
I. J. Communications, Network and System Sciences, 2009, 1, 1-89
Published Online February 2009 in SciRes (http://www.SciRP.org/journal/ijcns/).

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

Synchronous Dynamic Adjusting: An Anti-Collision
Algorithm for an RF-UCard System

Jichang CAO, Lin SHU, Zhengding LU
School of Computer Science & Technology

Huazhong University of Science & Technology, Wuhan, China
Email: shulin3760@163.com

Received September 27, 2008; revised December 6, 2008; accepted December 8, 2008

Abstract

An RF-UCard system is a contactless smartcard system with multiple chip operating systems and multiple
applications. A multi-card collision occurs when more than one card within the reader’s read field and thus
lowers the efficiency of the system. This paper presents a novel and enhanced algorithm to solve the
multi-card collision problems in an RF-UCard system. The algorithm was originally inspired from framed
ALOHA-based anti-collision algorithms applied in RFID systems. To maximize the system efficiency, a
synchronous dynamic adjusting (SDA) scheme that adjusts both the frame size in the reader and the response
probability in cards is developed and evaluated. Based on some mathematical results derived from the
Poisson process and the occupancy problem, the algorithm takes the estimated card quantity and the new
arriving cards in the current read cycle into consideration to adjust the frame size for the next read cycle.
Also it changes the card response probability according to the request commands sent from the reader.
Simulation results show that SDA outperforms other ALOHA-based anti-collision algorithms applied in
RFID systems.

Keywords: RF-UCard, Anti-collision Algorithm, Synchronous Dynamic Adjusting, RFID, ALOHA, DFSA, BBEI

1. Introduction

Identification is a central concept in user-oriented and
ubiquitous computing. Radio Frequency Identification
(RFID) is one of the key technologies for identifying
physical objects permits remote, non-line-of-sight, and
automatic reading. There is a wide variety of RFID
products and applications available; the book [1]
provides a good overview. A contactless smartcard
promises to be a typical instance of the RFID
technology, e.g. close-coupling cards (ISO/IEC 10536),
proximity cards (ISO/IEC 14443), and vicinity cards
(ISO/IEC 15693) [2]. Contactless smartcards often show
more powerful processing ability and sufficient storage
capacity than RFID tags, which benefits from the card
architecture with a microcontroller unit and writeable
memories. A Radio Frequency Universal Smart Card
(RF-UCard) is a novel contactless smartcard platform
with multiple chip operating systems (COS) and
multiple applications environment [3]. Multiple COSes
from different vendors can coexist on a single card, and
additional COSes can be loaded after card issuing. In
addition, multiple applications can be hosted by a single
COS, and the application can be dynamic downloaded
onto or unloaded from the card.

An RF-UCard system is often composed of three
main components as shown in Figure 1.
• One or more RF-UCards, held by the users to identify.

RF-UCards consist of three layers, the application, the
operating system and the physical layers. The
application and the operating system layers host
multiple applications and COSes respectively. The
physical layer includes a microcontroller unit,
memories and the coiled antenna. RF-UCards could
be either active or passive. Active cards are partly or
fully battery powered, have the capability to
communicate with other cards, and can initiate a
request to the reader. Passive cards, on the other hand,
do not have any internal power source but are
powered up by the reader.

• One or more readers, made up of a control unit and an
RF module. Its main functions are to activate the cards,
initiate the communication with the cards, collect the
card responses, and transfer data between the back-end
server and a card. The reader is usually equipped with
a single COS, and could be either mono-functional or
multi- functional. The mono-functional reader merely
supports the single application, and no the third party
is involved in the communication. The multi-functional
reader contains several independent applications, but

SYNCHRONOUS DYNAMIC ADJUSTING: AN ANTI-COLLISION ALGORITHM FOR AN RF-UCARD SYSTEM 9

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

only one application can be activated by the user at the
beginning of the communication.

• A back-end server, which contains various information
about RF-UCards and applications.
The reader and RF-UCards communicate over a

shared wireless channel. A read process is initiated by
the reader that uses radio to broadcast periodically a
request command to the RF-UCards. Each valid card1

within the reader’s read field sends its ID to the reader
while it receives a request. If only one card responds, the
reader can successful receive the card’s ID. When more
than one card responds simultaneously, messages from
cards will collide and cancel each other out at the reader.
This problem is referred to as the “multi-card collision”,
which is very similar to the “multi-tag collision” in RFID
systems. Collisions can defer the transmission delay and
lower the identification efficiency and cards often lose
their usefulness. Hence, an anti-collision algorithm needs
to be devised between the reader and the cards to
minimize collisions.

The well known algorithms devised to resolve the
multi-tag collision problem in RFID systems can be
grouped into two broad types, namely deterministic
algorithms and stochastic algorithms [1]. Deterministic
algorithms resolve collisions by splitting a set of
colliding tags into two subsets and attempt to recognize
the subsets one by one. The typical instances of
deterministic algorithms are the binary tree algorithm
[4-6] and the query tree algorithm [7,8]. Stochastic
algorithms are usually based on an ALOHA-like protocol
in which the tags send their data at a random time period.
The ALOHA-based algorithms include pure ALOHA [9],
slotted ALOHA [10], static framed ALOHA [11], and
dynamic framed ALOHA [12,13].

