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ABSTRACT 

We investigate the cross-sectional buckling of multi-concentric tubular nanomaterials, which are called multiwalled 
carbon nanotubes (MWNTs), using an analysis based on thin-shell theory. MWNTs under hydrostatic pressure experi-
ence radial buckling. As a result of this, different buckling modes are obtained depending on the inter-tube separation d 
as well as the number of constituent tubes N and the innermost tube diameter. All of the buckling modes are classified 
into two deformation phases. In the first phase, which corresponds to an elliptic deformation, the radial stiffness in-
creases rapidly with increasing N. In contrast, the second phase yields wavy, corrugated structures along the circumfer-
ence for which the radial stiffness declines with increasing N. The hard-to-soft phase transition in radial buckling is a 
direct consequence of the core-shell structure of MWNTs. Special attention is devoted to how the variation in d affects 
the critical tube number Nc, which separates the two deformation phases observed in N -walled nanotubes, i.e., the ellip-
tic phase for N < Nc and the corrugated phase for N > Nc. We demonstrate that a larger d tends to result in a smaller Nc, 
which is attributed to the primary role of the interatomic forces between concentric tubes in the hard-to-soft transition 
during the radial buckling of MWNTs. 
 
Keywords: Carbon Nanotube; Buckling; Radial Corrugation; High Pressure Phenomenon; Van der Waals Coupling; 
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1. Introduction 

The term “buckling” refers to a deformation through 
which a pressurized material undergoes a sudden failure 
and exhibits a large displacement in a direction trans-
verse to the load [1]. A typical example of buckling oc-
curs when pressing opposite edges of a long, thin elastic 
beam toward one another. For small loads, the beam is 
compressed in the axial direction while keeping its linear 
shape and the strain energy is proportional to the square 
of the axial displacement. Beyond a certain critical load, 
however, it suddenly bends into an arc shape and the 
strain energy and displacements are no longer related by 
a quadratic expression. Besides axial compression, bend- 
ing and torsion give rise to buckling of elastic objects, 
where the buckled patterns depend strongly on the geo-
metric and material parameters. 

An interesting class of elastic buckling can be ob-

served in structural pipe-in-pipe cross sections under  
hydrostatic pressure [2,3]. Pipe-in-pipe (i.e., a pipe in-
serted inside another pipe) applications are commonly 
used in offshore oil and gas production systems in civil 
engineering. In subsea pipelines in deep water, for in-
stance, buckling resistance to huge external hydrostatic 
pressure is a key structural design requirement. Pipe-in- 
pipe systems may be an efficient design solution that 
meets this strict requirement, because their concentric 
structures enable the cross section to withstand high pre- 
ssure without collapsing. 

The above argument regarding macroscopic objects 
poses a question as to what buckling behavior may be 
observed in nanometer-scale (10–9 m) counterpart objects. 
In nanomaterial sciences, the buckling of carbon-based 
hollow cylinders with nanometric diameters (called car-
bon nanotubes) has drawn great attention [4]. Extensive 
studies on carbon nanotube mechanics have been thus far 
driven by their exceptional resilience against deformation; *Corresponding author. 
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that is, the recovery of the original cylindrical shapes of  
the carbon nanotubes upon unloading, even when sub-
jected to severe loading conditions. In addition to the 
excellent strain-relaxation reversibility, carbon nanotubes 
exhibit high fatigue resistance; therefore, they are a 
promising medium for the storage of mechanical energy 
with an extremely high energy density [5]. Nevertheless, 
due to their nanometric scales, the similarities and dif-
ferences in the buckling patterns compared with those of 
their macroscopic counterparts are not trivial. This com-
plexity has motivated tremendous efforts toward the 
analysis of the buckling of carbon nanotubes under di-
verse loading conditions: axial compression [6-10], radial 
compression [11-22], bending [23-28], torsion [29-32], 
and combinations of these [33]. 

