
¢ =mn/2,--,{,, =m/2 in the A, spherical coordi-
nates or ¢, =0,---,4; , =0 in the 4, Cartesian coor-
dinates for each j>2 is essential for the convergence

of such integral. We certainly have

Copyright © 2012 SciRes.

8) I:j: cos(z’;zéj +§,)dz

0;=b;

= [sin(ﬁj‘fj +¢, )/é!f]e-:p

J

- |:_COS(9j§j o n/2)/§,} :j:

and
9) IZf sin(i72¢,+ ¢, ) dz

Oj:bj

= [_cos(e,-f,' +§j )/5’:| 0;=p

~[sin(0,+¢, +m2)fe ]

foreach &, >0 and —o<p <b, <oo and
j=1,---,k . Applying Formulas (3-9) and 2(1,2,2.1) or
1(8,8.1) and 12(3.1-3.7) we deduce that:

Lo [F (o4 z:6) ez

=S, [, @) Jexofmu(pi)ar

:S%ij;tl,m,tk (f( ZUI /é‘/,u p; é’)
where ¢=(t,,--,t,), s;=t;+---+1, foreach
1<j<k, s, =t,, & =s, in the 4 spherical coor-

dinates or &, =¢, inthe A4, Cartesian coordinates.

2.28. Application of the Noncommutative
Multiparameter Transform to Partial
Differential Equations

Consider a partial differential equation of the form:
1) A[f](¢)=g(t), where

2) AN =X 0 ()27 f () o),
a,(t)e A, are continuous functions, where 0<xeZ,
j:(jl""sjn) > |]| =htt s Osjk €Z, a is a
natural order of a differential operator 4, 2<r,
2"'<n<2 1. Since
s, =s,(mt)=t,+---+1, for each k=1,--,n , the
operator A can be rewritten in s coordinates as

21) ALA1((5)
:nga/ (6mf /8s -as,{”).

That is, there exists b, #0 for some ; with
%{ia and b, =0 for |j|>a while a function

edb (t(s))s sy is not zero identically on the
corresponding domain V7 . We consider that

(D1) U is a canonical closed subset in the Euclidean
space R", that is U=cl(1nt(U)), where Int(U)
denotes the interior of Uand ¢/(U) denotes the closure
of U.

Particularly, the entire space R" may also be taken.
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Under the linear mapping (tl,w,tn)H(sl,m,
domain U transforms onto V .

We consider a manifold W satisfying the following
conditions (i-v).

i). The manifold W is continuous and piecewise C”,
where C’ denotes the family of / times continuously
differentiable functions. This means by the definition that
W as the manifold is of class C° NC?,. Thatis W is

loc *
of class C“ on open subsets 1, , in W and
wA(UP,)

w.

s,) the

has a codlmensmn not less than one in

i), W= Um0 ", where W —U Wois» W,OW, =D
for each k;&], m=dim,W , dim;W,=m-j,
W, cow,.

iii). Each W; with j=0,---,m—1 is an oriented C“-
manifold, W, is open in U W, . An orientation of
W, is consistent with that of 81W for each
j=0,1,----m—-2. For j>0 the set W, is allowed to
be void or non-void.

iv). A sequence W' of C” orientable manifolds
embedded into R", a>1, exists such that W* uni-
formly converges to W on each compact subset in R”
relative to the metric dist .

For two subsets B and E in a metric space X with
ametric p we put

3) dist(B,E):=

max{supbggdist({b},E),supeeﬁdist(B,{e})},
where dist({b},E) =inf.ep(bse),
dist(B,{e}) =inf,sp(b€), beB, ecE.

Generally, dim,W =m<n . Let (e,k (x),0sel (x))
be a basis in the tangent space T.W* at xeW* con-
sistent with the orientation of W*, ke N.

We suppose that the sequence of orientation frames

ef (%, )seel (X, )) of W* at x, converges to

e (x),.e,(x)) foreach xel,, where

limwx, =x €W, , while ¢ (x),--,e,(x) are linearly in-
dependent vectors in R".

v). Let a sequence of Riemann volume elements A,
on W' (see § XIIL2 [19]) induce a limit volume ele-
ment A on W ,thatis,

A(BNW)= 1im,Hoo<B 8 Wk) for each compact cano-
nical closed subset B in R", consequently,
A(W\W,)=0. We shall consider surface integrals of
the second kind, i.e. by the oriented surface W (see (iv)),
where each W, j=0,---,m—1 is oriented (see also §
XII1.2.5 [19]).

vi). Let a vector we Int(U) exist so that U-w is
convex in R" and let 0U be connected. Suppose that
aboundary oU of U satisfies Conditions (i-v) and,

vii) let the orientations of AU* and U* be con-
sistent for each k € N (see Proposition 2 and Definition
3 [19)).

Particularly, the Riemann volume element /, on oU*
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is consistent with the Lebesgue measure on U* induced
from R" for each k. This induces the measure A on

oU asin (v).
Also the boundary conditions are imposed:
4 f(0),, =4(),

(6'q|f(t)/8slql - 05 ) W T ()

where s=(s,,---,5,)eR", (¢)=(q,.**.9,),

|q|:q1 ++q,, 0<q,e€Z for each k, teoU is
denoted by ¢, f,, f, are given functions. Generally
these conditions may be excessive, so one uses some of
them or their linear combinations (see (5.1) below). Fre-
quently, the boundary conditions

5) f(0)y = £u(0), (1 (0))0V'), = £()
for 1</<a-1 are also used, where v denotes a real
variable along a unit external normal to the boundary
OU at a point ¢’ € 0U, . Using partial differentiation in
local coordinates on U and (5) one can calculate in
principle all other boundary conditions in (4) almost
everywhere on 0OU .

Suppose that a domain U, and its boundary OU,
satisfy Conditions (D1, i-vii) and g, =g Zu, is an ori-
ginalon R" with its support in U, . Then any original g
on R" gives the original g Xy, =2& on R", where
U, =R"\U,. Therefore, g, +g, isthe originalon R",
when g, and g, are two originals with their supports
contained in U, and U, correspondingly. Take now
new domain U satisfying Conditions (D1, i-vii) and
(D2-D3):

D2) U>oU, and oU coU,;

D3) if a straight line ¢ containing a point w, (see
(vi)) intersects OU, at two points y, and y,, then
only one point either y, or y, belongs to OU , where
welU,, U-w and U, —w, are convex; if &
tersects OU, only at one point, then it intersects oU
at the same point. That is,

D4) any straight line & through the point w; either
does not intersect OU or intersects the boundary oU
only at one point.

Takenow g with supp(g)cU , then
Supp( g )[UI)CUI. Therefore, any problem (1) on U,
can be considered as the restriction of the problem (1)
defined on U, satisfying (D1-D4, i-vii). Any solution
f of (1) on U with the boundary conditions on oU
gives the solution as the restriction f | on U, with
the boundary conditions on U .

Henceforward, we suppose that the domain U satis-
fies Conditions (D1,D4, i-vii, which are rather mild and
natural. In particular, for Q" this means that either
a, =—o or b =+ foreach k. Another example is:
U, isaballin R" with the center at zero,

U=UV(R"\U, ,),

for |q|£a—1,

w, =0;or
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U=U v {t eR":t, 2 —g} with a marked number
0<¢g<1/2.Butsubsets 0U,, in 0U can also be spe-
cified, if the boundary conditions demand it.

The complex field has the natural realization by 2x2

. . 01 .2 -10
real matrices so that i= , I = . The qua-
-10 01

ternion skew field, as it is well-known, can be realized
with the help of 2x2 complex matrices with the gene-

10 01 i 0
rators [ = , J= , K= B
01 -10 0 —i
0
L=|
—i

Considering matrices with entries in the Cayley-Dickson
algebra A4, one gets the complexified or quaternionified
Cayley-Dickson algebras (4,). or (4,), with elements
z=al+bi or z=al+bJ+cK +eL ,where

a,b,c,e € A, , such that each a € 4, commutes with the
generators i, [/, J, K and L. When r=2, f
and g have values in 4, =H and 2<n<4 and
coefficients of differential operators belong to 4,, then

—i
Oj’ or equivalently by 4x4 real matrices.

6) F" (A[f](t),u;p;§)= Zaj {|:Rﬂ’1 (p):lh I:Rez (p):|/2

ljlse

* )

the multiparameter noncommutative transform operates
with the associative case so that

F"(af )=aF"(f)

for each a € H . The left linearity property
F"(af)=aF"(f) for any aeH,, , is also accom-
plished for either operators with coefficients in R or
RC,=IR®iR or H,,, =IR®JR®KR®LR and
f with valuesin 4, with 1<n<2"-1; or vice versa
f with values in C; or H,,, and coefficients a
in A, butwith 1<n <4 . Thus all such variants of ope-
rator coefficients a, and values of functions f can be
treated by the noncommutative transform. Henceforward,
we suppose that these variants take place.