An RF-UCard system is much different from an RFID
system in identification though they both communicate
over a radio channel. In an RFID system, all tags within
the read field will send back their responses. However,
due to the fact that cards are in general equipped with
multiple COSes and applications, whereas the reader
always hosts the single COS, only the valid cards will
send back their responses in an RF-UCard system. All
cards will perform a validity check after receiving a
request command. In addition, tags and cads are
somewhat different in the arrival mode. Tags are usually
attached to the objects and arrive at the read field in a
batch mode (e.g. in a supply chain), whereas cards are
often held by users and arrive in a single mode. Furthermore,

Figure 1. RF-UCard system architecture.

most ALOHA-based algorithms applied in RFID systems
assume the scenario for tag identification is static, i.e. a
set of tags enter the read field and stay there until all tags
are identified. No new tag arrives during the
identification process. Unfortunately, this scenario is not
suitable for RF-UCard systems that the card quantity is
dynamic changed since the card arrival occurs randomly.
Finally, anti-collision algorithms applied in RFID
systems mainly focus on the tag identification but does
not care what further to do after the tags have been
identified. However, in an RF-UCard system, the
anti-collision algorithm needs not only to identify cards,
but to process cards. Thus the read time in an RF-UCard
system can be divided into two parts: the identification
time (i.e. the time needs to identify a card) and the
processing time (i.e. the time needs to execute a specific
application). Hence, in order to apply the idea involved
in ALOHA based algorithms to RF-UCard multiple
accesses, the algorithms need to be revised according to
the characteristics of an RF-UCard system.

We propose a combinatory anti-collision algorithm,
called synchronous dynamic adjusting algorithm (SDA)
for multi-card collision resolution in RF-UCard systems.
SDA employs a two-sided synchronous adjusting scheme
that can synchronize to adjust the frame size in the reader
side and the response probability in the card sides. We
focus our attention on adjusting the frame size and the
card response probability by exploiting information
obtained from the last read cycle. The estimated card
quantity and the new arriving cards in the current read
cycle are both taken into consideration to adjust the
frame size for the next read cycle. The card response
probability changes according to the request commands
sent from the reader. These adjusting schemes reduce the
collisions and as a result can facilitate card identification
with shorter delay and better efficiency. Simulation
results show that SDA suppresses the occurrence of
collisions and shortens the total read time and delay time
while preserving better identification efficiency.

The rest of the paper is organized as follows. Section 2
reviews existing ALOHA based anti-collision algorithms
and Section 3 reviews some mathematical tools used for
the SDA design. Section 4 gives a detail description to
the synchronous dynamic adjusting scheme and the
procedure of multi-card collision resolution using SDA.
The extensive simulations are conducted in Section 5 to
show the performance of SDA versus different
parameters, and to further compare SDA with two
ALOHA based algorithms. Finally, the conclusions of
our analysis are presented in Section 6.

2. ALOHA Based Anti-Collision Algorithms

ALOHA based anti-collision algorithms reduce the
occurrence probability of tag collisions since tags
transmit at the distinct time. In pure ALOHA, tags
randomly select their transmission time and, in slotted
ALOHA, tags is limited to transmit only at the beginning

1The valid card is the card that the reader’s COS has been proper
loaded onto it.

10 J. C. CAO ET AL.

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

of a time slot with a certain time period. In framed
ALOHA, the reader sends the frame size and a tag
randomly selects a slot number in the frame for the data
transmission. Static framed ALOHA uses a fixed frame
size and does not change the size during the tag
identification process. On the other hand, dynamic
framed ALOHA improves the identification efficiency
by dynamically changing the frame size according to the
amount of tag responses in the previous read cycle. We
here give detailed descriptions about two typical
ALOHA based anti-collision algorithms applied in RFID
systems.

2.1. Dynamic Framed Slotted ALOHA Algorithm

The dynamic framed slotted ALOHA (DFSA) has been
studied extensively and shows the best performance of
ALOHA based algorithms. In DFSA, the reader always
broadcasts a request command at the beginning of a
frame to the tags within the read field, and then waits a
certain amount of time slots for tag responses. Tags
randomly select a time slot in the frame to send back
their IDs. Within a read cycle, the reader can collect the
information about the number of the empty slots, the
slots occupied by one tag, and the slots occupied by more
than one tag. The slot that occupied by one tag means a
tag has been successful identified, and the slot that
occupied by more than one tag means a collision occurs.
One more read cycles needed if collisions occur. For
each read cycle, the reader dynamically adjusts the frame
size according to the amount of tag responses in the
previous cycle. The analysis of DFSA algorithms mainly
pays attentions to two primary issues [14]. The first one
is how to estimate the tag quantity within the read field
according to the responses in the past. The other one is
how to determine an optimal frame size for the next read
cycle to achieve maximum efficiency. Recently, many
researchers focus on these key issues to improve the
overall performance of DFSA. As a result, some valuable
methods to estimate the tag quantity and to adjust the
frame size are proposed [13-17]. Results revealed that
the efficiency of DFSA is very dependent on the initial
frame size and the maximum efficiency occurs when the
frame size equals the number of tags.

2.2. Bi-directional Binary Exponential Index

Algorithm

The Bi-directional Binary Exponential Index (BBEI)
algorithm [18] is originally inspired from the binary
exponential backoff algorithm, which is commonly used
to schedule retransmissions after collisions in Ethernet
networks [19]. BBEI is based on a slotted ALOHA.
Unlike DFSA, it assumes that all tags within the read
field respond with a certain probability(0 1)p p< ≤ 2.

The reader broadcasts one of three request commands
(e.g. EMPTY, SUCCESS, and FAIL) at the beginning of
each time slot according to the response results in the
previous slot (if the slot is idle, the command is EMPTY;
if the slot is occupied by one tag, the command is
SUCCESS; and if the slot is occupied by more than one
tag, the command is FAIL). While a tag receives the
request command, it first adjusts its response probability
according to the command type and then sends back its
response with the newly probability. The available
values for the response probability are the inverses of the
binary exponential values, such as {1,1/2,1/4,1/8,1/16,
1/32,1/64,1/128,1/256,1/512,1/1024}. If the received
command is EMPTY, the tags multiply its probability by
two; if the command is FAIL, the tags divide its
probability by two; others, the probability keeps no
change.

3. Mathematical Basis

This section reviews some mathematical tools we will
use in subsequent sections. The read time is divided into
discrete intervals (slots) with fixed length. The duration
of a slot is sufficient for a card to send back its response.
The number of time slots that the reader needs to wait
after broadcasting a request command to cards is called
“frame size” and will be denoted by N. The number of
cards is usually denoted by n.

