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Abstract 
 
An RF-UCard system is a contactless smartcard system with multiple chip operating systems and multiple 
applications. A multi-card collision occurs when more than one card within the reader’s read field and thus 
lowers the efficiency of the system. This paper presents a novel and enhanced algorithm to solve the 
multi-card collision problems in an RF-UCard system. The algorithm was originally inspired from framed 
ALOHA-based anti-collision algorithms applied in RFID systems. To maximize the system efficiency, a 
synchronous dynamic adjusting (SDA) scheme that adjusts both the frame size in the reader and the response 
probability in cards is developed and evaluated. Based on some mathematical results derived from the 
Poisson process and the occupancy problem, the algorithm takes the estimated card quantity and the new 
arriving cards in the current read cycle into consideration to adjust the frame size for the next read cycle. 
Also it changes the card response probability according to the request commands sent from the reader. 
Simulation results show that SDA outperforms other ALOHA-based anti-collision algorithms applied in 
RFID systems. 
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1.  Introduction 
 
Identification is a central concept in user-oriented and 
ubiquitous computing. Radio Frequency Identification 
(RFID) is one of the key technologies for identifying 
physical objects permits remote, non-line-of-sight, and 
automatic reading. There is a wide variety of RFID 
products and applications available; the book [1] 
provides a good overview. A contactless smartcard 
promises to be a typical instance of the RFID 
technology, e.g. close-coupling cards (ISO/IEC 10536), 
proximity cards (ISO/IEC 14443), and vicinity cards 
(ISO/IEC 15693) [2]. Contactless smartcards often show 
more powerful processing ability and sufficient storage 
capacity than RFID tags, which benefits from the card 
architecture with a microcontroller unit and writeable 
memories. A Radio Frequency Universal Smart Card 
(RF-UCard) is a novel contactless smartcard platform 
with multiple chip operating systems (COS) and 
multiple applications environment [3]. Multiple COSes 
from different vendors can coexist on a single card, and 
additional COSes can be loaded after card issuing. In 
addition, multiple applications can be hosted by a single 
COS, and the application can be dynamic downloaded 
onto or unloaded from the card. 

An RF-UCard system is often composed of three 
main components as shown in Figure 1. 
• One or more RF-UCards, held by the users to identify. 

RF-UCards consist of three layers, the application, the 
operating system and the physical layers. The 
application and the operating system layers host 
multiple applications and COSes respectively. The 
physical layer includes a microcontroller unit, 
memories and the coiled antenna. RF-UCards could 
be either active or passive. Active cards are partly or 
fully battery powered, have the capability to 
communicate with other cards, and can initiate a 
request to the reader. Passive cards, on the other hand, 
do not have any internal power source but are 
powered up by the reader. 

• One or more readers, made up of a control unit and an 
RF module. Its main functions are to activate the cards, 
initiate the communication with the cards, collect the 
card responses, and transfer data between the back-end 
server and a card. The reader is usually equipped with 
a single COS, and could be either mono-functional or 
multi- functional. The mono-functional reader merely 
supports the single application, and no the third party 
is involved in the communication. The multi-functional 
reader contains several independent applications, but 
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only one application can be activated by the user at the 
beginning of the communication. 

• A back-end server, which contains various information 
about RF-UCards and applications. 
The reader and RF-UCards communicate over a 

shared wireless channel. A read process is initiated by 
the reader that uses radio to broadcast periodically a 
request command to the RF-UCards. Each valid card1 

within the reader’s read field sends its ID to the reader 
while it receives a request. If only one card responds, the 
reader can successful receive the card’s ID. When more 
than one card responds simultaneously, messages from 
cards will collide and cancel each other out at the reader. 
This problem is referred to as the “multi-card collision”, 
which is very similar to the “multi-tag collision” in RFID 
systems. Collisions can defer the transmission delay and 
lower the identification efficiency and cards often lose 
their usefulness. Hence, an anti-collision algorithm needs 
to be devised between the reader and the cards to 
minimize collisions. 

The well known algorithms devised to resolve the 
multi-tag collision problem in RFID systems can be 
grouped into two broad types, namely deterministic 
algorithms and stochastic algorithms [1]. Deterministic 
algorithms resolve collisions by splitting a set of 
colliding tags into two subsets and attempt to recognize 
the subsets one by one. The typical instances of 
deterministic algorithms are the binary tree algorithm 
[4-6] and the query tree algorithm [7,8]. Stochastic 
algorithms are usually based on an ALOHA-like protocol 
in which the tags send their data at a random time period. 
The ALOHA-based algorithms include pure ALOHA [9], 
slotted ALOHA [10], static framed ALOHA [11], and 
dynamic framed ALOHA [12,13]. 

An RF-UCard system is much different from an RFID 
system in identification though they both communicate 
over a radio channel. In an RFID system, all tags within 
the read field will send back their responses. However, 
due to the fact that cards are in general equipped with 
multiple COSes and applications, whereas the reader 
always hosts the single COS, only the valid cards will 
send back their responses in an RF-UCard system. All 
cards will perform a validity check after receiving a 
request command. In addition, tags and cads are 
somewhat different in the arrival mode. Tags are usually 
attached to the objects and arrive at the read field in a 
batch mode (e.g. in a supply chain), whereas cards are 
often held by users and arrive in a single mode. Furthermore, 

 

 
 

Figure 1. RF-UCard system architecture. 

most ALOHA-based algorithms applied in RFID systems 
assume the scenario for tag identification is static, i.e. a 
set of tags enter the read field and stay there until all tags 
are identified. No new tag arrives during the 
identification process. Unfortunately, this scenario is not 
suitable for RF-UCard systems that the card quantity is 
dynamic changed since the card arrival occurs randomly. 
Finally, anti-collision algorithms applied in RFID 
systems mainly focus on the tag identification but does 
not care what further to do after the tags have been 
identified. However, in an RF-UCard system, the 
anti-collision algorithm needs not only to identify cards, 
but to process cards. Thus the read time in an RF-UCard 
system can be divided into two parts: the identification 
time (i.e. the time needs to identify a card) and the 
processing time (i.e. the time needs to execute a specific 
application). Hence, in order to apply the idea involved 
in ALOHA based algorithms to RF-UCard multiple 
accesses, the algorithms need to be revised according to 
the characteristics of an RF-UCard system. 