In this article, we focus our attention on the radial 
buckling of carbon nanotubes observed under hydrostatic 
pressure on the order of several hundreds of megapascal. 
Thin-shell-theory based analysis on the cross-sectional 
deformation of nanotubes leads us to the conclusion that 
the buckled patterns strongly depend on the inter-tube 
separation , the number of constituent tubes , and 
the innermost tube diameter . In particular, the ex-
pansion of  from its equilibrium value (0.34 nm) 
causes a lowering of the critical tube number c  that 
characterizes the hard-to-soft transition in the nanotubes’ 
radial buckling. These results shed light on the possible 
control of the morphology of carbon nanotubes by ex-
perimentally tuning .  

d

d

N

N

D

d

2. What Are “Carbon Nanotubes”? 

Carbon nanotubes are one of the most promising nano-
materials, and they consist of layers of graphene sheets 
that are each a single atom thick (two-dimensional hex-
agonal lattices of carbon atoms) rolled up into concentric 
cylinders [34]. By convention, they are categorized as 
single-walled nanotubes (SWNTs) or multi-walled nano- 
tubes (MWNTs): the former is made by wrapping one 
single layer into one seamless cylinder, while the latter 
comprise two or more concentric graphitic tubes. The 
constituent tubes in MWNTs are coupled to one another 
via the van der Waals (vdW) interaction, wherein the 
separation between adjacent concentric tubes is approxi- 
mately 0.34 nm in equilibrium conditions. 

The excellent mechanical properties of carbon nano-
tubes are characterized by the remarkably high Young’s 
modulus, which is on the order of terapascal (i.e., several 
times stiffer than steel), and the tensile strength, which is 
as high as tens of gigapascal [33]. These properties are 
proof that carbon nanotubes are the stiffest and strongest 
materials on earth. In addition to the marked stiffness, 
carbon nanotubes exhibit astounding flexibility when 
subjected to external hydrostatic pressure. The radial 

deformation both of SWNTs and MWNTs is an impor-
tant consequence of this flexibility; however, the theo-
retical understanding of the flexibility of MWNTs is still 
lacking due to their structural complexity. 

Emphasis should be placed on the fact that on applica-
tion of a mechanical deformation, carbon nanotubes 
show significant changes in their physical and chemical 
properties [34,35]. Precise knowledge of their deforma-
tion mechanism and available geometry is, therefore, 
crucial for understanding their structure-property rela-
tions and for developing next generation carbon-nano- 
tube-based applications. 

3. Formulation 

3.1. Continuum Approximation 

The aim of this section is to deduce the stable 
cross-sectional shape of a MWNT under a hydrostatic 
pressure . The continuum elastic approximation [36- 
41] allows the mechanical energy  of a MWNT per 
axial length to be expressed as follows: 

p
U

   i i D IU U p u p v p U U               (1) 

Here, DU  is the deformation energy of all concentric 
tubes, IU  is the interaction energy of all adjacent pairs 
of tubes, and   is the potential energy of the applied 
pressure. All these three energy terms are functions of 

 and the deformation amplitudes p iu p   and 
 iv p   that describe the radial  and circumferen-

tial 
 r

   displacements, respectively, of the  th tube. 
See Equation (7) below for the precise definitions of  
and . 

i

iu

i

The optimal displacements i  and i  that minimize 
 under a given  are obtained via the calculus of 

variations to U  with respect to i  and . To pro-
ceed, we derive the explicit forms of 

v
u v

U p
u iv

DU , IU , and   
as functions of , , and  in the subsequent sec-
tion. 

iu iv p

3.2. Strain-Displacement Relation 

Evaluating the functional form of DU
u

 requires the rela-
tion between the displacements, i  and i , and the 
circumferential strain, 

v
 , of a hollow tube driven by 

cross-sectional deformation. Suppose there is a circum-
ferential line element of length1  lying at an arbitrary 
point within the cross section of a tube with thickness . 
The hydrostatic pressure  upon the tube causes an 
extensional strain 

d
h

p
  of the line element, which is de-

1Throughout this subsection, the tilde  attached to variables in-  
dicates to take a quantity at arbitrary point within the cross section of 
the -thickness tube. On the other hand, variables with no tilde indi-
cates the quantity just on the centroidal arc of the -thickness tube. 
See the difference between 

h
h

  and   given in Equation (8) for a 
clear example. 
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fined as follows: 

d d

d


 


  
                 (2) 

Here, d dr   , and  is the length of the line 
element after deformation (the asterisk symbolizes the 
quantity after deformation). The coordinates 

*d

x , y  of 
the element after deformation are given as follows: 

     cos sinr r u vx                      (3) 

     sin cosr r u vy                       (4) 

where  and  are the components of the displace-
ment vector in the radial and circumferential directions, 
respectively. We can then write the following relation-
ships:  

u v

     22 2
d d d yx

    ,            (5) 

the following relationship can be obtained: 
2 21

2 2

u v u v

r r


      

 

   
 

           (6) 

where d du u    , etc. The term  v u r      in 
Equation (6) accounts for the rotation of the line element 
due to the deformation [16]. The formula (6) is valid for 
an arbitrarily large rotation,  .  