3.1. Poisson Process

The Poisson process is a continuous-time counting
process which is memoryless and orderly. It applies to
many cases where a certain event occurs at different
points in time. Consider the card arrivals in a real-world
RF-UCard system also occur at different points in time,
and are often independent of each other. Thus it is
reasonable to assume that the sequence of card arrivals in
an RF-UCard system is a Poisson process with the arrival
rate λ. Let ti be the ith arrival time and 1i i iτ t t −= − be

the ith interarrival time. Owing to the properties of the
Poisson process, { }1≥i,τ i is a sequence of independent

exponentially distributed random variables with the same
distribution () 1 , 0λtF t e t−= − ≥ and the probability

density function (pdf) () , 0λtf t λe t−= ≥ . As a result, the

mean interarrival time can be given by
1

()E τ
λ

= (1)

Let { (), 0}n t t ≥ be the number of cards that arrived
within the interval (0,)t , the probability distribution of
n(t) depends only on the length of the interval, and can
be expressed as

()
{(() ()) } { () } , 0

!

k λt
λt e

P N t s N s k P N t k t
k

−

+ − = = = = ≥

(2)
2Each tag has an initial response probability when it enters the reader’s
read field.

SYNCHRONOUS DYNAMIC ADJUSTING: AN ANTI-COLLISION ALGORITHM FOR AN RF-UCARD SYSTEM 11

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

Furthermore, we can obtain the expected number of
card arrivals within a given interval based on the
probability distribution of n(t), that is

0 0

()
(()) { () }

!

k λt

k k

λt e
E N t k P N t k k λt

k

−∞ ∞

= =
= ⋅ = = ⋅ =∑ ∑ (3)

3.2. Occupancy Problem

The allocation of cards to time slots within a frame is
equivalent to the well known occupancy problem [20]
that deals with the random allocation of balls to a
number of bins where one is, e.g., interested in the
number of filled bins. In the following, we will substitute
“balls” and “bins” with “cards” and “slots”.

Given N slots and n cards, the number k of cards in one

slot is binomially distributed with parameters n and
1

N
:

1
,

1 1
() () (1)k n k

n
N

n
B k

k N N
−

= −

 (4)

The number k of cards in a particular slot is called the
occupancy number of the slot. The distribution (4) can
apply to all N slots, thus the expected value of the number
of slots with occupancy number k is given by ,N n

ka

,
1

,

1 1
() () (1)N n k n k

k
n

N

n
a NB k N

k N N
−

= = −

 (5)

This is a crucial equation because we will use it to
estimate the card quantity in SDA and DFSA.

4. Synchronous Dynamic Adjusting Algorithm

The DFSA algorithm only changes the frame size
according to the estimated tag quantity to improve the
tag identification efficiency. However, as the number of
tags becomes much larger than the frame size, the
occurrence of tag collisions increases rapidly. This is
mainly due to the fact that all tags within the read field
send back their responses with the probability 1. On the
other hand, the BBEI algorithm merely resorts to
changing the tag response probability to reduce collisions.
Unfortunately, due to its single-slot property, the total
identification time will increases sharply as the number
of tags increases. SDA is developed by integrating the
ideas involved in DFSA and BBEI that adjusts the frame
size and the response probability synchronously. This
combinatory scheme will improve the system efficiency
by reducing the card collisions. In this section, we give a
detail description to the employed adjusting schemes and
the procedure of collision resolution using SDA.

4.1. Programming Interface

The programming interface of SDA is both provided by
the reader and the RF-UCards. It comprises some
communication commands, functions, and local variables,
described below.

• Req-COS(CID, N, fT): the command is sent by the
reader at the beginning of a frame to initiate the
communication with cards within the read field. Three
parameters are included that CID, N, and fT , denote
the unique identifier of the reader’s COS, the current
frame size, and the traffic intensity of the system in
the current read cycle, respectively.

• Req-app (UID, AID): the command is sent by the
reader to the identified card to execute the specific
application. The parameters, UID and AID, denote the
card’s identifier and the unique identifier of the
application respectively.

• Res(UID): the command is sent by a valid card to the
reader with its unique identifier (UID).

• Valid-check(CID): the function is performed by each
card in the read field to validate itself to the reader
with reader’s CID.

• Slot-select (N): the function is performed by a card to
random select a slot from N slots in the frame.

• < c0, c1, cx >: a triple of numbers that quantify the
slots in different states. For a given slot, there are only
three possible states: empty (occupied by no card),
success (occupied by one card), and collision
(occupied by more than one card). c0, c1 and cx denote
the number of empty slots, success slots, and collision
slots in a frame respectively.

• SUID: a set of card UIDs that have just been identified
in the current frame. The set is held temporarily by
the reader to send the Req-app (UID, AID) command.

• ResProValues[]: an array over which a card response
probability p can range (0＜p≤1). Let k be the index
of ResProValues so that p= ResProValues[k].

• fT : a flag representing the traffic intensity of the
system in a read cycle: loose (fT =−1), moderate (fT
=0), and crowded (fT =1).

• fC: a flag representing one of three possible states a
card may be in during a read cycle: invalid (fC =−1),
sleep (fC =0), and active (fC =1).

4.2. Estimation of Card Quantity

A read process of an RF-UCard system consists of
multiple continuous read cycles. A read cycle starts at
the time that the reader broadcasts a request command,
and ends up when the last identified card in the current
frame has been processed. The length of a cycle is equal
to the current frame size plus the processing times. In
order to pick the appropriate frame size N for the (a
priori unknown) number of cards n in the read field, we
have to estimate n in each read cycle. The estimation of
card quantity is a key issue involved in dynamic framed
ALOHA algorithms. In SDA, we employ the estimation
scheme that studied extensively in most literatures and
originally proposed by H. Vogt [13]. The estimation
proceeds as following steps.