We propose a combinatory anti-collision algorithm, 
called synchronous dynamic adjusting algorithm (SDA) 
for multi-card collision resolution in RF-UCard systems. 
SDA employs a two-sided synchronous adjusting scheme 
that can synchronize to adjust the frame size in the reader 
side and the response probability in the card sides. We 
focus our attention on adjusting the frame size and the 
card response probability by exploiting information 
obtained from the last read cycle. The estimated card 
quantity and the new arriving cards in the current read 
cycle are both taken into consideration to adjust the 
frame size for the next read cycle. The card response 
probability changes according to the request commands 
sent from the reader. These adjusting schemes reduce the 
collisions and as a result can facilitate card identification 
with shorter delay and better efficiency. Simulation 
results show that SDA suppresses the occurrence of 
collisions and shortens the total read time and delay time 
while preserving better identification efficiency. 

The rest of the paper is organized as follows. Section 2 
reviews existing ALOHA based anti-collision algorithms 
and Section 3 reviews some mathematical tools used for 
the SDA design. Section 4 gives a detail description to 
the synchronous dynamic adjusting scheme and the 
procedure of multi-card collision resolution using SDA. 
The extensive simulations are conducted in Section 5 to 
show the performance of SDA versus different 
parameters, and to further compare SDA with two 
ALOHA based algorithms. Finally, the conclusions of 
our analysis are presented in Section 6. 
 
2.  ALOHA Based Anti-Collision Algorithms 
 
ALOHA based anti-collision algorithms reduce the 
occurrence probability of tag collisions since tags 
transmit at the distinct time. In pure ALOHA, tags 
randomly select their transmission time and, in slotted 
ALOHA, tags is limited to transmit only at the beginning 

1The valid card is the card that the reader’s COS has been proper 
loaded onto it. 



10                                      J. C. CAO  ET  AL. 
 

Copyright © 2009 SciRes.                                I. J. Communications, Network and System Sciences, 2009, 1, 1-89 

of a time slot with a certain time period. In framed 
ALOHA, the reader sends the frame size and a tag 
randomly selects a slot number in the frame for the data 
transmission. Static framed ALOHA uses a fixed frame 
size and does not change the size during the tag 
identification process. On the other hand, dynamic 
framed ALOHA improves the identification efficiency 
by dynamically changing the frame size according to the 
amount of tag responses in the previous read cycle. We 
here give detailed descriptions about two typical 
ALOHA based anti-collision algorithms applied in RFID 
systems. 
 
2.1.  Dynamic Framed Slotted ALOHA Algorithm 
 
The dynamic framed slotted ALOHA (DFSA) has been 
studied extensively and shows the best performance of 
ALOHA based algorithms. In DFSA, the reader always 
broadcasts a request command at the beginning of a 
frame to the tags within the read field, and then waits a 
certain amount of time slots for tag responses. Tags 
randomly select a time slot in the frame to send back 
their IDs. Within a read cycle, the reader can collect the 
information about the number of the empty slots, the 
slots occupied by one tag, and the slots occupied by more 
than one tag. The slot that occupied by one tag means a 
tag has been successful identified, and the slot that 
occupied by more than one tag means a collision occurs. 
One more read cycles needed if collisions occur. For 
each read cycle, the reader dynamically adjusts the frame 
size according to the amount of tag responses in the 
previous cycle. The analysis of DFSA algorithms mainly 
pays attentions to two primary issues [14]. The first one 
is how to estimate the tag quantity within the read field 
according to the responses in the past. The other one is 
how to determine an optimal frame size for the next read 
cycle to achieve maximum efficiency. Recently, many 
researchers focus on these key issues to improve the 
overall performance of DFSA. As a result, some valuable 
methods to estimate the tag quantity and to adjust the 
frame size are proposed [13-17]. Results revealed that 
the efficiency of DFSA is very dependent on the initial 
frame size and the maximum efficiency occurs when the 
frame size equals the number of tags. 
 
2.2.  Bi-directional Binary Exponential Index 

Algorithm 
 
The Bi-directional Binary Exponential Index (BBEI) 
algorithm [18] is originally inspired from the binary 
exponential backoff algorithm, which is commonly used 
to schedule retransmissions after collisions in Ethernet 
networks [19]. BBEI is based on a slotted ALOHA. 
Unlike DFSA, it assumes that all tags within the read 
field respond with a certain probability(0 1)p p< ≤ 2. 

The reader broadcasts one of three request commands 
(e.g. EMPTY, SUCCESS, and FAIL) at the beginning of 
each time slot according to the response results in the 
previous slot (if the slot is idle, the command is EMPTY; 
if the slot is occupied by one tag, the command is 
SUCCESS; and if the slot is occupied by more than one 
tag, the command is FAIL). While a tag receives the 
request command, it first adjusts its response probability 
according to the command type and then sends back its 
response with the newly probability. The available 
values for the response probability are the inverses of the 
binary exponential values, such as {1,1/2,1/4,1/8,1/16, 
1/32,1/64,1/128,1/256,1/512,1/1024}. If the received 
command is EMPTY, the tags multiply its probability by 
two; if the command is FAIL, the tags divide its 
probability by two; others, the probability keeps no 
change. 
 