We suppose that g () is an original function, that is
satisfying Conditions 1(1-4). Consider at first the case of
constant coefficients a, on a quadrant domain Q" . Let
Q" be oriented so that a, =—o0 and b, =+ for
each k<n-x; either q, =-o0 or b, =+ for each
k>n—x,where 0<x<n isamarked integer number.
If conditions of Theorem 25 are satisfied, then

R, (p)}j" F" (f(t)zg,, (t),u;p;é)

1<|(5)]s my +q +hy = i s 0<my ;0L gy s by =sign(l ji ); q =0 for I ji =0, for each k=1,..., n;(1)e{0,1,2}"

(_1)\(.1/')\ I:Rel (p)]’u [Rez (p)}”’z "'[Re,, (p)J’" @) (aq f(f(‘”))lag(n | (tw) )/athl Ot ’u;p;gj}

=F" (g(t)zg,, (t),u;p;é“)

for u(p,t;{) in the A spherical or A, Cartesian
coordinates, where the operators R, ( p) are given by
Formulas 25(1.1) or 25(1.2). Here (l) enumerates faces

00, in 09, for |h(l)| =k>1, so that
00, = U‘h(,)‘:kQ('}), 00, NnoQ;,, =D foreach

(/)#(m) in accordance with § 25 and the notation of
this section.

Therefore, Equation (6) shows that the boundary con-
ditions are necessary:

(a\q\f(t(l))/athl ,..at;ln )
a;#0, ¢, =0 for [,j, =0, m +q,+h =j,,
h, =sign(l,j,), k=1,-n, t(l)eaQ(’;).But

for |jl<a,

W)=1.

29

dim,0Q" =n—-1 for 00" #J, consequently,
a\q\f t(l) orh ,,,at;ln
(eerte) -,

(a‘ﬁ‘f(t”) )/5tf(11) ...5%1"))

can be calculated if know

for |ﬂ|=|q , where

Q0

Copyright © 2012 SciRes.

4

B=(B..5,) m:|h(l)|, a number y(k) corres-

pondsto /., >0,since g, =0 for /, =0 and
g, >0 onlyfor / j, >0 and k>n-x.Thatis,
Lays sl are coordinates in R" along unit vectors
orthogonal to 00, .

Take a sequence U* of sub-domains
U'cU"' cU foreach ke N so thateach
Ut = U;”:(lk 0!, is the finite union of quadrants Oy,
m(k)e N . We choose them so that each two different
quadrants may intersect only by their borders, each U*

satisfies the same conditions as U and
7) limydist(U,UF)=0.

Therefore, Equation (6) can be written for more gen-
eral domain U also.

For U instead of Q" we get a face 0U,,, instead
of 00, and local coordinates z,,,,7,,, orthogo-
nal to OoU, instead of ¢, ,¢,,, (see Conditions
(i-iii) above).

Thus the sufficient boundary conditions are:

[0
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5.1) (a‘ﬂ'f((t”’) )/arf(‘l) ot ) v = P (t”’))
for |B|=|q|, where m=|h(lj) j<ea, |(lj)|21,
a;#0, g, =0 for [, j, =0, m +q,+h =j,

h =sign(l,j,), 0<q, <j, -1 for k>n-x;
¢ﬁ,(,)(t(”) are known functions on oU,,, "' edU,, .
In the half-space ¢, >0 only

5.2) o' f(1)ferf|

are necessary for f = |q| <a and ¢ asabove.
Depending on coefficients of the operator 4 and the
domain U some boundary conditions may be dropped,
when the corresponding terms vanish in Formula (6). For
example, if 4=08*/otor,, U =U,,, n=2, then
of / ov is not necessary, only the boundary condition

B

oUj

f

v 1ssufficient.
If U=R", then no any boundary condition appears.
Mention that

5.3) F°(f(a)su; p;¢)=f(a)e 7,
which happens in (6), when a=¢" and |h(l)| =n.

Conditions in (5.1) are given on disjoint for different (i)
submanifolds OU,, in OU and partial derivatives are
along orthogonal to them coordinates in R", so they are
correctly posed.

In A spherical coordinates due to Corollary 44,1
Equation (6) with different values of the parameter
gives a system of linear equations relative to unknown
functions S, F" (f(t),u;p;(), from which
F" ( f(#),u; p;¢) can be expressed through a family

{S(m)F” (g(t).us 3 ) Sy " [aqf(t‘” )2, (1 )/5tf“ ot ,u;p;é’j :(m) e Z”}
)

and polynomials of p, where Z denotes the ring of
integer numbers, where the corresponding term F" ")
is zero when ¢ =4co for some j.In the 4, Carte-

8) F'(f(1):10:6)= 2P (P) S F" (2 (1)1 25
(m)
+ > P
FADADIDI1, (m)
where R, (p) and P, . (p) are quotients of
polynomials of real variables p,,p,,":-, p, . The sum in
(8) is finite in the A spherical coordinates and may be
infinite in the 4, Cartesian coordinates. To the obtained
Equation (8) we apply the theorem about the inversion of
the noncommutative multiparameter transform. Thus this
gives an expression of f through g as a particular
solution of the problem given by (1,2,3.1) and it is pre-
scribed by Formulas 6.1(1) and 8.1(1).

For F"(f;u;p;¢) Conditions 8(1,2) are satisfied,
since P, (p) and P, . (p) are quotients of poly-
nomials with real, complex or quaternion coefficients and
real variables, also G" and F" """ terms on the right
of (6) satisfy them. Thus we have demonstrated the
theorem.

2.28.1. Theorem
Suppose that F" (f;u;p;.{) given by the right side of
(8) satisfies Conditions 8(3). Then Problem (1,2,3.1) has
a solution in the class of original functions, when g
and ¢y, are originals, or in the class of generalized
Junctions, when g and ¢, , are generalized func-
tions.

Mention, that a general solution of (1,2) is the sum of
its particular solution and a general solution of the

Copyright © 2012 SciRes.

sian coordinates there are not so well periodicity proper-
ties generally, so the family may be infinite. This means
that F" (f(t),u; p;é’) can be expressed in the form:

n—|h(lj I iy n .« e
) rtrom (P) S F" (M(a‘q‘f(’m)lau(m (t(]))/athl -0, ,u,p,g’),

homogeneous problem Af =0. If ¢, =¢}},(1)+¢;,(,),
g=8+8. [=fi+f. Af,=g, and f, on U,
satisfies (5.1) with @3, , j=1, 2, then Af =g and
S on OU satisfies Conditions (5.1) with ¢, .

2.28.2. Example
We take the partial differential operator of the second
order

A=Y a,,8"jor,00,+3 a,0/07, + o,
h,m=1 h=1

where the quadratic form a(z):=3) a,,7,7, is non-
degenerate and is not always negative, because otherwise
we can consider —A4 . Suppose that a,,=a,,€R,
a,,7, €R for each hym=1,--,n, we4,. Then we
reduce this form a(r) by an invertible R linear ope-
rator C to the sum of squares. Thus

9) A= 0,0 /o2 +3 0]t + o,
h=1 h=1

where (#,,--,t,)=(7,,-+,7,)C with real a, and B,
for each /. If coefficients of A are constant, using a
multiplier of the type exp(Zhghsh) it is possible to
reduce this equation to the case so that if a, # 0, then
£,=0 (see § 3, Chapter 4 in [20]). Then we can
simplify the operator with the help of a linear trans-
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formation of coordinates and consider that only /£, may
be non-zero if a, =0. For 4 with constant coeffi-
cients as it is well-known from algebra one can choose a
constant invertible real matrix (ch ’")h e corresponding
to C sothat a,=1 for A<k, and a, =-1 for

h>k, , where 0<k, <n. For k,=n and =0 the
operator is elliptic, for k, =n-1 with a,=0 and
B, #0 the operator is parabolic, for 0<k, <n and
P =0 the operator is hyperbolic. Then Equation (6)
simplifies:

10) F”(A[f](t),u;p;é’):hz:ah {[Reh (»)] F"(f(t)zgn (t),u;p;é)
T o) () o o, )] (100 () |

Iy et1.21:(D=lye,

+53, {F””"’z (f(t”’z);(agg) (t"’2),u;p;é,.“]—F”“’"’1 {f(t"’l);(agn (t”’l),u;p;é“]

n

+[R, (p)]F" (f(t)zgn (t),u;p;é)}+wF” (f(t)zg,, (t),u;p;é“) =F"(g(1).u;p:¢)

in the A, spherical or 4, Cartesian coordinates, where
e, =(0,---,0,1,0,---,0) e R" with 1 on the /-th place,
S, =1 is the unit operator, the operators R, (p) are
given by Formulas 25(1.1) or 25(12) respectively.

We denote by & (x) the delta function of a con-
tinuous piecewise differentiable manifold S in R”
satisfying conditions (i-vi) so that

(A) [.m(x)3s(x)dr=[n(y)4, (dv)

for a continuous integrable function 7(x) on R",

where dim(S)=m<n, A,(dy) denotes a volume ele-
ment on the m dimensional surface S (see Condition (v)
above). Thus we can consider a non-commutative mul-
tiparameter transform on OU for an original f on U

given by the formula:
1) F(f () o (8) s p38).
= Fn;t(f(t)é-aU (t),u;p;c:)

Therefore, terms like F"~' in (10) correspond to the
boundary 8Q" . They can be simplified:

12) B, {F"“’"’z (f (f"’z)x@g (f),u;p;qJ—F"“’"’1 (f (') 2,0 (D)o pid J}

= E (B () 2, ()38

where fJ (t’) is a piecewise constant function on 06Q"
equal to S, on the corresponding faces of Q" ortho-
gonal to e, given by condition: either ¢, =a, or
t,=b,; B(t')=0 is zero otherwise.