Step1: Based on the mathematical basis discussed
previously (recall (4) and (5)), we can compute the

12 J. C. CAO ET AL.

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

expected value ＜c0, c1, cx＞ with already known N and
n. In a read cycle with the frame size N, the expected
number of empty slots (with occupancy number 0) can be
obtained by

,
0 1

,

1
(0) (1)N n n

n
N

a NB N
N

= = − (6)

Also, the expected number of success slots (with
occupancy number 1) can be obtained by

, 1 1
1 1

,

1 1 1
(1) ()(1) (1)

1
N n n n

n
N

n
a NB N n

N N N
− −

= = − = −

 (7)

Thus, the expected number of collision slots (with
occupancy number >1) is , ,

0 1
N n N nN a a− − . Figure 2 shows

a function definition in Java to obtain the expected value
of <c0, c1, cx> and Table 1 shows some useful expected
values that derived from the function getSlotCount with
given certain N and n. For an extensive experiment, we
will compute more expected values of < c0, c1, cx > by
more possible N and n. Then make an expected value
table similar to Table 1.

Figure 2. The function to compute the expected values of
< c0, c1, cx >.

Step2: In each read cycle, the reader will get a read

value of <c0, c1, cx>. The Chebyshev’s inequality tells us
that the outcome of a random experiment involving a
random variable X is most likely somewhere near the
expected value of X. Thus we use the distance between
the read value and the expected value of <c0, c1, cx> to
estimate the number of cards n for which the distance
becomes minimal. The estimation function denoted by

vdε is defined as

,
0

,
1

,
2

0

(, 0, 1,) min 1

N n

N n
vd

n
N n

a c

ε N c c cx a c

cxa≥

 = −

 (8)

Because the current frame size N is always known, after
getting a read value of <c0, c1, cx>, we can compare the
read value with the expected value table. According to
(8), we can obtain the estimated card quantity n finally.

4.3. Adjusting the Frame Size

The variation of the frame size takes large impacts on the
performance of dynamic framed ALOHA algorithms [14,
17]. Results revealed that the maximum performance
occurs when the frame size equals the number of tags.
However, this result is not suitable again to the collision

resolution in an RF-UCard system. Recall that the card
arrivals are a Poisson process, the card quantity within the
read field is dynamically changed. The estimation scheme
proposed in Section 4.2 just reflects the card quantity
within the read field at the beginning of a read cycle while
not including the new cards arrived in the current read
cycle. Thus in SDA, we will employ a novel adjusting
scheme in terms of the estimated card quantity and the new
arriving cards to choose an optimal frame size for the next
read cycle. Based on the card quantity estimation scheme
and (3), the new frame size N* can be obtained by

*
1()N n c p λN= − + ⋅ (9)

where c1 and p denote the number of identified cards in
the current cycle and the initial response probability of
cards respectively. Again, λN denotes the expected
number of arriving cards in the current cycle (see(3)),
and then p λN⋅ denotes the new arriving cards that

really respond in the next cycle. In other words, (9)
shows the idea that letting the new frame size N* to be the
number of the cards that will respond in the next cycle.

4.4. Adjusting the Response Probability

In BBEI, the tag response probability is changed within a
range of the inverses of the binary exponential values. As
we all know that a variable with an exponential
increment shows the sharp deviations, especially when
the variable becomes very large. Thus we limits the card
response probability in SDA to be within a range of
values with the linear increment, that is ResProValues
={1.0,7.0/8, 6.0/8,5.0/8,4.0/8,3.0/8,2.0/8,1.0/8}. We also
assume that all cards have the same initial response
probability p= ResProValues [k], e.g. if k =4, p=0.5, and
this initial value is also held by the reader.

The adjusting scheme for the card response
probability in SDA is based on the previous read results
(i.e. the traffic intensity fT of the system in the previous
read cycle) and can be defined as a Java function shown in
Figure 3.

Figure 3. The function to compute the card response probability.

4.5. Procedure of SDA Algorithm

double getResPro(int k, int fT)
{
 if(fT ==-1)
 k--;
 else if(fT ==1)
 k++;
 if(k < 0)
 k = 0;
 else if(k >= ResProValues.length)
 k = ResProValues.length - 1;
 return ResProValues[k];
}

void getSlotCount(int N, int n, double c0, double c1,
double cx)
{
 c0= N * Math.pow((1-(1.0/N)), n);
 c1 = n * Math.pow((1-(1.0/N)), (n-1));
 cx = N - c0 - c1;
}

SYNCHRONOUS DYNAMIC ADJUSTING: AN ANTI-COLLISION ALGORITHM FOR AN RF-UCARD SYSTEM 13

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

Table 1. Some typical expected values of <c0, c1, cx> by given certain N and n.

5 cards 10 cards 15 cards
Frame size

c0 c1 cx c0 c1 cx c0 c1 cx

6 2.4113 2.4113 1.1774 0.969 1.9381 3.0929 0.3894 1.1683 4.4423

7 3.2387 2.6989 1.0624 1.4984 2.4973 3.0043 0.6933 1.7332 4.5735

8 4.1033 2.9309 0.9658 2.1046 3.0066 2.8888 1.0795 2.3132 4.6073

9 4.9944 3.1215 0.8841 2.7715 3.4644 2.7641 1.538 2.8837 4.5783

10 5.9049 3.2805 0.8146 3.4868 3.8742 2.639 2.0589 3.4315 4.5096

20 cards 25 cards 30 cards
Frame size

c0 c1 cx c0 c1 cx c0 c1 cx

6 0.1565 0.626 5.2175 0.0629 0.3145 5.6226 0.0253 0.1517 5.823

7 0.3207 1.0692 5.6101 0.1484 0.6183 6.2333 0.0687 0.3433 6.588

8 0.5537 1.5819 5.8644 0.284 1.0142 6.7018 0.1457 0.6242 7.2301

9 0.8535 2.1337 6.0128 0.4736 1.4801 7.0463 0.2628 0.9856 7.7516

10 1.2158 2.7017 6.0825 0.7179 1.9942 7.2879 0.4239 1.413 8.1631

A read cycle in SDA proceeds as following five steps.