3.  Mathematical Basis 
 
This section reviews some mathematical tools we will 
use in subsequent sections. The read time is divided into 
discrete intervals (slots) with fixed length. The duration 
of a slot is sufficient for a card to send back its response. 
The number of time slots that the reader needs to wait 
after broadcasting a request command to cards is called 
“frame size” and will be denoted by N. The number of 
cards is usually denoted by n. 
 
3.1.  Poisson Process 
 
The Poisson process is a continuous-time counting 
process which is memoryless and orderly. It applies to 
many cases where a certain event occurs at different 
points in time. Consider the card arrivals in a real-world 
RF-UCard system also occur at different points in time, 
and are often independent of each other. Thus it is 
reasonable to assume that the sequence of card arrivals in 
an RF-UCard system is a Poisson process with the arrival 
rate λ. Let ti be the ith arrival time and 1i i iτ t t −= −  be 

the ith interarrival time. Owing to the properties of the 
Poisson process, { }1≥i,τ i  is a sequence of independent 

exponentially distributed random variables with the same 
distribution ( ) 1 , 0λtF t e t−= − ≥  and the probability 

density function (pdf) ( ) , 0λtf t λe t−= ≥ . As a result, the 

mean interarrival time can be given by  
1

( )E τ
λ

=                    (1) 

Let { ( ), 0}n t t ≥ be the number of cards that arrived 
within the interval (0, )t , the probability distribution of 
n(t) depends only on the length of the interval, and can 
be expressed as  

( )
{( ( ) ( )) } { ( ) } , 0

!

k λt
λt e

P N t s N s k P N t k t
k

−

+ − = = = = ≥

(2) 
2Each tag has an initial response probability when it enters the reader’s 
read field. 
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Furthermore, we can obtain the expected number of 
card arrivals within a given interval based on the 
probability distribution of n(t), that is 

0 0

( )
( ( )) { ( ) }

!

k λt

k k

λt e
E N t k P N t k k λt

k

−∞ ∞

= =
= ⋅ = = ⋅ =∑ ∑   (3) 

 
3.2.  Occupancy Problem 

 
The allocation of cards to time slots within a frame is 
equivalent to the well known occupancy problem [20] 
that deals with the random allocation of balls to a 
number of bins where one is, e.g., interested in the 
number of filled bins. In the following, we will substitute 
“balls” and “bins” with “cards” and “slots”. 

Given N slots and n cards, the number k of cards in one 

slot is binomially distributed with parameters n and 
1

N
: 

1
,

1 1
( ) ( ) (1 )k n k

n
N

n
B k

k N N
− 

= − 
 

              (4) 

The number k of cards in a particular slot is called the 
occupancy number of the slot. The distribution (4) can 
apply to all N slots, thus the expected value of the number 
of slots with occupancy number k is given by ,N n

ka  

,
1

,

1 1
( ) ( ) (1 )N n k n k

k
n

N

n
a NB k N

k N N
− 

= = − 
   

    (5) 

This is a crucial equation because we will use it to 
estimate the card quantity in SDA and DFSA. 

 
4.  Synchronous Dynamic Adjusting Algorithm 

 
The DFSA algorithm only changes the frame size 
according to the estimated tag quantity to improve the 
tag identification efficiency. However, as the number of 
tags becomes much larger than the frame size, the 
occurrence of tag collisions increases rapidly. This is 
mainly due to the fact that all tags within the read field 
send back their responses with the probability 1. On the 
other hand, the BBEI algorithm merely resorts to 
changing the tag response probability to reduce collisions. 
Unfortunately, due to its single-slot property, the total 
identification time will increases sharply as the number 
of tags increases. SDA is developed by integrating the 
ideas involved in DFSA and BBEI that adjusts the frame 
size and the response probability synchronously. This 
combinatory scheme will improve the system efficiency 
by reducing the card collisions. In this section, we give a 
detail description to the employed adjusting schemes and 
the procedure of collision resolution using SDA. 

 
4.1.  Programming Interface 

 
The programming interface of SDA is both provided by 
the reader and the RF-UCards. It comprises some 
communication commands, functions, and local variables, 
described below. 

• Req-COS(CID, N, fT): the command is sent by the 
reader at the beginning of a frame to initiate the 
communication with cards within the read field. Three 
parameters are included that CID, N, and fT , denote 
the unique identifier of the reader’s COS, the current 
frame size, and the traffic intensity of the system in 
the current read cycle, respectively. 

• Req-app (UID, AID): the command is sent by the 
reader to the identified card to execute the specific 
application. The parameters, UID and AID, denote the 
card’s identifier and the unique identifier of the 
application respectively. 

• Res(UID): the command is sent by a valid card to the 
reader with its unique identifier (UID). 

• Valid-check(CID): the function is performed by each 
card in the read field to validate itself to the reader 
with reader’s CID. 

• Slot-select (N): the function is performed by a card to 
random select a slot from N slots in the frame. 

• < c0, c1, cx >: a triple of numbers that quantify the 
slots in different states. For a given slot, there are only 
three possible states: empty (occupied by no card), 
success (occupied by one card), and collision 
(occupied by more than one card). c0, c1 and cx denote 
the number of empty slots, success slots, and collision 
slots in a frame respectively. 