If a, =—w or b, =+, then the corresponding term

h=1 1, et1,25(D=lyey
— -l ’
= Fag" (a(t )(

where v = v(t’ denotes a real coordinate along an ex-
ternal unit normal M (¢') to ®(0U) at ©(t'), so that
M (t') is a purely imaginary Cayley-Dickson number,
a(t') isa piecewise constant function equal to a, for
the corresponding ¢’ in the face 6Q1 ., With lh >0;
E(t',p):= P(1'):= Reh.(p) for t'e 6Q1 o h=1

since sin(y +n)=—sin(y) and

12.1) iah{ >

Copyright © 2012 SciRes.

(- [[Reh ]F (1),

)

/av) (p0:0) p;§j+

disappears. If R" embedinto A with

27'<n<27 -1
as Ri®---®Ri_, then this induces the corresponding
embedding ® of Q" or U into A . This permits to
make further simplification:

(¢7).u; p;Cj +F (6f(t‘” )za% (e )/at,, ,u;p;éﬂ}
(PO (07, ()26

cos(y +m)=—cos(y) for each y eR. Certainly the
operator-valued function P( ') has a piecewise conti-
nuous extension P(r) on Q". That is

13) i (¢(0)f ( )zou(t’) u(pr5¢): pi¢)
_Jng Sy (1)exp { u(p,t;c;)}dt

APM



90 S. V. LUDKOVSKY

for an integrable operator-valued function f(t) so that
[ef (1) f (t)} is an original on U whenever this in- te-
gral exists. For example, when ¢& is a linear combina-
tion of shift operators S, with coefficients &, (¢, p)
such that each &, (z,p) as a function by 1eU for
cach peW and f(r) are originals or f and g
are generalized functions. For two quadrants @, , and
0, intersecting by a common face Y

external normals to it for these quadrants have opposite
directions. Thus the corresponding integrals in F;’Ql/
and Fy, Ik restricted on Y summands cancel in
m,

n-1

61(Qm,l UQm,k) ’

Using Conditions (iv-vii) and the sequence U™ and
quadrants O, , outlined above we get for a boundary
problemon U instead of Q" the following equation:

1) £ (AL Vo) 5€) = [ [, ()] # (1020 0)i )}
H{E ([Bp+P(e ,p]f (1) 2wy (1)t 38 )+ Fo (@) (0 () 2, () ) 0 i€ )|

F (B[R, (p)]£ (1)

where P(t,p):=P(t')=" a,[R,(p)](ov/o,)
for each t'€0U, (see also Stokes’ formula in § XIII.
3.4 [19] and Formulas (14.2,14.3) below). Particularly,
for the quadrant domain Q" we have a(t)=a, for
teog,, with [,>0, B(t)=p, for te o0, with
[, >0 and zero otherwise.

The boundary conditions are:

14.0) £ ()], =9(0),, - (6f(t)/6v)|aU0 =4 (1),

The functions a(7) and () can be calculated from
{a,:h} and p, almost everywhere on oU with the
help of change of variables from (#,,---,z,) to
(7 Yy1s¥,) » Where (y,--,»,) are local coor-
dinates in OU, in a neighborhood of a point ¢ €dU,,
v, =V, since U, is of class C'. Consider the dif-
ferential form

ZZ:1(_1)nih a,dt, /\"'/\af; A Ade, = ady A

”/\dyn—l

and its external product with dv =73 (dv/or,)ds,,
then

142) a(t),, =5, @ (@v/en),

143) (1), = Bow, wuy, (0V/21,),,

This is sufficient for the calculation of F;,

and

n—1

6.3) za/‘ {[po +p17;]jl [po+pT, +p2T2]j2

ljl<a

= {_ 2.4, >

ljl<a 1<I(9)]; mye +qp + Iy = ji s 0<my ;0L qy s by =sign(ly ji ); g =0 for Iy j, =0, for each k=1,---,n

(_l)l(”)l{[po"'pl ] [p0+plT+p2 ]

n , where

F" (f(t))(gn (t),u;p;.{) and

foreach w=1,---,

F(p:¢)=

Copyright © 2012 SciRes.

2 pil )+ oF" (£ (1) 1y (1) il ) =

...[p0 +p T +...+p”T”]j"}

[p0+p1T+ +pnTn]m }

F'(g(t).u; p;¢),

2.28.3. Inversion Procedure in the A, Spherical
Coordinates

When boundary conditions 28(3.1) are specified, this

Equation 28(6) can be resolved relative to

F" (f(t);(u (t),u(p,t;g");p;g") , particularly, for Equa-
tions 28.2(14,14.1) also. The operators S, and 7, of
§ 12 have the periodicity properties: !

S:/*kF(p;g’)= ‘F(p;¢) and
THF (pi¢) =T F(pi<),
Sezl”‘F(p;g):—S:lF(p;g) and

TF(ps¢)=-T'F(p:¢)

for each positive integer number £ and 1< ;<2"—1.
We put

6.1) Fy(p¢)= (st =58 )F(pi)
forany 1<,;<2"-2,
6.2) F, (p:¢)=5. F(p:g).

Then from Formula 28(6) we get the following equa-
tions:

F,(p:¢)

pp=0Vb>w

;(I)E{O,I,Z}"

pp=0Yb>w

G(p:¢)=F" (g(t)zgn (t),u;p;é).

These equations are resolved for each w=1,---,n as it
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is indicated below. Taking the sum one gets the result

64) F(p:Q)=F(p:{)++F,(p:¢),

Since
{[Z?’”(S:.—S:. )}S: }e‘“("’““
Jj=1 7 J+l1 o1 )

=s* e—u(p,t;ﬁ) — e-u(p,t;C)

a

The analogous procedure is for Equation (14) with the
domain U instead of Q".

From Equation (6.3) or (14) we get the linear equation:

15) (ZI):‘/’U)x(l) =9,
where ¢ is the known function and depends on the
parameter ¢, vy, are known coefficients depending
on p, x, are indeterminates and may depend on ¢,
5, =0,1 for h=1, so that X, =-x,; ,=0,1,2,3
for h>1, where x).,, =X, for each £>1 in ac-
cordance with Corollary 4.1, (1)=(L,-.1,).

Acting on both sides of (6.3) or (14) with the shift
operators 7, (see Formula 25(S0)), where m, =0,1,
m, =0,1,2,3 foreach 4 >1, we get from (15) a system
of 2"***V linear equations with the known functions
By = T,¢ instead of ¢, ¢:

15.1) Z(I)V/(,)Y"(m)x(,) =4, foreach (m).

Each such shift of £ left coefficients y,, intact and
Xreem = (=1)" xp, with I/ =1 +m; (mod 2),
Iy =1,+m, (mod 4) for each h>1, where n=1 for
I +m —1l/=2, n=2 otherwise. This system can be
reduced, when a minimal additive group

G:={():], (mod 2),1, (mod 4) V2 < j<k;
generated by all (l ) with non-zero

coefficients in Equation (15)}

is a proper subgroup of g,x g}, where g, :=Z/(hZ)
denotes the finite additive group for 0<h e Z. Gene-
rally the obtained system is non-degenerate for A,
almostall p=(p,,---,p,)eR"™ orin W, where

A ., denotes the Lebesgue measure on the real space

n+1

R

We consider the non-degenerate operator A4 with
real, complex C, or quaternion H,,, coefficients.
Certainly in the real and complex cases at each point p,
where its determinate A =A(p) is non-zero, a solution
can be found by the Cramer’s rule.

Generally, the system can be solved by the following
algorithm. We can group variables by /,/,,---,/, . For a
given /,,---,/, and [ =0,1 subtracting all other terms
from both sides of (15) after an action of 7, with

=0,1 and marked m, for each #>1 we get the
system of the form

16) ax, +px,=b, —px +ax,=b,,

Copyright © 2012 SciRes.

which generally has a unique solution for A, almost
all p:

17) x = (0:(0:2 L f )’l)b1 —(ﬂ(a2 LB )’l)b2

_ (a(a2 s )’l)b2 +(ﬂ<a2 s )’l)b1
where b;,b, € 4, for a given set (m,,---m,).
When [, are specified for each 1<h<k with
h# hy, where 1<h, <k, then the system is of the type:
18) ax, +bx, +cxy +dx, =b,,
dx, +ax, +bx; +cx, =b,,
cx, +dx, +ax, +bx, =b,,
bx, +cx, +dx; +ax, =b,,
where a,b,c,deR or C, or H,,  ,while
b,b,,b;,b, € A, . In the latter case of H, ., it can be
solved by the Gauss’ exclusion algorithm. In the first two

casesof R or C, the solution is:
19) x; =A, /A, where

A=ag —d&, +cg; —bgy,

Ay =b¢ —b,5, +b,8-b,8,
_b1§4 +b2§1 —b3§2 +b4§3,

Ay =b& —b,&, +b5 —b,5,,
—b,&, +b,&—biS, +b,¢,,

& =a +b’c+ed® —ac® —2abd,
& =a’b+bc’ +d’ —b*d —2acd,
& =ab’ +c +ad’ —a’c—2bcd,
g =a’d+b’ +c*d-bd* —2abc.