Hereafter, we assume that   and   are both sig-
nificantly smaller than unity, because an infinitesimal 
deflection of the initially circular cross section is as-
sumed to determine the critical buckling pressure. The 
second term in the right side in Equation (6) can there-
fore be omitted if the possibility that u  or v  is lar-
ger than  is excluded. We further assume that the 
normals to the undeformed centroidal circle  of the 
hollow tube’s cross section remain straight, normal, and 
unextended during the deformation [16]. The second 
assumption means that within each cross section, neither 
shear deformation nor thickness modulation arises in the 
circumferential direction; this leads to the following ex-
pressions: 

r
C

andu u v v z                  (7) 

where  and  denote the displacements of a point 
that lies on , and  is a radial coordinate measured 
from . By substituting Equation (7) into Equation (6), 
we can derive the following strain-displacement rela-
tionship:  

u

C

v
C z

     z z                     (8) 

where the following definitions hold true:  
2

2

1
and

2

u v u v u v

r r r


        
 



     (9) 

Here, i  and  are the in-plane and bending strains, 

respectively, of the th tube;  is the radius of the un-
deformed circle . Equations (8) and (9) state that the 
circumferential strain at an arbitrary point in the cross 
section is determined by the displacements 

i

i r
C

 u   and 
 v   of a point that lies on the undeformed centroidal 

circle . C

3.3. Deformation Energy 

We are now ready to derive the explicit form of the de-
formation energy DU . Suppose that the th constituent 
tube has a thickness . A surface element of the cross- 
section of the hollow tube can then be expressed by 

i
h

d dir z . The stiffness  of the surface element for 
stretching along the circumferential direction is given as 
follows:  

k

1

E
k 2

                (10) 


 


where  and E   are the Young’s modulus and Pois-
son’s ratio, respectively, of the tube. Thus, the deforma-
tion energy DU  per axial length can be written as fol-
lows:  

( )iU
1

N

D
i

U


D                 (11) 

in which the component ( )i
DU  associated with the th 

tube is written as follows: 
i

 2 2π 2( )

2 0
d d

2

h

h
U i i

iD

kr
z z 


            (12) 

From Equations (8) and (12) we obtain the following 
relationship: 

3
2π 2π( ) 2 2

0
d d

4
i i i

D i

khr r
U

0 i2 2

kh           (13) 

which can also be written as follows: 

2π 2π( ) 2

0

2
2 0

d
2

i i
D i

r
U di1

 


  
  

      (14) 

The constant   denotes the in-plane stiffness,   the 
flexural rigidity, and   the Poisson ratio of each tube.  

For quantitative discussions, the values of   and   
must be carefully determined. In cases of macroscopic ob- 
jects, they are defined as Eh   and  

 3 12 1  2Eh      . However, for carbon nanotubes,  

the macroscopic relations for  and  noted above 
fail because there is no unique way of defining the 
thickness of the graphene tube [42]2 Thus, the values of 

 

  and   should be evaluated ab-initio from direct 
measurements or through computations involving the 
properties of carbon sheets, without reference to the 
macroscopic relations. In actual calculations, we substi-
2The tube is made out of a monoatomic graphitic layer, and conse-
quently, the notion of a tube thickness becomes elusive. 
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tute  nN/nm, 345  0 238    nN·nm, and 0 149    
in a similar fashion as a previous study [43] based on the 
density functional theory. 

3.4. Inter-Tube Coupling Energy 

The energy associated with the van der Waals (vdW) 
interaction between adjacent pairs of tubes, designated 
by IU  in Equation (1), can be written as a sum of 
components as follows:  

   

( )

2π

04

i j
I I

i jr
U u

1

2,( ) d

N

i j i

i ji j
I i

U U

c r
ju 

 




 

 



 

      (15) 

We derive the coefficients ,i j  in Equation (15) 
through a first order Taylor approximation of the vdW 
pressure [39,44] associated with the vdW potential as 
follows: 

c

12 6

( ) 4V
  
 

    
     

     
             (16) 

Here,   is the distance between a pair of carbon at-
oms,  nm is the equilibrium distance be-
tween two interacting atoms, and 

1 62  0 3  83
300 383 1     nN·nm 

is the well depth of the potential [45]. The resulting equi-
librium spacing between neighboring tubes is 0.3415 nm. 
The derivative F V     represents the force between 
two carbon atoms, and its surface integral provides the 
inter-wall pressure induced by the vdW coupling. 