• SUID: a set of card UIDs that have just been identified 
in the current frame. The set is held temporarily by 
the reader to send the Req-app (UID, AID) command. 

• ResProValues[]: an array over which a card response 
probability p can range (0＜p≤1). Let k be the index 
of ResProValues so that p= ResProValues[k].  

• fT : a flag representing the traffic intensity of the 
system in a read cycle: loose (fT =−1), moderate (fT 
=0), and crowded (fT =1). 

• fC: a flag representing one of three possible states a 
card may be in during a read cycle: invalid (fC =−1), 
sleep (fC =0), and active (fC =1). 

 
4.2.  Estimation of Card Quantity 

 
A read process of an RF-UCard system consists of 
multiple continuous read cycles. A read cycle starts at 
the time that the reader broadcasts a request command, 
and ends up when the last identified card in the current 
frame has been processed. The length of a cycle is equal 
to the current frame size plus the processing times. In 
order to pick the appropriate frame size N for the (a 
priori unknown) number of cards n in the read field, we 
have to estimate n in each read cycle. The estimation of 
card quantity is a key issue involved in dynamic framed 
ALOHA algorithms. In SDA, we employ the estimation 
scheme that studied extensively in most literatures and 
originally proposed by H. Vogt [13]. The estimation 
proceeds as following steps. 

Step1: Based on the mathematical basis discussed 
previously (recall (4) and (5)), we can compute the 
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expected value ＜c0, c1, cx＞ with already known N and 
n. In a read cycle with the frame size N, the expected 
number of empty slots (with occupancy number 0) can be 
obtained by 

,
0 1

,

1
(0) (1 )N n n

n
N

a NB N
N

= = −             (6) 

Also, the expected number of success slots (with 
occupancy number 1) can be obtained by 

, 1 1
1 1

,

1 1 1
(1) ( )(1 ) (1 )

1
N n n n

n
N

n
a NB N n

N N N
− − 

= = − = − 
 

 (7) 

Thus, the expected number of collision slots (with 
occupancy number >1) is , ,

0 1
N n N nN a a− − . Figure 2 shows 

a function definition in Java to obtain the expected value 
of <c0, c1, cx> and Table 1 shows some useful expected 
values that derived from the function getSlotCount with 
given certain N and n. For an extensive experiment, we 
will compute more expected values of < c0, c1, cx > by 
more possible N and n. Then make an expected value 
table similar to Table 1. 
 

 
Figure 2. The function to compute the expected values of  
< c0, c1, cx >. 

 
Step2: In each read cycle, the reader will get a read 

value of <c0, c1, cx>. The Chebyshev’s inequality tells us 
that the outcome of a random experiment involving a 
random variable X is most likely somewhere near the 
expected value of X. Thus we use the distance between 
the read value and the expected value of <c0, c1, cx> to 
estimate the number of cards n for which the distance 
becomes minimal. The estimation function denoted by 

vdε  is defined as 

,
0

,
1

,
2

0

( , 0, 1, ) min 1

N n

N n
vd

n
N n

a c

ε N c c cx a c

cxa≥

   
   = −   
       

        (8) 

Because the current frame size N is always known, after 
getting a read value of <c0, c1, cx>, we can compare the 
read value with the expected value table. According to 
(8), we can obtain the estimated card quantity n finally. 

 
4.3.  Adjusting the Frame Size 

 
The variation of the frame size takes large impacts on the 
performance of dynamic framed ALOHA algorithms [14, 
17]. Results revealed that the maximum performance 
occurs when the frame size equals the number of tags. 
However, this result is not suitable again to the collision 

resolution in an RF-UCard system. Recall that the card 
arrivals are a Poisson process, the card quantity within the 
read field is dynamically changed. The estimation scheme 
proposed in Section 4.2 just reflects the card quantity 
within the read field at the beginning of a read cycle while 
not including the new cards arrived in the current read 
cycle. Thus in SDA, we will employ a novel adjusting 
scheme in terms of the estimated card quantity and the new 
arriving cards to choose an optimal frame size for the next 
read cycle. Based on the card quantity estimation scheme 
and (3), the new frame size N* can be obtained by 

*
1( )N n c p λN= − + ⋅               (9) 

where c1 and p denote the number of identified cards in 
the current cycle and the initial response probability of 
cards respectively. Again, λN denotes the expected 
number of arriving cards in the current cycle (see(3)), 
and then p λN⋅  denotes the new arriving cards that 

really respond in the next cycle. In other words, (9) 
shows the idea that letting the new frame size N* to be the 
number of the cards that will respond in the next cycle. 

 
4.4.  Adjusting the Response Probability 

 
In BBEI, the tag response probability is changed within a 
range of the inverses of the binary exponential values. As 
we all know that a variable with an exponential 
increment shows the sharp deviations, especially when 
the variable becomes very large. Thus we limits the card 
response probability in SDA to be within a range of 
values with the linear increment, that is ResProValues 
={1.0,7.0/8, 6.0/8,5.0/8,4.0/8,3.0/8,2.0/8,1.0/8}. We also 
assume that all cards have the same initial response 
probability p= ResProValues [k], e.g. if k =4, p=0.5, and 
this initial value is also held by the reader. 

The adjusting scheme for the card response 
probability in SDA is based on the previous read results 
(i.e. the traffic intensity fT of the system in the previous 
read cycle) and can be defined as a Java function shown in 
Figure 3. 

 

 
 
Figure 3. The function to compute the card response probability. 