Thus on each step either two or four indeterminates are
calculated and substituted into the initial linear algebraic
system that gives new linear algebraic system with a
number of indeterminates less on two or four respe-
ctively. May be pairwise resolution on each step is
simpler, because the denominator of the type <a2 + ﬂz)
should be /1 almost everywhere by pe 4 positive
(see (0), (14) above) This algorithm acts analogously to
the Gauss’ algorithm. Finally the last two or four inde-
terminates remain and they are found with the help of
Formulas either (17) or (19) respectively. When for a
marked 4 in (6) or (14) all [, =0(mod 2) (remains
only x, for A=1, or remain x, and x, for h>1)
or for some h>1 all [, =0(mod4) (remains only
x, ) a system of linear equations as in (13,13.1)
simplifies.

Thus a solution of the type prescribed by (8) generally
A,., almost everywhere by peW exists, where W

isnadomain
W:{peAr:a1<Re( )<a1, 0Vj>n}

of convergence of the noncommutative multiparameter
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transform, when it is non-void, 2" <n<2" -1,
Re(p)=po> P=DPolo+ "+ Dy,

This domain W is caused by properties of g and
initial conditions on OU and by the domain U also.
Generally U is worthwhile to choose with its interior
]nt(U ) non-intersecting with a characteristic surface
#(x,,---,x,)=0, i.e. at each point x of it the condition
is satisfied

(CS) Z\j\:aaj (’(’C))(a¢/6x1 )jl -(0g/ox, )./'n ~0

and at least one of the partial derivatives (0¢/0x,)#0
is non-zero.

In particular, the boundary problem may be with the
right side g=¢f in (2,2.1,14), where ¢ is a real or
complex C; or quaternion H,, 6 multiplier, when
boundary conditions are non-trivial. In the space either

D(R",Ar) or B(R",Ar) (see § 19) a partial diff-
erential problem simplifies, because all boundary terms
disappear. If f eB(R”,Ar), then

{ped :Re(p)>0}cW, For feD(R"A4,)
certainly W, =4, (seealso § 9).

2.28.4. Examples

Take partial differential equations of the fourth order. In
this subsection the noncommutative multiparameter trans-
forms in A, spherical coordinates are considered. For

20) 4=0fos}+Y) y, 0" /os]

with constants y, € H, ., \{0} on the space either
D(R”,A) or B(R”,A},j, where n>2, Equation (6)

]

takes the form:

21) F(A[f](2).us p;&) = {po (pé +3(plSel )2)+27,- (p,-S,;/, )4}F (f(1).us p3¢)

P (3173 +(psS, )szeIF” (/(0).u:p:&) = F" (g(1).u: pi€)

due to Corollary 4.1. In accordance with (16,17) we get:
-1
2) F(p:)=(ala*+5) )G, (1:¢)

(Bla* )" 16, (m56)

foreach w=1,---,n,
where

@, =a=[p(pi =30 )+ X\ 0,7}

B.=B=n(3p-p)

>
pp=0Vb>w

pp=0Vb>w

From Theorem 6, Corollary 6.1 and Remarks 24 we infer

that:
23) f(6)=(2n)" [ F(a+p:$)
exp{u(p,l;é’)}dpl ~--dp,

supposing that the conditions of Theorem 6 and Cor-
ollary 6.1 are satisfied, where

F(p:i$)=F"(f(t).u: p:¢).
If on the space either D(Rk,Ar) or B(Rk,A,) an
operator is as follows:

24) 4=0"[osjos; +).) g, 0 /as),
where y, € H, ., \{0} , where >3, then (6) reads as:

25) F"(Af (1) pil) = p3 (pé +(pis, )szsz" (/ (1) p56)

+2p,p, P38, So F" [(f(f)),u;p;é“ +2 (p,-Sej )4 F (f(t)),u;p;é“j =F"(g(t).u; p;<)

If on the same spaces an operator is:

26) A=0"[05,055+). y,8"/ds], where n>3, then (6) takes the form:

27) F" (Af(t),u;p;é’)= popzszzF” (f(t),u;p;{)

+p1p§Sel SfQF" (_f(t),u;p;§)+zn:7j (ijgj) Yok (f(t),u;p;g) - f (g(t),u;p;g).
=

To find F"(f(¢).u;p;¢) in (23) or (27) after an
action of suitable shift operators Ti;,, o, T, and

T

(1,2,0,---,0)
tions:

we get the system of linear algebraic equa-

28) ax, +bx;+cx, =b,, bx +cx,+axy=b,, ax,—cx;+bx, =b;, —cx +bx, +ax, =b,

Copyright © 2012 SciRes.
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with coefficients a, b and c, and Cayley-Dickson numbers on the right side b,,---,b, € 4,, where

x=F,(p;¢), x,=TF,(p;¢),

Y =T F,(p:¢), x=TLF, (<),

b=G,(p:¢)=(F"(2()w:p:¢)) » b, =TG,(p:¢), by =T,G,(p:¢), b =TTG,(p:<)-

w

Coefficients are:
_ n 4
a,=a= [Z,—:%I’J
for 4 given by (24);

— — n 4
a,=a= |:Zj:37//pj:|

pp=0Vb>w

pp=0Vb>w

for 4 givenby (26), w=1,---,n.If a=0 the system
reduces to two systems with two indeterminates (x,,x, )
and (x;,x,) of the type described by (16) with so-

-1
29) Fw,(p;;’):a_lbl—[(az—b2+cz)2+4b2c2} a’

€ HJ,K,L , b,=b= pop22|

eR, c =c:plp22| eR

pp=0Vb>w w pp=0Vb>w

lutions given by Formulas (17). It is seen that these
coefficients are non-zero A,,, almost everywhere on
R"". Solving this system for a#0 we get:

[(a2 ~b* +¢*)((c* =07 )by +abb, ~ 2bcb, +ach, )~ 2be(2beb, ~ach, +(c* b )by +abb4)] .

Finally Formula (23) provides the expression for f
on the corresponding domain W for suitable known
function g for which integrals converge. If y, >0 for
each j,then a>0 foreach p;+---+p.>0.

For a partial differential equation

30) a(tn+1)Af(tl"tn+1)+af(t]"tn+l)/6tn+l :g(tl’

with octonion valued functions f,g, where 4 is a
partial differential operator by variables ¢,,---,¢, of the
type given by (2,2.1) with coefficients independent of
t,,-,t,, it may be simpler the following procedure. If a

For (21,24) on a bounded domain with given boundary
conditions equations will be of an analogous type with a
term on the right F"(g(t),u;p;¢) minus boundary
terms appearing in (6) in these particular cases.

’tn+] )

domain ¥ is not the entire Euclidean space R"" we
impose boundary conditions as above in (5.1). Make the
noncommutative transform F"1" of both sides of
Equation (30), so it takes the form:

31) a(t,, ) F"™ 7 (Af (ot )ous p 8 )+ OF ™ (f (1,00t )ous pi6) fo,,

= Fn;rl’m‘lﬂ (g(tl"“’tnﬂ )’u’p’é’)

In the particular case, when

a (tn+1 ) Z\/\gaa/‘ (tn+1 ) Zogkls/'l (

p, t and ¢, with the help of (6,8) one can deduce an expression of

for each ¢

n+l >

A S e-u(p,t;§) — e—u(p,t;é“)
kl (ks ja i)

F'(p3¢st,) = eXp{—j "”b(poa-~-,pn;§)d§}{co +[L’;’”Q(po,m,pn;r)exp{j:”b(po,---,pn;g)dg}dr}}

t,
70

through

G"(p;¢ity ) =F™"

and boundary terms in the following form:

(g (s styn )stis p3€)

b(p09'..’pn;tn+l)Fn (p;g;tn+l)+aF’1 (p;g;tn+l)/atl1+l :Q(pO’“.’pn;thrl)’

Copyright © 2012 SciRes.
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where b(py, -, p,it,,) isareal mapping and
O(py+s pn;tm) is an octonion valued function. The
latter differential equation by ¢, has a solution ana-

n+l

logously to the real case, since ¢,,, is the real va- riable,
while R is the center of the Cayley-Dickson algebra
A, . Thus we infer:

33) F"(p;.:;rw)—exp{—jj(j”b(po,---,pn;g)dé}{co+[jj;*‘Q(po,---,pn;r)exp{j;;+'b(po,---,pn;g)dg}dr}}

since the octonion algebra is alternative and each equa-
tion bx =c with non-zero b has the unique solution
x=b""c, where C, is an octonion constant which can
be specified by an initial condition. More general partial

2.28.5. Integral Kernel
We rewrite Equation 28(6) in the form:

34) A F" (szn ,u;p;é”) =F" (ngn ,u;p;cj)

-4, >

llsa 1<), 0<my , 0= qy , by =sign(ly ji. ) my +qy +hy = i3 =0 for Iy jy =05 Vk=1,:-,

Zogt, (t‘”)),u;p;é"],

(=1)® gm o ((8" 7(0)” /athl ...atgn)

where
34.1) S, (p)=S,= R, (p)
in the 4, spherical or A,  Cartesian coordinates res-

pectively (see also Formulas 25(1.1,1.2)), for each
k=1,--,n

342) S"(p)=8"=8" S,
35) AS = Z\,|<aa/s ( )