The vdW pressures on the inner and outer tubes of a 
concentric two-walled tube with radii inn  and out  are 
given as follows [44] (with positive signs for compres-
sion): 

r r

out inn
inn out

inn out

and
r r

p f p
r r

    f        (17) 

where 23 π 32  c

38 18c

. The area density of carbon at-
oms is given by     nm–2. 

  11 5
13 11 7 5160  .231f E E E      E     (18) 

In Equation (18),  out innr r   ,  out innr h r , 

out innr h r , and   2π 2 2 2

0
1 dsin

m

mE k  


  , and  

 2

inn out inn out4k r r r r  . 
In the following, we obtain analytical expressions for 

i j  by linearizing the Equation (17) for the pressure 
[22]. Note that  depends quadratically on the 
change in spacing between two adjacent tubes. Consider 
two consecutive tubes with radii i  and , where the 
subscripts  and  correspond to  and , 
respectively. The vdW energy stored due to a perturba-
tion  along the positive direction of pressure is given 

as follows: 

c   i j
IU 

1i 
r 1ir

inni out

d

2π( 1) m
1 10

d d
d

2 2 2
i i

I i i i i

r
U p p  

   
     

        (19) 

where  m 1 2i ir r r    is the mean radius and 1i ip    is 
the vdW pressure on the th tube. The corresponding  i

linearized pressure is given by 
m

1i i r
p d   . In Equation  

(19), mdr   describes the length of the infinitesimal 
element on which the pressure is acting. Using the lin-
earized pressure and comparing with Equation (15), the 
following expressions for the vdW coefficients can be 
found: 

1 1
1

1

4
i i i i

i i

p p
c

d d
   

 

  
     

            (20) 

where the derivatives in Equation (20) are defined as 
follows: 

 

 

m

m

2

i i 1 m m

m

m

2

i 1 i m m

m

m

2 2

2

2

2 2

2

2

r

r

p d r r d f

r d
f d

r d

p d r r d f

r d
f d

r d









  



  



   

 
     

    

 
     

      (21) 

Note that i jc   is symmetric. The set of Equations (15), 
(20), and (21) allows for the evaluation of IU .  

3.5. Pressure-Induced Energy 

We finally derive an explicit form of , which is the 
negative of the work done by the external pressure  
during cross-sectional deformation. Using this definition 
we can write the following expression: 


p

 2π Np r S                  (22) 

where S  is the area surrounded by the  th tube 
after deformation (the sign of  is assumed to be posi-
tive inward). 

N
p

S  can then be obtained by evaluating the 
following expression: 

 2π

0

1
d

2 N N N NS x y y x                (23) 

By substituting Equations (3) and (4) into Equation 
(23), and by using the periodicity relation 

2π

0
d 0Nv   , 

the following expression can be obtained: 
2 2

2π

0
d

2
N N N N N N

N N

u v u v u v
p r u 

   
   

 
    (24) 

3.6. Critical Pressure Evaluation 

This section presents our method for determining the 
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critical pressure c  above which the circular cross sec-
tion of MWNTs is elastically deformed into a non- cir-
cular one. To carry out this analysis, we decompose the 
radial displacement terms according to  

p

 p     0
i i iu p u u     . Here,  indicates a 

uniform radial contraction of the i th tube at c

   0
iu p

p p , 
whose magnitude is proportional to . p  iu   de-
scribes a deformed, non-circular cross section observed 
just above . Similarly, we can write cp    i ivv p     , 
because  at .   (0)v p p0i c

By applying the variational method to U  with re-
spect to i  and iv , we obtain the following system of 
2N linear differential equations: 

p

u

  
   
   

1 1

1 1 1

1

1 0

i i i i i i i i N i i

i N i i i i i

i i i i i i

u v p u v

c r u u

c r u u

        

  

  



   

   

    

  

    

    (25) 

 
  0

i i i i i i

i N i i

u v

p u v

i     

  

  

  




                   (26) 

where  (0)
i i i  and i i iu p r  u v   . In deriving 

Equations (25) and (26), the quadratic and cubic terms in 

iu  and iv  are omitted because we only consider 
elastic deformation with sufficiently small displacements. 
In addition, the terms consisting only of  and  
are also omitted; the sum of such terms should be equal 
to zero3 because  represents an equilibrium circular 
cross-section under . 