 
4.5.  Procedure of SDA Algorithm 

   

double getResPro(int k, int fT) 
{ 
 if( fT ==-1) 
  k--; 
 else if(fT ==1) 
  k++; 
 if(k < 0) 
  k = 0; 
 else if(k >= ResProValues.length) 
  k = ResProValues.length - 1; 
 return ResProValues[k]; 
} 

void getSlotCount(int N, int n, double c0, double c1, 
double cx) 
{ 
 c0= N * Math.pow((1-(1.0/N)), n); 
 c1 = n * Math.pow((1-(1.0/N)), (n-1)); 
 cx = N - c0 - c1; 
} 
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Table 1. Some typical expected values of <c0, c1, cx> by given certain N and n. 

5 cards 10 cards 15 cards 
Frame size 

c0 c1 cx c0 c1 cx c0 c1 cx 

6 2.4113 2.4113 1.1774 0.969 1.9381 3.0929 0.3894 1.1683 4.4423 

7 3.2387 2.6989 1.0624 1.4984 2.4973 3.0043 0.6933 1.7332 4.5735 

8 4.1033 2.9309 0.9658 2.1046 3.0066 2.8888 1.0795 2.3132 4.6073 

9 4.9944 3.1215 0.8841 2.7715 3.4644 2.7641 1.538 2.8837 4.5783 

10 5.9049 3.2805 0.8146 3.4868 3.8742 2.639 2.0589 3.4315 4.5096 

20 cards 25 cards 30 cards 
Frame size 

c0 c1 cx c0 c1 cx c0 c1 cx 

6 0.1565 0.626 5.2175 0.0629 0.3145 5.6226 0.0253 0.1517 5.823 

7 0.3207 1.0692 5.6101 0.1484 0.6183 6.2333 0.0687 0.3433 6.588 

8 0.5537 1.5819 5.8644 0.284 1.0142 6.7018 0.1457 0.6242 7.2301 

9 0.8535 2.1337 6.0128 0.4736 1.4801 7.0463 0.2628 0.9856 7.7516 

10 1.2158 2.7017 6.0825 0.7179 1.9942 7.2879 0.4239 1.413 8.1631 

 
A read cycle in SDA proceeds as following five steps. 

Step1: The reader initiates a read cycle by 
broadcasting Req-COS(CID, N, fT) to all cards within the 
reader’s read field. Because a read process begins with 
the reader broadcasts the first request command (the time 
is denoted by 0), no card has arrived at that time and the 
first read cycle is always wasted. Thus it is reasonable to 
set the initial frame size to 1 in SDA. Moreover, the 
initial value of fT is often set to 0. 

Step2: After receiving Req-COS (CID, N, fT ), all cards 
within the read field perform Valid-check (CID) to 
validate itself to the reader with the reader CID derived 
from Req-COS (CID, N, fT ). If a card is invalid, it will set 
itself to the state invalid (fC =−1) and then exits the 
following cycles permanently. Otherwise the cycle 
proceeds to the next step. 

Step3: The valid cards first perform Slot-select (N) to 
generate a random number s uniformly distributed within 
the range from 0 to N-1. Then all valid cards adjust their 
response probability p by performing getResPro (k, fT) 
based on the value of fT received from the reader. Finally, 
the cards send back Res (UID) at the sth slot with the 
newly probability p. 

Step4: The reader checks the slot states in the current 
frame in sequence. If a slot is successful, a card is 
identified and its UID is appended to SUID for the later 
processes. After state checking, the reader can observe c0 
empty slots, c1 successful slots, and cx collision slots, 

 

where c0+c1+cx = N. 
Step5: The reader sequential takes the UID from SUID 

as a parameter to send Req-app (UID, AID) to execute the 
specific application with the identified card. This step is 
also called the card processing step. After finishing the 
process, the card sets itself to the state sleep (fC = 0) so 
that it cannot respond in the following cycles. The read 
cycle ends up with the finish of processing of all 
identified cards. 

After finishing a read cycle, SDA will perform a 
synchronous adjusting scheme to optimize the frame size 
and the card response probability for the next read cycle. 
The adjusting proceeds as following two steps. 

Step1: The reader first performs the card quantity 
estimation proposed in Section 4.2 to obtain an estimated 
card number n. Then, the adjusting scheme proposed in 
Section 4.3 is performed to choose an optimal frame size 
for the next read cycle. 

Step2: The reader also adjusts the traffic intensity flag 
fT according to the relationship between c0 and cx. Note 
that a collision slot means it is occupied by at least two 
cards, thus we develop an adjusting scheme for fT as: if c0 
> 2⋅ cx, then fT =−1; if c0<2⋅ cx, then fT = 1; else fT =0. This 
step aims to refresh the value fT to inform the card to 
change its response probability in the next cycle. 

An example provided in Figure 4 illustrates the read 
process of SDA. In this example, we set the card arrival 
rate to 2 and the card response probability to 0.5. We  

 