Then we have the integral formula:
36) AF"(f 1,008

- I nf(f)[As exp(—u(p,t;g"))Jdt

in accordance with 1(7) and 2(4). Due to § 28.3 the
operator A; has the inverse operator for A4,,, almost

39) ([0 (1)

so that

differential equations as (30), but with o' f / o, ., 1>2,
instead of 0f/dt,,, can be considered. Making the
inverse transform (F "”“'””") of the right side of (33)

one gets the particular solution f .

n;(1ef0,1,2}"

all (py,-, pn) in R""'. Practically, its calculation may
be cumbersome, but finding for an integral inversion for-
mula its kernel is sufficient. In view of the inversion
Theorem 6 or Corollary 6.1 and § § 19 and 20 we
have

37) (2m)” IR” exp(-u(a+p,t;{))
exp(u(a+p,z;¢))dp, -+ dp, = 5(t;7),
where
38) [6,/)(z)=[ ./ (1)S(;7)ds,--dt, = / (7)

at each point 7€ R", where the original f(7) satisfies
Holder’s condition. That is, the functional &(t;7) is 4,
linear. Thus the inversion of Equation (36) is:

Xy (t){[AS exp(—u(p+a,t;é')ﬂ§(p+a,t,r;§)}dt)dpl dp, = f(2).

40) [AS exp(—u(p+a,t;§))}§(p+a,t,r;é’): (2m)" exp(—u(p+a,t;§))exp(—u(p+a,r;§)),

where the coefficients of 4; commute with generators
i; of the Cayley-Dickson algebra 4, foreach j.Con-
sider at first the alternative case, i.e. over the Cayley-
Dickson algebra 4, with »<3.

Let by our definition the adjoint operator 4; be

defined by the formula

4 A (p.)=2 a8 (pt:<)

Copyright © 2012 SciRes.

for any function 7:4, xR"x A, — 4., where JteER",
p and Ced, Sn'(p.t:¢)=[Sn(p.:5)] - Any
Cayley-Dickson number z e 4, can be written with the
help of the iterated exponent (see § 3)in 4, spherical

coordinates as
42) z=|z|exp(-u(0,0;%/)),

where v>r, wed,, ued,, Re(y)=0. Certainly
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the phase shift operator is isometrical:

43) lel '--ﬂf”z :|Z|
for any k,---,k, €R, since |exp(—u(0,0;lm(l,z/))| =1 for
each y € 4, , while

TH L gm0y
1 n

exp{-u(0,0; im () = (kiiy -+ i, ) m/2)}

(see § 12).

Inthe A Cartesian coordinates each Cayley-Dickson
number can be presented as:

42.1) z=|z|exp(¢M), where ¢eR is a real para-
meter, M is a purely imaginary Cayley-Dickson num-
ber (see also § 3 in [5,6]). Therefore, we deduce that

44) |AS exp(—u (p+ a,t;{))|

= exp(—(po +a)sl _go)

A, exp (—u (Im (p), t;Im (Cf)))‘ >
since R is the center of the Cayley-Dickson algebra
A, and pg,a,¢,, s, €R, s =s,(t), where particularly
A= Age™ 0 |§:0 (see also Formulas 12(3.1-3.7).

Then expressing & from (40) and using Formulas
(41,42,42.1,44) we infer, that

45) &(p.t.734)
= (211)7" [A; exp(—u (Im(p),t;[m(é’)))]
[exp(—u[(m(p),t;Im(;'))exp(u(p,r;g)))] ,

A exp(—u (Im(p),t;[m(é’))) N

since z' =z*/ |z|2 for each non-zero Cayley-Dickson
number ze 4,, v>1, where Im(p)= pji,+---+p,i,,
P =Pyt + Dy, Py = Re(p).

Generally, for » >4, Formula (45) gives the integral
kernel §( .47 ¢ ) for any restriction of & on the
octonion subalgebra alg, (N,,N,,N,) embedded into
A . In view of § 28.3 ¢ is unique and is defined by
(45) on each subalgebra alg,(N,,N,,N,), conse-
quently, Formula (45) expresses & by all variables
p,.£ed and t,7eR". Applying Formulas (39,45)
and 28.2(A) to Equation (34), when Condition 8(3) is
satisfied, we deduce, that

46) (f;(Q" )(r) = _[R,, (_[Rng(t)zgn (t)[exp(—u(p+a,t;é’))é‘(p+a,t,z';§)]dt)dpl --dp,

-4, 2

(_1)\(1/')I

e 1<i()l, 0<my, 0< gy, Iy =sign(ly jg ) myc +q +h =i 4 =0 for b jx =0, k=L,....n; (1)e{0,1,2}"

IRn (J."Q("/j) [5"’|f(t(”)/6t1ql Gl ][{S"’ (p)exp(—u(

where  dimp0Q);, = n—|h(lj )|, 1" e6Q), in accordance
with § 28.1, S"(p) is given by Formulas (34.1, 34.2)
above.

For simplicity the zero phase parameter ¢ =0 in (46)
can be taken. In the particular case Q" = R" all terms

with |

. Vvanish.
)

Terms of the form

41 4 =T a[5.(p)] )+ A5, (p)+0

and

p+a,t('l/);g"))}§(p+a,t('l/),r;é’)]dt(l/)jdpl ~dp,,

[ s (p)exp(-u(p+a.60))é(p+ats)]
dpl “. dpn
in Formula (46) can be interpreted as left 4, linear
functionals due to Fubini's theorem and § § 19 and 20,

where S°=1.
For the second order operator from (14) one gets:

48) (f20)(1)=[ ([ 8 (0) 2 ()] exp(-u(p +a,:0)) £ (pot7:¢) | dt)dpy - dp,
=) (I@Uof(t')[{(ﬁ(t')+P(t’,p))exp(—u(p+a,t;§))} §(p,t',z';g")} dt')dp1 --dp,
—JR” (I@an(t’)(@f(t’)/@v)[exp(—u(p + a,t;cj))§(p,t',r;§’)]a’t’)dp1 --dp,.

For a calculation of the appearing integrals the ge-
neralized Jordan lemma (see § § 23 and 24 in [4]) and
residues of functions at poles corresponding to zeros

Copyright © 2012 SciRes.

‘AS exp(—u (Im(p),t;]m(.{)))‘ =0 by variables
Dy, p, canbeused.
Take g(t)=&(y;t),wherey € R is a parameter, then
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49) _[ ( (s )[exp(—u(p+a,t;§))§(p+a,t,r;é’)}dl)dpl---dpn

- J.R" [exp

is the fundamental solution in the class of generalized
functions, where

50) AE(y;t)=35(wt),

51) jR,,5(y;t)f(t)dt=f(y)
for each continuous function f (t) from the space
r (R”,Ar); 4, is the partial differential operator as

above acting by the variables 7= (¢,,--,7,) (seealso §
§ 19,20 and 33-35),

2.29. The Decomposition Theorem of Partial
Differential Operators over the
Cayley-Dickson Algebras

We consider a partial differential operator of order u :
D A7 (x)= Ta, (1)0°7 (x).
|or|<u
where 8% f =8 f(x)/ox(0 -
x; €R foreach j, 1<n—2 —1 a=(aya,),
o] =y +++a,, 0<a,eZ. By the definition this
means that the prmmpal symbol

2) 4y= Y a,(x)o"

la=u

a, . .
n = “ee
©OX," ., X = Xyiy X,

n’n >

has o so that |a|=u and a,(x)e4, is not iden-
tically zero on a domain U in A, . As usually
C*(U,4,) denotes the space of k times continuously
differentiable functions by all real variables x,,---,x,
on U with values in 4, , while the x -differentiability
corresponds to the super-differentiability by the Cayley-
Dickson variable x.

Speaking about locally constant or locally differen-
tiable coefficients we shall undermine that a domain U
is the union of subdomains U’ satisfying conditions
28(D1,i-vii) and U’ nU* =0U’ noU* for each
J # k. All coefficients a, are either constant or diffe-
rentiable of the same class on each Int(U / ) with the
continuous extensions on U’ . More generally it is up to
a C" or x-differentiable diffeomorphism of U res-
pectively.

If an operator A4 is of the odd order u =2s-1, then
an operator E of the even order u+1=2s by vari-
ables (¢,x) exists so that

3) Eg(t,x)L:O = Ag(O,x)
for any geC"" ([c,d]xU,Ar) ,where te[c,d]cR,
c<0<d, for example, Eg(t,x)= G(IAg(t,x)))at .

Therefore, it remains the case of the operator 4 of
the even order u = 2s. Take
z=zyly++z, 0, €4, z;€R. Operators depend-
ing on a less set z,,---,z of variables can be consi-

Copyright © 2012 SciRes.