Step1: The reader initiates a read cycle by
broadcasting Req-COS(CID, N, fT) to all cards within the
reader’s read field. Because a read process begins with
the reader broadcasts the first request command (the time
is denoted by 0), no card has arrived at that time and the
first read cycle is always wasted. Thus it is reasonable to
set the initial frame size to 1 in SDA. Moreover, the
initial value of fT is often set to 0.

Step2: After receiving Req-COS (CID, N, fT), all cards
within the read field perform Valid-check (CID) to
validate itself to the reader with the reader CID derived
from Req-COS (CID, N, fT). If a card is invalid, it will set
itself to the state invalid (fC =−1) and then exits the
following cycles permanently. Otherwise the cycle
proceeds to the next step.

Step3: The valid cards first perform Slot-select (N) to
generate a random number s uniformly distributed within
the range from 0 to N-1. Then all valid cards adjust their
response probability p by performing getResPro (k, fT)
based on the value of fT received from the reader. Finally,
the cards send back Res (UID) at the sth slot with the
newly probability p.

Step4: The reader checks the slot states in the current
frame in sequence. If a slot is successful, a card is
identified and its UID is appended to SUID for the later
processes. After state checking, the reader can observe c0
empty slots, c1 successful slots, and cx collision slots,

where c0+c1+cx = N.
Step5: The reader sequential takes the UID from SUID

as a parameter to send Req-app (UID, AID) to execute the
specific application with the identified card. This step is
also called the card processing step. After finishing the
process, the card sets itself to the state sleep (fC = 0) so
that it cannot respond in the following cycles. The read
cycle ends up with the finish of processing of all
identified cards.

After finishing a read cycle, SDA will perform a
synchronous adjusting scheme to optimize the frame size
and the card response probability for the next read cycle.
The adjusting proceeds as following two steps.

Step1: The reader first performs the card quantity
estimation proposed in Section 4.2 to obtain an estimated
card number n. Then, the adjusting scheme proposed in
Section 4.3 is performed to choose an optimal frame size
for the next read cycle.

Step2: The reader also adjusts the traffic intensity flag
fT according to the relationship between c0 and cx. Note
that a collision slot means it is occupied by at least two
cards, thus we develop an adjusting scheme for fT as: if c0
> 2⋅ cx, then fT =−1; if c0<2⋅ cx, then fT = 1; else fT =0. This
step aims to refresh the value fT to inform the card to
change its response probability in the next cycle.

An example provided in Figure 4 illustrates the read
process of SDA. In this example, we set the card arrival
rate to 2 and the card response probability to 0.5. We

Figure 4. An example of the SDA algorithm.

14 J. C. CAO ET AL.

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

assume that all arriving cards are valid and execute the
same application. Thus the parameters CID and AID can
be omitted in Req-COS() and Req-app() respectively.
There are three time axes: the arrival axis, the transmission
axis, and the processed axis. Each time axis is divided into
equal slots with fixed length. The arrival axis shows the
arrival time of card C1, C2, …, C10 denoted by the
symbol “*”. A sequence of Req-COS(N, fT) and Req-app
(UID) are shown above the transmission axis (note that
all commands are sent at the beginning of a slot), while a
sequence of Res (UID) are shown below the transmission
axis (denoted by the symbol “*”). The successful
processed cards are shown above the processed axis (also
denoted by the symbol “*”). At t = 0, the read process
begins and the reader broadcasts Req-COS(1, 0).
However, no card arrives at this time and the reader
obtains a triple, <1, 0, 0>. According to the adjusting
schemes for the frame size and the response probability
in SDA, the newly parameters N =2, fT =-1 and p =0.625
are derived. The reader initiates the 2nd cycle at t =1 with
Req-COS (2, −1). At this time, C1 and C2 have arrived
and respond in slot 3 and slot 2 respectively. Thus C2
and C1 are identified and then processed in slot 4 and
slot 5 sequentially. Again the reader obtains a triple, <0,
2, 0 > and the newly parameters N =1, fT =0, and p
=0.625 for the 3rd cycle. In the meanwhile of the 2nd
cycle, there are other 7 new arriving cards. The read
process will continue in this way and the read data
derived from the former 5 cycles are shown in Table 2.

5. Simulation and Evaluation

We develop a Java program based on the Eclipse
platform to simulate the process of SDA. Our
simulations are based on the following scenarios.
• All arriving cards are valid, which is the worst case

may be occurred in a real-world RF-UCard system.
• The card arrival follows a Poisson process, and the

arrival rate varies from 0.1 to 0.9 with a step of 0.1
and from 1 to 10 with a step of 1.

• The card quantity is finite that enables the simulation
to be finished normally and the simulated card set
varies from 10 to 200 cards with a step of 10.

• All experiments are simulated 100 times in order to
ensure the convergence of simulation results.

5.1. Performance Measures

To evaluate the performance of SDA and other ALOHA-
based anti-collision algorithms, we mainly consider the
following measures.
• Total read time: this metric is the total time required

to identify and process all the cards inside the reader’s
read field. We measure the time by the timeslot
because each of three mentioned algorithms (SDA,
DFSA and BBEI) has a time period for carrying both
the reader-to-card signals and the card-to-reader

signals.
• Card delay time: this metric is the average number of

timeslots waited by a card in the entire read process. It
also reflects the mean sojourn time of each card in the
system before being processed.

• Identification efficiency: this metric is the mean
number of cards being identified in a timeslot. It
equals to the ratio of the total identified cards to the
sum of the frame size.

• The number of collisions: this metric is the total
number of collision timeslots between the
card-to-reader responses. Collisions increase the read
time and thus lower the identification efficiency.

• The number of empty timeslots: this metric is equals
to the sum of the empty timeslots in each read cycle.
More empty timeslots waste more read time and thus
also lower the identification efficiency.