Figure 4. An example of the SDA algorithm. 
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assume that all arriving cards are valid and execute the 
same application. Thus the parameters CID and AID can 
be omitted in Req-COS() and Req-app() respectively. 
There are three time axes: the arrival axis, the transmission 
axis, and the processed axis. Each time axis is divided into 
equal slots with fixed length. The arrival axis shows the 
arrival time of card C1, C2, …, C10 denoted by the 
symbol “*”. A sequence of Req-COS(N, fT) and Req-app 
(UID) are shown above the transmission axis (note that 
all commands are sent at the beginning of a slot), while a 
sequence of Res (UID) are shown below the transmission 
axis (denoted by the symbol “*”). The successful 
processed cards are shown above the processed axis (also 
denoted by the symbol “*”). At t = 0, the read process 
begins and the reader broadcasts Req-COS(1, 0). 
However, no card arrives at this time and the reader 
obtains a triple, <1, 0, 0>. According to the adjusting 
schemes for the frame size and the response probability 
in SDA, the newly parameters N =2, fT =-1 and p =0.625 
are derived. The reader initiates the 2nd cycle at t =1 with 
Req-COS (2, −1). At this time, C1 and C2 have arrived 
and respond in slot 3 and slot 2 respectively. Thus C2 
and C1 are identified and then processed in slot 4 and 
slot 5 sequentially. Again the reader obtains a triple, <0, 
2, 0 > and the newly parameters N =1, fT =0, and p 
=0.625 for the 3rd cycle. In the meanwhile of the 2nd 
cycle, there are other 7 new arriving cards. The read 
process will continue in this way and the read data 
derived from the former 5 cycles are shown in Table 2. 
 
5.  Simulation and Evaluation 
 
We develop a Java program based on the Eclipse 
platform to simulate the process of SDA. Our 
simulations are based on the following scenarios. 
• All arriving cards are valid, which is the worst case 

may be occurred in a real-world RF-UCard system. 
• The card arrival follows a Poisson process, and the 

arrival rate varies from 0.1 to 0.9 with a step of 0.1 
and from 1 to 10 with a step of 1. 

• The card quantity is finite that enables the simulation 
to be finished normally and the simulated card set 
varies from 10 to 200 cards with a step of 10. 

• All experiments are simulated 100 times in order to 
ensure the convergence of simulation results. 

 
5.1.  Performance Measures 
 
To evaluate the performance of SDA and other ALOHA- 
based anti-collision algorithms, we mainly consider the 
following measures. 
• Total read time: this metric is the total time required 

to identify and process all the cards inside the reader’s 
read field. We measure the time by the timeslot 
because each of three mentioned algorithms (SDA, 
DFSA and BBEI) has a time period for carrying both 
the reader-to-card signals and the card-to-reader 

signals. 
• Card delay time: this metric is the average number of 

timeslots waited by a card in the entire read process. It 
also reflects the mean sojourn time of each card in the 
system before being processed. 

• Identification efficiency: this metric is the mean 
number of cards being identified in a timeslot. It 
equals to the ratio of the total identified cards to the 
sum of the frame size. 

• The number of collisions: this metric is the total 
number of collision timeslots between the 
card-to-reader responses. Collisions increase the read 
time and thus lower the identification efficiency. 

• The number of empty timeslots: this metric is equals 
to the sum of the empty timeslots in each read cycle. 
More empty timeslots waste more read time and thus 
also lower the identification efficiency. 
 

5.2.  Card Arrival Simulation 
 

We first simulate the card arrivals which follow a 
Poisson process while varying the arrival rate λ. The 
theoretical values of the interarrival times for each λ can 
be obtained from (1). We take 100 cards into considerations 
to compute the simulated values of the interarrival times. Let 

λ
T and 

λ
S denote the theoretical value and the simulated 

value of the interarrival times respectively. The relative error 
between 

λ
S and 

λ
T  denoted by λε  can be derived from 

( ) /
λ λ λ λ
ε S T T= −               (10) 

Table 3 shows the simulated results when λ varying 
from 0.2 to 6. The results present that the relative errors 
are rather little for all λ values, in other words, the 
theoretical values and the simulated values are in good 
agreement. 

 
5.3.  Performance Evaluation 

 
We then evaluate the impact of the system parameters on 
the performance of SDA. Three parameters, i.e. the card 
arrival rate, the card initial response probability and the 
card quantity, are considered. Although the variation of 
each of these three parameters will influence the 
performance, we mainly focus on the impact of the single 
parameter. Thus we conduct the independent experiments 
for each parameter under the different scenarios. 
 

Table 2. The read data derived from the example. 

Cycle 1 2 3 4 5 

N 1 2 1 3 3 

fT 0 -1 0 1 -1 

p 0.5 0.625 0.625 0.5 0.625 

c0 1 0 0 1 1 

c1 0 2 0 2 1 

cx 0 0 1 0 1 

SUID {}  {C2,C1} {} {C3, C5}  {C8}  
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• For the card arrival rate, we set the card quantity n to 
100 and the initial response probability p to 0.5. 

• For the card initial response probability, we set the 
card quantity n to 100 and the arrival rate λ to 1. 

• For the card quantity, we set the arrival rate λ to 1 and 
the initial response probability p to 0.5. 
Figure 5 shows the simulation results about the 

impact of the card arrival rate λ. From Figure 5(a) and 
(b), we can see that fewer read timeslots required by 
SDA to complete a read process when λ varies within the 
range from 0.5 to 2, and the minimal value occurs at 
λ=0.5. When λ is less than 0.5, more timeslots required,  
 

Table 3. The mean interarrival times of card arrivals (n =100). 