—u(p+a,y;¢))é(p+ay,1:¢) dp, -+

dp, = E(y;7)

dered as restrictions of operators by all variables on
spaces of functions constant by variables z,_ with
se{l, 0},

Theorem. Let A= A, be a partial differential ope-
rator of an even order u=2s with locally constant or
variable C° or x -differentiable on U coefficients
a,(x)e A4, such that it has the form

4) Af = Cu,l (Bu,lf)+”‘+cu,k (Bu,kf) >
where each
5) Bu,p :Bu,p,0+Qu—l,p

is a partial differential operator by variables
, X - and of the order u,

my, t +my, u,p— 1+]9 . my ey,

m,,=0, c,(x)e A for each k , its principal part
6) Bu,p,O = Z\m:xaﬁla (x) aza

is elliptic with real coefficients a,,,(x)>0,
0<r<3 and feC"(U,4,),or r=4 and
f€C"(U,R). Then three partial differential operators
Y* and Y| and Q oforders s and p with

p <u-1 with locally constant or variable C* or x-
differentiable correspondingly on U coefficients with
values in 4, exist, »<v, such that

7 A=Y (Y S)+Of

either

2.30. Corollary 1

Let suppositions of Theorem 29 be satisfied. Then a
change of variables locally constant or variable C' or
x-differentiable on U correspondingly exists so that the
principal part A,, of A, becomes with constant
coefficients, when a,,, >0 foreach p, o and x.

2.31. Corollary 2

If two operators E = A,  and A= A,_, are related by
Equation 29(3), and A, is presented in accordance
with Formulas 29(4,5), then three operators Y*, Y*'
and Q oforders s, s—1 and 2s—2 existso that

) 4,,=Y7"+0.

2.32. Products of Operators

We consider operators of the form:
D (Y +p1) f(2):=
(X1 ()0 (2)) 4 1 () B(2)
with 7,(z)e4,, a:(ao,---,a , ), 0<a, eN foreach

. BLI(2)=f(2)B,

k, |0¢|=0:0+---+052r71
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6 f(2):= 8 () azio 07 1, 2<r<v<on,
,B(Z)e A4, Zg> 2,

Proposition. The operator (Yk +ﬂ)* (Yk +,B) is ellip-

eR, z=zj,++z 1 .
’ 0%0 212" 1

tic on the space C* (Rzr ,A‘,).

2.33. Fundamental Solutions

Leteither ¥ beareal Y =4, orcomplexified

Y =(4,). or quaternionified ¥ =(4,), Cayley-Dick-
son algebra (see § 28). Consider the space B(R",Y )
(see § 19) supplied with a topology in it is given by the
countable family of semi-norms

D) pus (f):=sup, o |(1+]2]) 8“1 (x)

where k=0,1,2,; a=(¢,.,a,), 0<a,eZ. On
this space we take the space B'(R",Y )z of all Y valued
continuous generalized functions (functionals) of the

form
2) f=f0i0+---+f2v i and

—12V-1

>

8= gOiO teet gzv_1i2v_1 b
where f, and g, € B'(R” Y ) , with restrictions on
B(R”,R being real or C, or H, ., -valued gene-
ralized functions f,---,f, .g,,---,g,  respectively.
R . -1, 2Y-1
Let ¢=dyi,+---+ ¢2v7112v71 with

¢0’“.’¢2v71 € B(Rn,R) , then

3 [f.0)=30 [ )i,

We define their convolution as
2Y-1

4 [f*28)=300 ([ *2.0)i) )i
foreach ¢e B(R”,Y) . As usually

) (/*e)(x)=f(x=2)*e(y)=f(¥)*&(x-)
for all x,y € R" due to (4), since the latter Equality (5)
is satisfied for each pair f; and g, . Thus a solution of
the equation

6) (Y‘Y +ﬂ)f =g in B(R”,Y) or in the space
B'(R”,Y)l is’

7 f=E, *g, where E _

X+ . Y+

mental solution of the equation

8) (Y'+8)Ey., =0, (5.4)=¢(0).

The fundamental solution of the equation

9) AV =6 with 4 = (ys +ﬂ)(yp _:,.ﬂl)
using Equalities 32(2-4) can be written as the con-

volution
10) V::VA0=E *F

S S *
Y +p Yll +B

denotes a funda-

More generally we can consider the equation
11) Af =g with A= 4,+(Y,+5,),

Copyright © 2012 SciRes.

where A, =(Y+p)(Y,+5), Y,Y,Y, are operators
of orders s, s, and s, respectively given by 32(1) with
z-differentiable coefficients. For Y, + 3, =0 this equa-
tion was solved above. Suppose now, that the operator
Y, + 3, isnon-zero.

To solve Equation (11) on a domain U one can write
it as the system:

12) (Yl +181)f =& (Y+ﬁ)g1 = g_(Yz +:Bz)f .

Find at first a fundamental solution V, of Equation
(11) for g=0.We have:

13) [ =Eq.5*8&=Evr,p *(g-(Y+5)a)
consequently,

13.1) EY]+,BI *g +EY2+ﬂ2 *((Y+ﬂ)gl ) = EY2+ﬁ2 *g.

In accordance with (3-5) and 32(1) the identity is satisfied:
I:EY2+[;’2 *((Y+ﬂ)g1)s¢o) = |:(Y+ﬁ)(EY2+ﬂ2 *g1)9¢0) :
Thus (13) is equivalent to
14) EY1+ﬂl g+ (Y+ ﬂ)(EY2+,82 *g ) = EY2+,82
for g=&,since Ey  , *6=E , .
We consider the Fourier transform F by real vari-

ables with the generator i commuting with i, for each
j=0,---,2" =1 such that

(F1) (Fg)(y) = [ e g (x)dx ---dx,
for any gel (R”,AV) , Le. .[R” g(x)|dxl ~edx, <oo,
where g:R" — Y isan integrable function,

(y,x)= Xy xy, x=(x1,---,xn)e R", x,eR
for every j.The inverse Fourier transform is: ‘

(F2) (F’lg)(y) = (271)7" R,,ei(y’*')g(x) dx,---dx, .

For a generalized function f from the space
B'(R”,Y )[ its Fourier transform is defined by the
formula

(F3)(Ef.4)=(f.F8).(F'f.0)=(f.F¢).

In view of (2-5) the Fourier transform of (14) gives:

15) [F(EYI% )][F(gl )]
+Zj::|:F((Y+ﬂ)’ EY2+ﬂ2 )J

[F(gl ):Iij ZF(Er2+ﬁ2)
for g=0. With generators io,---,izv_l,ioi,---,i V_1i the
latter equation gives the linear system of 2""' equations
over the real field, or 2"** equations when Y = (Av) .
From it F(g,) and using the inverse transform F~' a
generalized function g, can be found, since
F(g)=F(g)iy++F(g, )i

2V -1

and

F(g)=F ' (gu)ig+-+F (g, )i, (see also the

Fourier transform of real and complex generalized func-
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tions in [1,21]). Then
16) V,=E, 5 *g and f=V, *g givesthe
solution of (11), where g, was calculated from (15).
Let m :(4,), —(4,), bethe R -linear projection

operator defined as the sum of projection operators
My++m,  where m :(4,), — Hi,

17) m,(h)=hi;, h= Z/ Ohjlj, h,eH,, , that

gives the corresponding restrictions when 4, € C; or
h;eR for j= 0,---,2" —1. Indeed, Formulas 2(5,6) have
the natural extension on (4, ) ,,» since the generators J
K and L commute with i, foreach ;.

Finally, the restriction from the domain in A4, onto
the initial domain of real variables in the real shadow and
the extraction of w0 f € A with the help of Formulas
2(5,6) gives the reduction of a solution from 4, to A4, .

Theorems 29, Proposition 32 and Corollaries 30, 31
together with formulas of this section provide the algo-
rithm for subsequent resolution of partial differential equa-
tions for s,s—1,---,2, because principal parts of ope-
rators A4, on the final step are with constant coeffi-
cients. A residue term Q of the first order can be inte-
grated along a path using a non-commutative line inte-
gration over the Cayley-Dickson algebra [5,6].

2.34. Multiparameter Transforms of Generalized
Functions

If ¢eB(R”,Y) and geB‘(R",Y)l (see § § 19and
33) we put

D 357 (g p:¢) )i,

=g Fr (B pd))i,
or shortly

2) Z [ e pitso) ¢)l _Zjo[gj’¢e—u<prc>)j

If the support supp(g) of g is contained in a
domain U , then it is sufficient to take a base function
¢ with the restriction ¢| e B(U,Y) and any
ss ¢| o €C7

2.35. Examples
Let

D (=5 (1 (0)fa)e

be the operator with constant coefficients ¢, € 4,,
|c].| =1, by the variables ¢,---,z,, n=2. We suppose
that ¢, are such that the minimal subalgebra

algp (cj,ck) containing ¢; and ¢, is alternative for

each j and k and ‘(( ”zc!z) -')c”z =1. Since

Copyright © 2012 SciRes.

2) o (1)/or; = X (of (¢(s))/as, ) (o5, fox,)
= Z;:p t s /8sk s
the operator A takes the form

3) 4Af 222:1(21% b<](a f /askasb ))

where s, =¢,+---+1, for each j . Therefore, by
Theorem 12 and Formulas 25 (SO) and 28(6) we get:

4 F'(Afupil)=Y" 1{[Rj(p)}2 F (p;é”)}cj

for u(p,t;¢) either in 4, spherical or A, Cartesian
coordinates with the correspondmg operators R, ( )
(see also Formulas 25(1.1,1.2)).