5.2. Card Arrival Simulation

We first simulate the card arrivals which follow a
Poisson process while varying the arrival rate λ. The
theoretical values of the interarrival times for each λ can
be obtained from (1). We take 100 cards into considerations
to compute the simulated values of the interarrival times. Let

λ
T and

λ
S denote the theoretical value and the simulated

value of the interarrival times respectively. The relative error
between

λ
S and

λ
T denoted by λε can be derived from

() /
λ λ λ λ
ε S T T= − (10)

Table 3 shows the simulated results when λ varying
from 0.2 to 6. The results present that the relative errors
are rather little for all λ values, in other words, the
theoretical values and the simulated values are in good
agreement.

5.3. Performance Evaluation

We then evaluate the impact of the system parameters on
the performance of SDA. Three parameters, i.e. the card
arrival rate, the card initial response probability and the
card quantity, are considered. Although the variation of
each of these three parameters will influence the
performance, we mainly focus on the impact of the single
parameter. Thus we conduct the independent experiments
for each parameter under the different scenarios.

Table 2. The read data derived from the example.

Cycle 1 2 3 4 5

N 1 2 1 3 3

fT 0 -1 0 1 -1

p 0.5 0.625 0.625 0.5 0.625

c0 1 0 0 1 1

c1 0 2 0 2 1

cx 0 0 1 0 1

SUID {} {C2,C1} {} {C3, C5} {C8}

SYNCHRONOUS DYNAMIC ADJUSTING: AN ANTI-COLLISION ALGORITHM FOR AN RF-UCARD SYSTEM 15

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

• For the card arrival rate, we set the card quantity n to
100 and the initial response probability p to 0.5.

• For the card initial response probability, we set the
card quantity n to 100 and the arrival rate λ to 1.

• For the card quantity, we set the arrival rate λ to 1 and
the initial response probability p to 0.5.
Figure 5 shows the simulation results about the

impact of the card arrival rate λ. From Figure 5(a) and
(b), we can see that fewer read timeslots required by
SDA to complete a read process when λ varies within the
range from 0.5 to 2, and the minimal value occurs at
λ=0.5. When λ is less than 0.5, more timeslots required,

Table 3. The mean interarrival times of card arrivals (n =100).

λ λ
T

λ
S λε

0.2 5 5.0436 0.0087
0.4 2.5 2.5052 0.0021
0.6 1.6667 1.6843 0.0106
0.8 1.25 1.2614 0.0091
1 1 0.9878 -0.0122
2 0.5 0.4984 -0.0032
3 0.3333 0.3343 0.003
4 0.25 0.2534 0.0136
5 0.2 0.1974 -0.013
6 0.1667 0.1641 -0.0156

(a) Total read time (λ < 1, p = 0.5, n = 100) (b) Total read time (λ ≥ 1, p = 0.5, n = 100)

(c) Card delay time (λ < 1, p = 0.5, n = 100) (d) Card delay time (λ ≥ 1, p = 0.5, n = 100)

(e) Identification efficiency (λ < 1, p = 0.5, n = 100) (f) Identification efficiency (λ ≥ 1, p = 0.5, n = 100)

Figure 5. Impact of card arrival rate.

16 J. C. CAO ET AL.

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

especially the maximal value occurs at λ=0.1. This is
mainly due to the fact that the smaller arrival rate means
the lager interarrival time and thus increases the number
of empty timeslots in each read cycle. On the other hand,
as λ increases, the read process also becomes longer because
of the larger arrival rate will enlarge the card quantity
rapidly and thus increases card collisions in each read
cycle. Figure (c) and (d) illustrate that the card delay time
gets longer as λ increases. This is due to the fact that the

(a) Total read time (λ = 1, n = 100)

(b) Card delay time (λ = 1, n = 100)

(c) Identification efficiency (λ = 1, n = 100)

Figure 6. Impact of card initial response probability.

larger arrival rate means the earlier arrival time for each
card, while the longer read time further extends the card
delay time. The impact of the arrival rate on identification
efficiency shown in Figure 5(e) and (f) is very similar to
the case of the read time shown in Figure 5(a) and (b).
SDA achieves better identification efficiency when λ
varies within the range from 0.5 to 2, and the maximal
efficiency occurs at λ=0.5. As λ has larger distance from
this range, the lower efficiency occurs. However, the

(a) Total read time (λ = 1, p = 0.5)

(b) Card delay time (λ = 1, p = 0.5)

(c) Identification efficiency (λ = 1, p = 0.5)

Figure 7. Impact of card quantity.

SYNCHRONOUS DYNAMIC ADJUSTING: AN ANTI-COLLISION ALGORITHM FOR AN RF-UCARD SYSTEM 17

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

deviation of the identification efficiency is rather small
for all λ values except 0.1, and the efficiency varies
around 0.26.

Figure 6 shows the simulation results about the impact
of the card initial response probability p. From Figure 6(a)
and (b), we can see that both the total read time and the
card delay time get shorter as p increases, especially the
shortest time occurs at p = 0.875. Also, Figure 6(c)
presents that SDA shows the better identification
efficiency as p increases. The optimal efficiency
achieved when p = 0.875 and is close to 0.35. These
results are due to the fact that the larger response
probability will decrease the number of empty timeslots
rapidly as well as not increase card collisions obviously
in each read cycle when the arrival rate is 1.0.

Figure 7 shows the simulation results about the
impact of the card quantity n. From Figure 7(a) and (b),
we can see that both the read time and the card delay
time increase linearly with n. However, the read time
grows by the larger incremental ratio than the delay time
that the former is more than 4.5 times the card quantity
while the latter is close to 2 times the card quantity. For
example, if there are 100 cards, the required total read

Table 4. The average number of timeslots with varying the

arrival rate (n =100).