λ λ
T  

λ
S  λε  

0.2 5 5.0436 0.0087 
0.4 2.5 2.5052 0.0021 
0.6 1.6667 1.6843 0.0106 
0.8 1.25 1.2614 0.0091 
1 1 0.9878 -0.0122 
2 0.5 0.4984 -0.0032 
3 0.3333 0.3343 0.003 
4 0.25 0.2534 0.0136 
5 0.2 0.1974 -0.013 
6 0.1667 0.1641 -0.0156 

 
 

       
(a) Total read time (λ < 1, p = 0.5, n = 100)                           (b) Total read time (λ ≥ 1, p = 0.5, n = 100) 

       

(c) Card delay time (λ < 1, p = 0.5, n = 100)                            (d) Card delay time (λ ≥ 1, p = 0.5, n = 100) 

       
(e) Identification efficiency (λ < 1, p = 0.5, n = 100)                (f) Identification efficiency (λ ≥ 1, p = 0.5, n = 100) 

Figure 5. Impact of card arrival rate. 
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especially the maximal value occurs at λ=0.1. This is 
mainly due to the fact that the smaller arrival rate means 
the lager interarrival time and thus increases the number 
of empty timeslots in each read cycle. On the other hand, 
as λ increases, the read process also becomes longer because 
of the larger arrival rate will enlarge the card quantity 
rapidly and thus increases card collisions in each read 
cycle. Figure (c) and (d) illustrate that the card delay time 
gets longer as λ increases. This is due to the fact that the  

 

 
(a) Total read time (λ = 1, n = 100) 

 
(b) Card delay time (λ = 1, n = 100) 

 
(c) Identification efficiency (λ = 1, n = 100) 

Figure 6. Impact of card initial response probability. 

larger arrival rate means the earlier arrival time for each 
card, while the longer read time further extends the card 
delay time. The impact of the arrival rate on identification 
efficiency shown in Figure 5(e) and (f) is very similar to 
the case of the read time shown in Figure 5(a) and (b). 
SDA achieves better identification efficiency when λ 
varies within the range from 0.5 to 2, and the maximal 
efficiency occurs at λ=0.5. As λ has larger distance from 
this range, the lower efficiency occurs. However, the  
 

 

(a) Total read time (λ = 1, p = 0.5) 

 

(b) Card delay time (λ = 1, p = 0.5) 

 

(c) Identification efficiency (λ = 1, p = 0.5) 

Figure 7. Impact of card quantity. 
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deviation of the identification efficiency is rather small 
for all λ values except 0.1, and the efficiency varies 
around 0.26. 

Figure 6 shows the simulation results about the impact 
of the card initial response probability p. From Figure 6(a) 
and (b), we can see that both the total read time and the 
card delay time get shorter as p increases, especially the 
shortest time occurs at p = 0.875. Also, Figure 6(c) 
presents that SDA shows the better identification 
efficiency as p increases. The optimal efficiency 
achieved when p = 0.875 and is close to 0.35. These 
results are due to the fact that the larger response 
probability will decrease the number of empty timeslots 
rapidly as well as not increase card collisions obviously 
in each read cycle when the arrival rate is 1.0. 

Figure 7 shows the simulation results about the 
impact of the card quantity n. From Figure 7(a) and (b), 
we can see that both the read time and the card delay 
time increase linearly with n. However, the read time 
grows by the larger incremental ratio than the delay time 
that the former is more than 4.5 times the card quantity 
while the latter is close to 2 times the card quantity. For 
example, if there are 100 cards, the required total read  

 
Table 4. The average number of timeslots with varying the 

arrival rate (n =100). 

Arrival rate Algorithm 
Collision  
timeslots 

Empty 
timeslots 

Total 
timeslots 

SDA 41.3 264.1 505.4 
DFSA 55.1 228.8 483.9 0.2 
BBEI 50.6 211 461.6      
SDA 72.7 111.5 384.2 

DFSA 75.5 117.2 392.7 0.4 
BBEI 81.9 108.2 390.1      
SDA 71.8 123.8 395.6 

DFSA 78.4 129.7 408.1 0.6 
BBEI 97.8 102.7 400.5      
SDA 66 103.8 369.8 

DFSA 77.3 129.1 406.4 0.8 
BBEI 92.2 102.5 394.7      
SDA 71.5 120.9 392.4 

DFSA 75.8 141 416.8 1 
BBEI 98.7 105.5 404.2      
SDA 69.1 126 395.1 

DFSA 74.2 147.6 421.8 2 
BBEI 97.7 107.8 405.5      
SDA 65.2 147.2 412.4 

DFSA 76.2 150.5 426.7 3 
BBEI 98 118.4 416.4      
SDA 69.6 125.4 395 

DFSA 78.2 151.1 429.3 4 
BBEI 98.1 109.8 407.9      
SDA 68.3 131.4 399.7 

DFSA 78.4 145.5 423.9 5 
BBEI 99.7 101.4 401.1      
SDA 70 155.4 425.4 

DFSA 76.9 165.4 442.3 6 
BBEI 89.4 144.8 434.2 

time and card delay time are about 450 and 200 timeslots 
respectively. 
 
5.4.  Performance Comparisons 
 
In order to compare the performance of SDA to DFSA 
and BBEI, we further develop Java programs to simulate 
DFSA and BBEI in an RF-UCard system. For DFSA, we 
use the estimation function vdε  which defined in (8) to 
estimate the card quantity in the current read cycle. In 
addition, we set the frame size to be the estimated card 
quantity to obtain an optimal frame size for the next read 
cycle. For each algorithm, we set the card quantity to 100 
while varying the card arrival rate, whereas we set the 
arrival rate to 1 while varying the card quantity. In order 
to carry out an extensive comparison, we take the 
optimal performance achieved by three algorithms into 
comparisons under a given simulation scenario. 

Table 4 and Figure 8 depict the simulation results 
while varying the card arrival rate. From Table 4, we 
find that for each algorithm, collision timeslots are 
always less than empty timeslots in a read process. 
However, SDA generates the minimal collision timeslots 

 
Table 5. The average number of timeslots with varying the 

card quantity (λ =1). 