On the other hand,

5) F"(Su;p;¢) =€ (P0:C) = omu(0.0:¢)
in accordance with Formula 20(2). The delta function
5(¢) is invariant relative to any invertible linear ope-
rator C:R" — R" with the determinant
|det(C)| =1, since

[.(Cx)p(x)dx=[,5(¥)(C'y)|det(C)|dy
=4(C0)=9(0).
Thus
F"(C(Af)su; p;&) = F" (Af su; p; <)
for any Fundamental solution f , where
Cg(t)=g(Ct), Af=6.1f C:R">R" is an in-
vertible linear operator and £=Ct, ¢=Cp,

{'=C¢ ,then t=C"'E, p=C'q and £ =C"'¢".In
the multiparameter noncommutative transform F" there

are the corresponding variables (tj, P;ss j). This is ac-
complished in particular for the operator
C(t,+,t,)=(s,"++,s,). The operator C™' transforms

the right side of Formula (4), when it is written in the
A, spherical coordinates, into

2
zjl{(Po +4,S,, ) E' (q;é’)}cl.. The Cayley-Dickson

number ¢q =g, +q,i +---+4q,i, canbe written as
q=4q,+9, M, where |M|:1, M is a purely imagi-
nary Cayley-Dickson number, ¢,, € R,

quM = qi, +---+q,i,, since g, = Re(q). After a suit-
able automorphism 6: 4, — A we can take

0(q) =g, +4,i, , so that @(x)=x for any real number.

The functions [Z 1q/S2 } and [Z_’;:lijfjc,J are

even by each variable ¢, and p; respectively.
Therefore, we deduce in accordance with (5) and 2(3,4)
and Corollary 6.1 with parameters p, =0 and § =0
and ¢, €{-1,1} foreach . that
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’i

1<k b</kaekpreb} j:|§“;y;§)

N(y1lgD )

—
[
\

_[g,e

inthe 4, spherical coordinates, where

ng/[zjzlq?c./]’or
6.1) (F) (”[Z, I{P,SZ} ,};u;y;é“)
(F") (1/[2 {PZSZ} ,}u;y;é’)

inthe 4, Cartesian coordinates, where
g :1/[2;:1%2.0‘/} , N:y/|y| for y20, N=j for

7) (Fﬂ )71 (I/[Z;ZI{ZISk,ijkaek preb }cj];u;y;f)

=(2n)" [ exp(i(gn ++4,5, ))(1/[2?2161? ->

inthe A4, spherical coordinates and

)

in the 4, Cartesian coordinates, since for any even func-
tion its cosine Fourier transform coincides with the Fou-
rier transform.

The inverse Fourier transform
(F’lg)( )=(2n) " (Fg)(-x)=:¥, ofthe functions

= I/(Z 1zjz) for n>3 and P(I/(Zj_zlzjz. )) for
n=2 in the class of the generalized functions is known
(see[21]and § § 9.7 and 11.8 [1]) and gives

n 2 1-n/2
8) \Ijn (Zl’.”’zﬂ ) = C" (ZjZIZ./ )

for 3<n,where C,=-1/[(n-2)0,],
o, =4n"”? / I'((n/2)~1) denotes the surface of the unit

sphere in R", I'(x) denotes Euler’s gamma-function,
while
9) ‘Pz(zl,zz) C, ln(z 12]2)

for n=2,where szl/ (4n).

Thus the technique of § 2 over the Cayley-Dickson
algebra has permitted to get the solution of the Laplace
operator.

For the function

10) P(x)= 2000 =20

with 1<k, <n the generahzed functions (P(x)-l—iO)/l
and ( (x )—10) are defined for any e C=R®IiR
(see Chapter 3 in [21]). The function P* has the cone
surface P(z,-, n) 0 of zeros, so that for the correct

Copyright © 2012 SciRes.

y:07 y:yll’1+'”+ynin e‘Ar > [y]:(yl’”.’yn)ERna

[)’]a[(I]) = Z:Zlyjqf , since

S;, cos(¢+¢,) = cos(¢+, +m)=—cos(¢+(, )

and
S sin(¢+¢, ) =sin(p+¢, +m) = —sin(p+,)

for each k.

Particularly, we take ¢, =1 foreach j=1,---,k,
¢;=-1 forany j=k, +1,--,n, where
1<k, <n.Thus the inverse Laplace transform for
g, =0 and ¢ =0 in accordance with Formulas 2(1-4)
reduces to

and

j:k++1q/2' })dql ~--dg,

];u;y;é) =(2n)" [ exp(i( P+ P, ))(1/[21117? —Zj:k++lpf])dpl ~--dp,

definition of generalized functions corresponding to P*
the generalized functions

11) (P(x)+ci0)i = lim0<(:g,gao(P(x)2 +52)

exp (i/larg (P(x) + icg))
with either c¢=
fore, the identity

12) F(¥ .4 )(x)

:_( = "y _Zj k +1x12)[F(\Pk+’”’k+ )(X)T

Al2

-1 or c¢=1 were introduced. There-

or
13) F(¥)=-1/(P(
follows, where c=-1 or c= 1 .

The inverse Fourier transform in the class of the ge-
neralized functions is:

14) P ((P(x)+ci0) )(z00.2,)
=exp(-mc(n—k,)if2)2**" n"°T (A +n/2)
(Q(zl,n-,zn)—ciO)_l_nm/[l"( /1)|D|1/2]

forecach 1 eC and n>3 (see § IV.2.6 [21]), where

+czO

D= det( gj,k) denotes a discriminant of the quadratic

form P(x)=3"

&, %% » while
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o(y)= Zj‘kzlgj’kxka is the dual quadratic form so that

> g g, =0 forall j,I; &/ =1 for j=1I and

8/ =0 for j#1/. In the particular case of n=2 the
inverse Fourier transform is given by the formula:

15) F~' ((P(x)+ci0)’l)(zl,zz)
:—4'1|D|71/2exp( ne(n—k, /2)
ln(Q(zl, -, n) czO)

Making the 1nverse Fourier transform F'
function —1/ +10) in this particular case of
A=-1 we get two complex conjugated fundamental
solutions

16) Vi ek, (z,-+,2,)
= —exp(ne(n—k, )i/2)T((n/2)-1)

(Q(le' ’ ',Zn)-i-ci())l (/2) /(4717”/2)

for 3<m and 1<k, <n,while
17) ‘P,l(zl,zz):

47 exp(me(n—k, )i/2)In(Q(z,z,)+ci0)

for n=2,whereeither ¢=1 or c=-1.

Generally for the operator 4 given by Formula (1)
we get P(x)=F,(x)+F(x), where
Py (x)= ijle.Re(cj) and P (x)= Z;’_lejz.lm(cj) are
the real and imaginary parts of P, Im(z)=z—Re(z)

for any Cayley-Dickson number z. Take /=i, and
consider the form P(x)+e&cl with £#0 and either

of the

c=1 or ¢=-1,then P(x)+ecl#0 foreach xeR".

We put
18) (P(x)+cl())ﬂ :1im0<cg,£4>0(P(x)2 +82)

exp(iﬂArg(P(x) + lc&)).

A2

20) ‘I—’(zl,---,zn)=

for 3<n,while

Consider A € R, the generalized function
(P(x)2 +& )m exp (i/iArg (P(x)+ lcg))

is non-degenerate and for it the Fourier transform is
defined. The limit limo<ce..0 glves by our definition
the Fourier transform of (P( )+clO) Since

19) ¢, (,B +Zl<k<n Hjc;lckﬁk): qucjﬂ'
for all B, €R and any 1<j<n in accordance with
the Condltlons imposed on ¢, at the beginning of this
section and (N, =N, for each j, the Fourier trans-
form with the generator i can be accomplished sub-
sequently by each 1\@Lriable using Identity (19). The
transform x; |—>(cj) x, is diagonal and

1/2 172 1/2
‘( (el )-)c,,

Cayley-Dickson number can be presented in the polar
form z=|z|e¢M , #€R |¢|S1t , is a purely
imaginary Cayley-Dickson number |M | =1,

Arg(z)=(¢+2nk)M has the countable number of va-
lues, keZ (see § 3 in [5,6]). Therefore, we choose

the branch z"? = |z| exp((Argz)/2), |z|1/2>0 for

z#0, with |Arg( )| <m, Arg(M)=Mn/2 for each
purely imaginary M with |M |=1.

We treat the iterated integral as in § 6, i.e. with the
same order of brackets. Taking initially ¢, € R and con-
sidering the complex analytic extension of formulas
given above in each complex plane RO®N,R by c;
for each j by induction from 1 to n, when ¢; is not
real in the operator 4, Im(cj)eRN ;> we get the
fundamental solutions for 4 with the form
(P(x)+¢l0)" instead of (P(x)+ci0)" with multi-

pliers ( (c;“c;’z) . )c"/2 instead of

n

=1, so we can put |D|=1. Each

exp(nc(n —k, 1/2) as above and putting |D| =1. Thus

_F((”/z)_l)(P*(Zl,"',z,,)—clo)l_("/z) [(...(Clc/zchz),. ) 2/2}*/(4 11/2)

21) ¥(z.2,)=4" [ ”/2] Ln(P'(z,2,)—cl0) for n=2,

1/2

.
: *_ -1 _ _ c/2 :
since ¢; =c; for |cj| 1, yq, yj(cj )qjc]. , while

[( +(defq,des g, )"')dCE/zqn} = dg,--dg, [( -

2.36. Noncommutative Transforms of Products
and Convolutions of Functions in the A,
Spherical Coordinates

For any Cayley-Dickson number z =
we consider projections

Zoly+ otz 0
0% 212 -1

Copyright © 2012 SciRes.

c/2 c/2 c/2 c/2 ¢/2 c/2
¢ e )w-)cn J and ‘((Cl ¢ )---)cn

=1.