Arrival rate Algorithm
Collision
timeslots

Empty
timeslots

Total
timeslots

SDA 41.3 264.1 505.4
DFSA 55.1 228.8 483.9 0.2
BBEI 50.6 211 461.6
SDA 72.7 111.5 384.2

DFSA 75.5 117.2 392.7 0.4
BBEI 81.9 108.2 390.1
SDA 71.8 123.8 395.6

DFSA 78.4 129.7 408.1 0.6
BBEI 97.8 102.7 400.5
SDA 66 103.8 369.8

DFSA 77.3 129.1 406.4 0.8
BBEI 92.2 102.5 394.7
SDA 71.5 120.9 392.4

DFSA 75.8 141 416.8 1
BBEI 98.7 105.5 404.2
SDA 69.1 126 395.1

DFSA 74.2 147.6 421.8 2
BBEI 97.7 107.8 405.5
SDA 65.2 147.2 412.4

DFSA 76.2 150.5 426.7 3
BBEI 98 118.4 416.4
SDA 69.6 125.4 395

DFSA 78.2 151.1 429.3 4
BBEI 98.1 109.8 407.9
SDA 68.3 131.4 399.7

DFSA 78.4 145.5 423.9 5
BBEI 99.7 101.4 401.1
SDA 70 155.4 425.4

DFSA 76.9 165.4 442.3 6
BBEI 89.4 144.8 434.2

time and card delay time are about 450 and 200 timeslots
respectively.

5.4. Performance Comparisons

In order to compare the performance of SDA to DFSA
and BBEI, we further develop Java programs to simulate
DFSA and BBEI in an RF-UCard system. For DFSA, we
use the estimation function vdε which defined in (8) to
estimate the card quantity in the current read cycle. In
addition, we set the frame size to be the estimated card
quantity to obtain an optimal frame size for the next read
cycle. For each algorithm, we set the card quantity to 100
while varying the card arrival rate, whereas we set the
arrival rate to 1 while varying the card quantity. In order
to carry out an extensive comparison, we take the
optimal performance achieved by three algorithms into
comparisons under a given simulation scenario.

Table 4 and Figure 8 depict the simulation results
while varying the card arrival rate. From Table 4, we
find that for each algorithm, collision timeslots are
always less than empty timeslots in a read process.
However, SDA generates the minimal collision timeslots

Table 5. The average number of timeslots with varying the

card quantity (λ =1).

Card
quantity Algorithm Collision

timeslots
Empty

timeslots
Total

timeslots
SDA 13.7 25.5 79.2

DFSA 12.9 31.4 84.3 20
BBEI 15.3 18.8 74.1
SDA 26.2 53.3 159.5

DFSA 30 58 168 40
BBEI 37.7 37.6 155.3
SDA 42.6 76.4 239

DFSA 46.5 80.8 247.3 60
BBEI 55.5 63.5 239
SDA 55 97.1 312.1

DFSA 59.3 111 330.3 80
BBEI 72 92.2 324.2
SDA 71.5 120.9 392.4

DFSA 75.8 141 416.8 100
BBEI 98.7 105.5 404.2
SDA 92 142.7 474.7

DFSA 102 170.8 512.8 120
BBEI 124.9 127.2 492.1
SDA 107.3 169 556.3

DFSA 112.5 182.8 575.3 140
BBEI 129 153.7 562.7
SDA 123.4 213.2 656.6

DFSA 126.9 219.7 666.6 160
BBEI 169.7 173 662.7
SDA 130.4 219.6 710

DFSA 145.3 229 734.3 180
BBEI 165.4 187 712.4
SDA 148.7 229.7 778.4

DFSA 159.3 263.2 822.5 200
BBEI 198.5 213 811.5

18 J. C. CAO ET AL.

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

in all algorithms because of the synchronous dynamic
adjusting scheme we employed for both the frame size
and the card response probability. Due to the frame
size is always set to 1 during the entire read process,
BBEI generates the maximal collision timeslots as
well as the minimal empty timeslots in all algorithms.
SDA generates fewer empty timeslots than DFSA
since the new arriving cards in each read cycle are

taken into consideration to compute the new frame size.
As a result, SDA requires fewer total timeslots than DFSA
and BBEI to complete a read process, Figure 8(a) and (b)
illustrate that the card delay time of SDA is the shortest
of all algorithms, and the gap of delay time between
SDA and other algorithms is much larger when the
arrival rate is greater than 1. Figure 8(c) and (d)
illustrate that the identification efficiency of SDA is

(a) Card delay time (λ < 1, n = 100) (b) Card delay time (λ ≥ 1, n = 100)

(c) Identification efficiency (λ < 1, n = 100) (d) Identification efficiency (λ ≥ 1, n = 100)

Figure 8. Performance comparison with varying the card arrival rate.

(a) Card delay time (b) Identification efficiency

Figure 9. Performance comparison with varying the card quantity.

SYNCHRONOUS DYNAMIC ADJUSTING: AN ANTI-COLLISION ALGORITHM FOR AN RF-UCARD SYSTEM 19

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

the best of all algorithms at high arrival rate, while it is
worse than DFSA and BBEI at arrival rate less than 0.3
because of more empty timeslots produced by larger
interarrival time. Note that BBEI shows shorter delay
time and better identification efficiency than DFSA at
most simulation scenarios. These results show a good
agreement with the results shown in Table 4 because
fewer total timeslots mean better identification efficiency.

Table 5 and Figure 9 show the simulation results
obtained by varying the card quantity. As the card
quantity increases, the total read time and the card delay
time get longer and the number of collision timeslots and
empty timeslots gets larger for each algorithm. The
results shown in Table 5 are very similar to the results
shown in Table 4. SDA generates the minimal collision
timeslots when the card quantity is greater than 40.
Again, BBEI generates the maximal collision timeslots
as well as the minimal empty timeslots. The total
timeslots required by SDA is fewer than DFSA and
BBEI when the card quantity is greater than 60. By
restraining the occurrence of collisions, SDA has shorter
delay time than DFSA and the gap gets larger as the card
quantity increases. However, the delay time of BBEI is
very close to the time of SDA because it generates fewer
empty timeslots. All of algorithms show very similar
identification efficiency when there are larger cards in
the read field. SDA shows a little better efficiency than
others when the card quantity is greater than 60. The
values vary around 0.35, which is very close to 0.368,
the maximal identification efficiency of the framed
ALOHA applied in RFID systems.