(0)
iu p

(0)
iu

p
Because iu  and iv  are periodic in  , the general 

solutions of Equations (25) and (26) are given by the 
Fourier series expansions as follows: 

   

   

1

1

cos

and sin

i i
n

ii
n

u n

v n

    n

n  











 



 
 

Substituting these into Equations (25) and (26) leads to 
the matrix equation , in which the vector  
consists of 

Mu 0 u
 i n   and  i n  with all possible  

and , and the matrix  involves one variable  as 
well as parameters such as i

i
n M p

  and i . The matrix  
can be expressed as a block diagonal matrix of the form 

1  due to the orthogonality of 

M

2n n   M 
cos
M M

n  and sin n . Here,  is a  sub-
matrix that satisfies n m n m  , where n m

n mM
M u

2 2N  N
0 u  is a 

2N-column vector composed of n  mi  and   
n
 M

i 
det

m
0

. As a result, the secular equation 
 that provides nontrivial solutions of Equa-

tions (25) and (26) can be rewritten as follows: 

   1 2det det 0n n   M M         (27) 

By solving Equation (27) with respect to , we ob-
tain a sequence of discrete values of . Each of these 
values is the smallest solution of 

p

n m

p
de  t 0M   

( 1 2m )  

n

. The minimum of these values serves as the 
critical pressure c  that is associated with a specific 
integer 

p
m . From the definition, the c  associated 

with a specific m allows only 
p

 i  and  n   m
 i n m   to be finite, however, it also requires  
  0n mi     and   0i n m   . Immediately above 

c , therefore, the circular cross section of MWNTs be-
comes radially deformed as follows: 
p

     

   

(0) cos

and

sin

i i c i

ii

u u p n

v n n

n  

  

 

 

       (28) 

where the value of  is uniquely determined by the 
one-to-one relation between  and . 

n
n cp

4. Result and Discussion 

4.1. Critical Pressure Curve 

Figures 1(a) and (b) show c  as a function of  for 
various values of the initial tube-tube separation  
prior to the application of pressure. For all , we ob-
serve a rapid increase in c  with , which is fol-
lowed by a slow decay when  nm (and also for 
smaller D).4 The increase in c  for small  is inter-
preted as the “hardening” of the MWNTs, i.e., an en-
hancement of the radial stiffness of the entire MWNT by 
encapsulation. This hardening effect disappears with a 
further increase in , which results in the decay of 

p

p
D
p

N
d

d

N

N
3 0 

N
 cp N . A decay in c  implies that a relatively low 

pressure suffices to produce a radial deformation, which 
indicates an effective “softening” of the MWNT. These 
two contrasting effects, i.e., hardening and softening, are 
both due to the encapsulation of MWNTs. 

p

We emphasize that in Figure 1(a), the softening re-
gion (i.e., c -decay region) is enlarged by expanding 
the inter-tube distance  prior to deformation. As will 
be confirmed later, this tendency agrees with the existing 
numerical simulations that were based on a coarse- 
grained model of MWNTs [21]. The variation of  is 
thought to be feasible in MWNT synthesis. During syn-
thesis, the interlayer thermal contraction upon cooling 
and/or the intertube adhesion energy owing to the in-
creased intertube commensuration may result in a devia- 
tion in  from the equilibrium value [46,47]. 

p
d

d

d

4.2. Sequential Change in Buckling Modes 

Figure 2 provides (a) the index  of deformation 
modes and (b)-(g) the cross-sectional views observed just 

n

3The fact that the sum equals zero determines the functional form of 

 (0)

iu p . 