1) 0,(z)=z;, z;eR or C, or H,,,

j=0,2"=1, 6,(z)=m,(2)i;,

J

given by Formulas 2(5,6) and 33(17). We define the
following operators
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2) R, (F” (p; g’)):= F" (po,(—l)a] P (=1) 7% Pj-s;,>

s“'pn;é,()s(_l)al é’[ +7Z'a] /25'“3

pj+2_5/,”

on images F", 2"'<n<2 -1, j=0,---,n. For a,
and S, €10, 1} their sum o+, is considered by
(mod 2) i.e. in the rlng Z, Z/ (ZZ ) for two vectors
a and Be{0,1}"" thelr sum is considered com-
ponentwise in Z, . Let

n 2"~

3) F(fas )= 3 30, (F*(6(): )i,

Jj=0k=0

@jrl-5;
(5700 s, 7 26,

l":"'sé,n)

also

F! (p:¢) = 200, (F (6 (1) € )i
for an original f, where u( .54 ) is given by For-
mulas 2(1,2,2.1). If [ isrealor C, or H, , -valued,
then F} =6,(F").
Theorem. If' f* and g are two originals, then

4) F" (fg;u;p;é') - Zj’=02a,ﬁe{0,l}"( ) AR (Ra,j (F/n (p_qo;g_ﬂ))*Rﬁ,j (G/n (P+4, _po;n))ij’

41) F'(f*gupi8) =20 X s (C) (R, (FF (93¢ 7))

whenever F"(fg), F"(f), F"(g) exist, where
1<n<2" -1, 2<r; a +pf, =1(mod2) for k<j
or k=j+l=n, a +pf, =0(mod?2) for

k=j+1<n and o, =p,=0 for k>j+1 in the
J-th addendum on the right of Formulas (4,4.1); the
convolution is by (p,,--,p,) in (4), at the same time
g, €R and ne A are fixed.

6) F'(f2)(p:$)=[./()g

+{§JRn(f<r)g<z>

(t)exp(—u(p,t:¢))dt =

Ry, (G; (p;”)))ii’

Proof. The product of two originals can be written in
the form:

5) f(t)g(t) = Zj‘i:Zk,l:iki]:ijek (f(t))el (g(t))ij .

The functions 6, (/) and 6,(g) are real or C, or
H, ., valued respectively. The non-commutative trans-
form of fg is:

{-[R" (f(t)g(t))e*f’oﬁ cos(plsl +¢, )iodt}

)e—pos] Sin(P1S1+C1) su](p] IS] Lt - I)COS(p]S]'f'é/ ) dt}

+IRn (f()g(r))e ™" sin(pys, + &) +sin(p,s, + &, )i, dt.

On the other hand,

k

Nl Ogl)e

dz = .[R” .[R”f(t

where k=1,2, , 7;€{-1,1} . Therefore, using
Euler’s formula e"” *cos(¢)+zs1n(¢) and the trigo-
nometric formulas

cos(p+y ) =cos(g)cos(y)—sin(¢)sin(y),
sin(g+y ) =sin(¢@)cos(y )+ cos(¢)sin(y)
for all ¢,y € R, and Formulas (6,7), we deduce ex-

k

~Posi ”Z(”,/“Yj 6 )7-7
8) [o(r*e)e)e 7

Copyright © 2012 SciRes.

Po q0 sﬁzZ( j v +{/ ,)/

k
~Pos1 +’Z(P/»‘j +§,’ i )7_]'

dt = IRnf(t)e j

k k
a0+ (4j3,41,)7

= dt IRng(t)e 7=t dr |dg,

pressions for 6, (F " (fg)). We get the integration by

4,"**»q,, which gives convolutions by the p,,---,p,
variables. Here ¢, €R and 7€ A are any marked
numbers. Thus from Formulas (5-7) and 2(1,2,2.1,4) we
deduce Formula (4).

Moreover, one certainly has

k
~Posi+i Z(”./"j ;)7
de [ [.g(t)e 7 dr
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foreach 1<k<n, y, e {—1,1} , since

s; (t) =5, (t—r)+sj (r) forall j=1,--,n and

t,7 € R". Thus from Relations (6,8) and 2(1,2,2.1,4 and
Euler’s formula one deduces expressions for

0, (F" (f*g)) and Formula (4.1).

2.37. Moving Boundary Problem

Let us consider a boundary problem
1) Af =g inthe half-space 1, >¢(1,), where

2) F"[Zb 3, o f (2); p;éj— )

|ar|<m |al<m,0<q, <a, -1

b, (50,% —1)

#(0)=0 and ¢(¢,)<¢, for each 0<t, € R. Suppose

that the function ¢, —¢(s,)=1w(z,) is differentiable

and bijective. For example, if 0 <v <1 and

#(1,)=vt,, then the boundary is moving with the speed

v. Make the change of variables
Yn = l//(tn)’ NZh Y Thios

then

t,=y ' (y,) and dr, =ds, =(dt,/dy,)dy,
and due to Theorem 25 we infer that

(pO +St’1p1 )al pgz "'p:jl_l p:n_qﬂ_ISH*“1E1*(qn+1)€n F"_l’yn (6;’:w( ) (p’( ) é,) P é,)

+2b,(po+S,m)" P2

|ar|<m
inthe A, spherical coordinates and
21) F"(zaaa;zlynzof(t);p;é/J: Z aa (50,(1”
|a|<m |alsm,0<q, <a, -1

+a, (o4, 1) (o425, ) (Pt S,

la|<m

inthe 4, Cartesian coordinates, where

w(y)=f((»))(ds, /d,).
Expressing F" (Zynzo (»)w(»);p; é’) through
G"(p;¢) and the boundary terms

Fr (aﬁ’:W(y)au(p,(y" ));4“;19;4)
as in § 28.3 and making the inverse transform 8(4) or
8.1(1), or using the integral kernel & asin § 28.5, one
gets a solution w(y) or
f(t)= w(y(t))(dyn (1, )/dtn) (See reference [21-30]).

2.38. Partial Differential Equations with
Discontinuous Coefficients

Consider a domain U and its subdomains
U>oU,>--2U, satisfying Conditions 28(D1,D4,i-vii)
so that coefficients of an operator A (see 28(2)) are
constanton /nt(U,) andon V,=U\Int(U,),
V,=U\Int(U,) , -, V,=U,_ \Int(U,) and are
allowed to be discontinuous at the common borders

oV, NoU, for each j=1,---,k. Each function f Xy,
is an orlgmal on U ora generahzed function with the
support supp| f 2, cU, if f is an original or a
generalized function on U Choose operators A’ with
cogstant coefficients on U’ and 4’| ;Y/") =0, where
U°=U, so that A|Uk =A e, Al = A A

Copyright © 2012 SciRes.

D" S (zynzo(y)W(y);p;é): G"(p;¢)

_1)

(po + Sel 'z )0‘1 (po + PzSez )”‘2 "'(po + pn—lSerkl )an_l (po + anen )

a,—q, -1

P (o)l ()€

)a" F (Zynzo ()w():p:¢)=G"(p:¢)

A|U = A" +---+ A" . Therefore, in the class of originals or
generalized functions on U the problem (see 28(1,2))
can be written as

1) Af =g, or
2) A fry =gxyss

A f 2y, = 8y,

Ak_lflr/k 8%y, >

since Xt Ay Xy, = o Thus the equivalent pro-

blem is:
3) Af0=g", Af'=g",,
. k _ k

with /*=fy, . g et

g’ =8, for each j=0,---;k—1.On 0OU take the
boundary ‘condition in accordance with 28(5.1). With any
boundary conditions in the class of originals or gene-
ralized functions on additional borders oU,\oU given
in accordance with 28(5.1) a solution f/ on U’ exists,
when the corresponding condition 8(3) is satisfied (see
Theorems 8 and 28.1).

Each problem 4’/ =g’ can be considered on U,
since supp(g )cU Extend f’ by zero on U\V
for each 0< j<k—1. When the right side of 28(6) 1s
non-trivial, then f7 is non-trivial. If /7' is cal-
culated, then the boundary conditions on 0U’\dU can
be chosen in accordance with values of /' and its

Akfk:gk
:gZUkaalso f] Sy
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(auf \au) for

corresponding derivatives (6ﬁfj'1/8vﬂ)

some S <ord(A’) in accordance with the operator 4/
and the boundary conditions 28(5.1) on the boundary
oU’\oU . Having found f/ foreach j=0,---,k one
gets the solution f = f"+---+ f* on U of Problem
(1) with the boundary conditions 28(5.1) on oU.
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