Card 
quantity Algorithm Collision 

timeslots 
Empty 

timeslots 
Total 

timeslots 
SDA 13.7 25.5 79.2 

DFSA 12.9 31.4 84.3 20 
BBEI 15.3 18.8 74.1      
SDA 26.2 53.3 159.5 

DFSA 30 58 168 40 
BBEI 37.7 37.6 155.3 
SDA 42.6 76.4 239 

DFSA 46.5 80.8 247.3 60 
BBEI 55.5 63.5 239      
SDA 55 97.1 312.1 

DFSA 59.3 111 330.3 80 
BBEI 72 92.2 324.2      
SDA 71.5 120.9 392.4 

DFSA 75.8 141 416.8 100 
BBEI 98.7 105.5 404.2      
SDA 92 142.7 474.7 

DFSA 102 170.8 512.8 120 
BBEI 124.9 127.2 492.1      
SDA 107.3 169 556.3 

DFSA 112.5 182.8 575.3 140 
BBEI 129 153.7 562.7      
SDA 123.4 213.2 656.6 

DFSA 126.9 219.7 666.6 160 
BBEI 169.7 173 662.7      
SDA 130.4 219.6 710 

DFSA 145.3 229 734.3 180 
BBEI 165.4 187 712.4      
SDA 148.7 229.7 778.4 

DFSA 159.3 263.2 822.5 200 
BBEI 198.5 213 811.5 
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in all algorithms because of the synchronous dynamic 
adjusting scheme we employed for both the frame size 
and the card response probability. Due to the frame 
size is always set to 1 during the entire read process, 
BBEI generates the maximal collision timeslots as 
well as the minimal empty timeslots in all algorithms. 
SDA generates fewer empty timeslots than DFSA 
since the new arriving cards in each read cycle are 

taken into consideration to compute the new frame size. 
As a result, SDA requires fewer total timeslots than DFSA 
and BBEI to complete a read process, Figure 8(a) and (b) 
illustrate that the card delay time of SDA is the shortest 
of all algorithms, and the gap of delay time between 
SDA and other algorithms is much larger when the 
arrival rate is greater than 1. Figure 8(c) and (d) 
illustrate that the identification efficiency of SDA is 

      
(a) Card delay time (λ < 1, n = 100)                              (b) Card delay time (λ ≥ 1, n = 100) 

      
(c) Identification efficiency (λ < 1, n = 100)                           (d) Identification efficiency (λ ≥ 1, n = 100) 

Figure 8. Performance comparison with varying the card arrival rate. 

      

(a) Card delay time                                   (b) Identification efficiency 

Figure 9. Performance comparison with varying the card quantity. 
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the best of all algorithms at high arrival rate, while it is 
worse than DFSA and BBEI at arrival rate less than 0.3 
because of more empty timeslots produced by larger 
interarrival time. Note that BBEI shows shorter delay 
time and better identification efficiency than DFSA at 
most simulation scenarios. These results show a good 
agreement with the results shown in Table 4 because 
fewer total timeslots mean better identification efficiency. 

Table 5 and Figure 9 show the simulation results 
obtained by varying the card quantity. As the card 
quantity increases, the total read time and the card delay 
time get longer and the number of collision timeslots and 
empty timeslots gets larger for each algorithm. The 
results shown in Table 5 are very similar to the results 
shown in Table 4. SDA generates the minimal collision 
timeslots when the card quantity is greater than 40. 
Again, BBEI generates the maximal collision timeslots 
as well as the minimal empty timeslots. The total 
timeslots required by SDA is fewer than DFSA and 
BBEI when the card quantity is greater than 60. By 
restraining the occurrence of collisions, SDA has shorter 
delay time than DFSA and the gap gets larger as the card 
quantity increases. However, the delay time of BBEI is 
very close to the time of SDA because it generates fewer 
empty timeslots. All of algorithms show very similar 
identification efficiency when there are larger cards in 
the read field. SDA shows a little better efficiency than 
others when the card quantity is greater than 60. The 
values vary around 0.35, which is very close to 0.368, 
the maximal identification efficiency of the framed 
ALOHA applied in RFID systems. 
 
6.  Conclusions 
 
Multi-card collision is a major factor in influencing the 
efficiency of an RF-UCard system. In this paper, a novel 
and enhanced multi-card anti-collision algorithm has 
been proposed and evaluated. Unlike DFSA and BBEI 
that they merely adjust the frame size or the tag response 
probability, the proposed SDA algorithm employs a 
synchronous dynamic adjusting scheme that dynamically 
adjusts the frame size in the reader and the response 
probability in cards to maximize the efficiency of card 
identification and processing. For the reader, the 
estimated card quantity and the new arriving cards in the 
current read cycle are both taken into consideration to 
adjust the frame size for the next read cycle. For a card, 
it increases or decreases its response probability 
according to the request commands sent from the reader. 
This scheme improves the card identification efficiency 
by reducing both the collision timeslots and the empty 
timeslots. 

The simulation results indicate that the performance 
of SDA is seriously affected by the variations of the card 
arrival rate, the card initial response probability and the 
card quantity. SDA requires shorter read time and 
achieves better identification efficiency when the arrival 
rate varies within the range from 0.5 to 2. The card delay 

time gets longer as the arrival rate increases while gets 
shorter as the card initial response probability increases. 
Moreover, both the read time and the card delay time 
increase linearly with the card quantity. A simulation 
based comparison shows that SDA requires shorter read 
time and card delay time and achieves better 
identification efficiency than DFSA and BBEI by 
significantly reducing the collision timeslots and the 
empty timeslots. The optimal identification efficiency of 
SDA varies around 0.35, which is very close to 0.368, 
the maximal identification efficiency of the framed 
ALOHA applied in RFID systems. 
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