4Such a decay is also observed for D = 5.0 nm and larger D, in principle
if a sufficiently large N is considered [but omitted in Figure 1(b)]. 
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(a) 

 
(b) 

Figure 1. (Color online) Critical pressure curves showing Pc 
required to produce radial deformation of N-walled nano-
tubes with fixed D: (a) D = 3.0 nm, and (b) D = 5.0 nm. 
 
above c for fixed D  and d  . The 
most striking observation is the successive transforma-
tion of the cross section with an increase in N . e see 
from Figure 2(a) that the deformation mode observed 
just above cp  jum  abruptly from 2n   t  8 at 

25N   is followed by successive emergences of 
higher corrugation modes with larger n . These transi-
tions in n  originate from the two competing effects 
inherent in MWNTs with N = 1, that is, the relative rigid-
ity of the inner tubes and the mechanical instability of the 
outer tubes. A large discrepancy in the radial stiffness of 
the inner and outer tubes gives rise to an uneven distribu-
tion of the deformation amplitudes of concentric tubes 
that interact through the vdW forces, which consequently 
produces an abrupt change in the observed deformation 
mode at some N . 

p  

, w

3 0  n

s

m  nm

W

p n =

0 36

o 
hich

4.3. Hard-to-Soft Transition 

Of further interest is that the critical number of tubes 

c  separating the elliptic phase ( ) from the 
corrugation phase ( ) is identified as the  that 
N N 2n 

3n  N

 
(a) 

 

 
(b)             (c)             (d) 

 
(e)                (f)              (g) 

Figure 2. [Upper panel] (a) Stepwise increase in the index n 
of radial buckling modes. The index n indicates the circum-
ferential wave number of the deformed cross-section. [Bot-
tom panel] Cross-sectional views of buckled MWNTs under 
high hydrostatic pressure: (b)-(d) Elliptic deformation mode 
(n = 2) for N = 5, 10, 20; (e) Radial corrugation mode with n 
= 8 for N = 25; (f) n = 9 for N = 35; (g) n = 11 for N = 50. 
 
yields a cusp in the curve of  [see Figure 1(a)]. 
In contrast, no singularity is observed in the curve of 

 cp N

 cp N at any value of , which separates two neigh- 
boring corrugation phases. We emphasize that at these 
phase boundaries, one additional tube induces a drastic 
change in the cross-sectional shape of the MWNT under 
hydrostatic pressure. 

N

Figure 3 explains why the singular cusp in the 
 cp N  curve corresponds to the hard-to-soft transition 

point of cN N . This figure shows the N-dependence 
of the solutions  p N  for the secular equation 

 det 0M

3 0D

. As mentioned earlier, the secular equation 
provides various values of . Each of these values is 
associated with a specific mode index . The minimum 
value of p gives the critical pressure c  just above 
which cross-sectional deformation takes place. Figure 3 
depicts the N-dependence of p N r several n  va -
ues, where the innermost tube radius is fixed to be 

p
n

o

p

  f l

   nm. For 24N  , the values of  for p 2n   
are less than those for , which implies that the el-
liptic mode occurs for MWNTs with . However, 
at 

3n 
24N 

25N   (and 26 27N   ), the minimum  corre- p
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Figure 3. Branches of solutions p(N) for the secular equa-
tion det(M) = 0 (refer text). The innermost tube diameter is 
set to be D = 3.0 nm for all curves. For a fixed N, the mini-
mum value of p among the branches takes a role of the 
critical pressure pc at that N. 
 
sponds to , which implies the occurrence of the 
corrugation mode of . It should be noted that  
for  can never attain the minimum value at any 

. This is why the corrugation mode of  with 
cannot be observed for MWNTs with 

8n 

7

7

8n  p
3 n 

3 n 
N n

D 3 0 

N

 
nm. It also follows from Figure 3 that the cusps in the 
curves c  occur only at the phase boundary c  
separating the elliptic phase 

 Np
 2n   from a corrugation 

phase , while no singularity appears at the bou- 
ndaries of between neighboring corrugation phases. 

n 8
N

5. Summary 

A thin-shell-theory based analysis has been employed to 
detect the mechanical hard-to-soft transition relevant to 
the radial buckling of MWNTs subject to hydrostatic 
pressure. Various buckled patterns are found to be avail-
able, and the parameters , , and  strongly in-
fluence which pattern is energetically favored. We have 
evaluated the phase boundary c  and the critical pres-
sure c  for several pairs of  and , revealing that 
the artificial expansion of  results in a decrease in 

c . Further studies will shed light on other mechanical 
properties of MWNTs and suggest applications based on 
their unique cross-sectional deformations.  

d

d

N

N
d

D

Dp

N
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