6. Conclusions

Multi-card collision is a major factor in influencing the
efficiency of an RF-UCard system. In this paper, a novel
and enhanced multi-card anti-collision algorithm has
been proposed and evaluated. Unlike DFSA and BBEI
that they merely adjust the frame size or the tag response
probability, the proposed SDA algorithm employs a
synchronous dynamic adjusting scheme that dynamically
adjusts the frame size in the reader and the response
probability in cards to maximize the efficiency of card
identification and processing. For the reader, the
estimated card quantity and the new arriving cards in the
current read cycle are both taken into consideration to
adjust the frame size for the next read cycle. For a card,
it increases or decreases its response probability
according to the request commands sent from the reader.
This scheme improves the card identification efficiency
by reducing both the collision timeslots and the empty
timeslots.

The simulation results indicate that the performance
of SDA is seriously affected by the variations of the card
arrival rate, the card initial response probability and the
card quantity. SDA requires shorter read time and
achieves better identification efficiency when the arrival
rate varies within the range from 0.5 to 2. The card delay

time gets longer as the arrival rate increases while gets
shorter as the card initial response probability increases.
Moreover, both the read time and the card delay time
increase linearly with the card quantity. A simulation
based comparison shows that SDA requires shorter read
time and card delay time and achieves better
identification efficiency than DFSA and BBEI by
significantly reducing the collision timeslots and the
empty timeslots. The optimal identification efficiency of
SDA varies around 0.35, which is very close to 0.368,
the maximal identification efficiency of the framed
ALOHA applied in RFID systems.

7. References

[1] K. Finkenzeller, “RFID handbook,” 2nd edition, John

Wiley and Sons, 2003.

[2] W. Rankl and W. Effing, “Smart card handbook,” 3rd
edition, John Willey and Sons, 2004.

[3] L. Shu, J. C. Cao, and Z. D. Lu, “CIM: Hardware support
for Multi-COS isolation of RF-UCard,” in Proceedings
2008 International Conference on Embedded Software and
Systems, pp. 595-602, July 2008.

[4] D. R. Hush and C. Wood, “Analysis of tree algorithm for
RFID arbitration,” in Proceedings IEEE International
Symposium on Information Theory, pp. 107, 1998.

[5] ISO/IEC 18000-6: Information technology-Radio frequency
identification for item management, Part 6, Parameters for
air interface communications at 860 MHz to 960 MHz,
2004/Amd 1: 2006.

[6] J. Myung and W. Lee, “Adaptive binary splitting: A RFID
tag collision arbitration protocol for tag identification,”
Mobile Networks and Applications, Vol. 11, No. 5, pp.
711-722, May 2006.

[7] C. Law, K. Lee, and K. S. Siu, “Efficient memoryless
protocol for tag identification,” in Proceedings 4th ACM
International workshop on discrete algorithms and
methods for mobile computing and communications,
pp.75-84, August 2000.

[8] J. Myung and W. Lee, “Adaptive splitting protocols for
RFID tag collision arbitration,” in Proceedings 7th ACM
international symposium on Mobile ad hoc networking
and computing, pp. 202-213, 2006.

[9] N. Abramson, “Development of the ALOHANET,” IEEE
Transactions on Information Theory, Vol. IT-31, pp.
119-123, March 1985.

[10] L. G. Roberts, “ALOHA packet system with and without
slots and capture,” ARPA Network Information Center,
Stanford Institute, Menlo Park California, ASS Note 8
(NIC 11290), June 1972.

[11] F. C. Schoute, “Control of ALOHA signalling in a mobile
radio trunking system,” in Proceedings International
Conference on Radio Spectrum Conservation Techniques,
pp. 38-42, 1980.

[12] F. C. Schoute, “Dynamic frame length ALOHA,” IEEE
Transactions on Communications, Vol. 31, No. 4, pp.
565-568, April 1983.

[13] H. Vogt, “Efficient object identification with passive

20 J. C. CAO ET AL.

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

RFID tags,” in Proceedings International Conference on
Pervasive Computing, Springer-Verlag, Vol. 2414, pp.
98-113, 2002.

[14] W. T. Chen and G. H. Lin, “An efficient anti-collision
method for tag identification in a RFID system,” IEICE
Transaction on Communications, Vol. E89-B, No.12, pp.
3386-3392, December 2006.

[15] J. Zhai and G. N. Wang, “An anti-collision algorithm
using two-functioned estimation for RFID tags,” in
Proceedings International Conference Computational
Science and its Applications, Vol. 3843, pp. 702-711,
May 2005.

[16] S. R. Lee, S. D. Joo, and C. W. Lee, “An enhanced
dynamic framed slotted ALOHA algorithm for RFID tag
identification,” in Proceedings 2nd Annual International

Conference on Mobile and Ubiquitous Systems:
Networking and Services, pp. 166-172, July 2005.

[17] B. Zhen, M. Kobayashi, and M. Shimizu, “Framed
ALOHA for multiple RFID objects identification,” IEICE
Transaction on Communications, Vol. E88-B, No. 3, pp.
991-999, March 2005.

[18] S. S. Yu, Y. Zhan, and Y. H. Wang, “RFID anti-collision
algorithm based on bi-directional binary exponential
index,” in Proceedings the IEEE International Conference
on Automation and Logistics, Jinan, China, pp.
2917–2921, August 2007.

[19] S. A. Tanenbaum, “Computer Networks,” 4th edition,
Prentice Hall PTR, 2002.

[20] R. Motwani and P. Raghavan, “Randomized algorithms,”
Cambridge University Press, 1995.

