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ABSTRACT 

An unsteady boundary layer flow of viscous incompressible fluid over a stretching plate has been considered to solve 
heat flow problem with variable thermal conductivity. First, using similarity transformation, the velocity components 
have been obtained, and then the heat flow problem has been attempted in the following two ways: 1) prescribed 
stretching surface temperature (PST), and 2) prescribed stretching surface heat flux (PHF) Flow and temperature fields 
have been analyzed through graphs. The expressions for skin friction and coefficient of convective heat transfer Nusselt 
number in PST and PHF cases have been derived. 
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1. Introduction 

Due to number of applications in industrial manufactur-
ing process, the problem of boundary layer flow past a 
stretching plate has attracted considerable attention of 
researchers during the past few decades. Examples of 
such technological process are hot rolling, wire drawing, 
glass-fiber and paper production. In the process of draw-
ing artificial fibers the polymer solution emerges from 
orifice with a speed which increases from almost zero at 
the orifice up to a plateau value at which remains con-
stant. The moving fiber, which is of great technical im-
portance, is governed by the rate at which the fiber is 
cooled and this, in turn affects the final properties of the 
yarn. A number of works are presently available that 
follow the pioneering classical work of Sakiadis [1], F. K. 
Tsou, E. M. Sparrow, R. J. Goldstein [2] and Crane [3]. 
Table 1 lists some relevant works that pertain to cooling 
liquids, i.e., heat transfer for stretching surface. 

There are liquid metals whose thermal conductivity 
varies with temperature in an approximately linear man-
ner in the range from 0˚F to 400˚F. In 1996, T. C. Chiam 
[21] considered heat transfer problem with variable ther-
mal conductivity in stagnation-point flow towards stret- 
ching sheet. Naseem Ahmad and Kavita Marwah [22] 
also studied boundary layer flow of Walters Liquid B 
Model with heat transfer for linear stretching plate with 
variable conductivity numerically. In 2010, Ahmad and 
Mishra investigated unsteady boundary layer flow and 
heat transfer over a stretching sheet [23]. 

In almost all the problems of stretching sheet with heat 
transfer where closed form solution is obtained, the 
thermal conductivity of liquid has been taken constant. 
The present paper is the extension of the work done by N. 
Ahmad and M. Mishra [23] assuming that the thermal 
conductivity varies in linear manner with temperature. 
The temperature field has two parts: one mean tempera-
ture, other is due to variable thermal conductivity. Both 
the parts mean temperature and temperature due to vari-
able thermal conductivity have been analyzed thoroughly 
for some new recommendations. 

2. Mathematical Formation and Solution 

The problem considered here is the unsteady boundary 
layer flow due to a stretching flat plate in a quiescent 
viscous incompressible fluid. The flow is two dimen-
sional where x-axis is along the plane of moving plate 
and y-axis is normal to it, respectively. We assume that 
the surface is moving continuously with the velocity  
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1s

bx
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  and t < 1/a in the positive x-direc-  

tion. Under these assumptions, the boundary layer flow 
along moving plate is governed by the equations 
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Table 1. Some relevant works that pertain to cooling liquids. 

Author/s Type of visco-elastic fluid Remarks 

K. R. Rajagopal, T. Y. Na, A. S. Gupta [4] Second order fluid Not heat transfer 

K. R. Rajagopal, T. Y. Na, A. S. Gupta [5] Second order fluid Not heat transfer 

N. M. Bujurke, S. N. Biradar, P. S. Hiremath [6] Second order fluid Heat transfer 

B. S. Dhanpat, A. S. Gupta [7] Second order fluid Heat transfer 

N. Ahmad, G. S. Patel and B. Siddappa [8] Walter’s liquid B Heat transfer 

D. Rollins, K. Vajravelu [9] Second order fluid Heat transfer 

N. Ahmad, G. S. Patel, B. Siddappa [10] Walter’s liquid B Heat transfer 

S. P. Lawrence, N. B. Roa [11] Second order fluid Heat transfer 

M. I. Char [12] Second order fluid Heat transfer 

A. Naseem [13] Walter’s liquid B Heat transfer 

N. Ahmad [14] Walter’s liquid B Heat transfer 

D.Kelly, K. Vjravelu, L. Andrews [15] Walters’ liquid B Heat transfer 

N. Ahmad, K. Marwah [16] Walter’s liquid B Heat transfer 

A. M. subhas, A. Joshi, R. M. Sonth [17] Walter’s liquid B Heat transfer 

R. M. Sonth, S. K. Khan, A. M. Subhas [18] Walter’s liquid B Heat transfer 

Siddheshwar, Mahabaleswar [19] Walter’s liquid B Heat transfer 

M. Subhas Abel, P. G. Siddheshwar, Mahantesh M. Nandeppanavar [20] Walter’s liquid B Heat transfer 

 
where u, the horizontal velocity component; v, the verti-
cal velocity component;  , the kinematic viscosity 

The relevant boundary conditions are: 

y = 0, u = us, v = 0 

y → , u = 0 

Introducing the dimensionless variables 

2; ; ; ;
x y uh vh tv

h
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h h v v
      

the Equations (2.1) and (2.2) reduce to 
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with boundary conditions 
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where bar has been dropped for convenience. 
Setting the similarity solution of the form  
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Putting u and v in the Equation (2.4), we have 
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and the relevant boundary conditions become 

0,  1,  0y f f                (2.8) 

,y f  0                   (2.9) 

Boundary conditions suggest that the velocity function 
f may be of the form   ryf y e   
where r is unknown to be determined. Thus  
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and the Equation (2.7) gives 
1

a b
r

at





. Therefore, we  

have the velocity components as follows: 
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 and using continuity equation, we have 

Copyright © 2012 SciRes.                                                                                 WJM 



M. MISRA  ET  AL. 37

3. Skin Friction 

The wall shear stress at the stretching plate is given by 
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Thus, the skin friction is 
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4. Heat Transfer Problem 

In absence of viscous dissipation and heat generation, the 
energy equation for two dimensional heat flow is given b 

p
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subject to boundary conditions 
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,
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            (4.2) 

where TP is plate temperature, T is temperature of sur-
rounding fluid, CP is specific heat at constant pressure 
and k is thermal conductivity. 

4.1. Case A: Prescribed Power Law Surface 
Temperature (PST) 

Let the surface temperature be of the form 
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while the temperature outside the dynamic region be 
. Now, we define the dimensionless tem-

perature by 
,y T   T

ry   
For liquid metals, it has been found that the thermal 

conductivity varies with temperature in an approximately 
linear manner in the range from 0˚F to 400˚F. Therefore,  

we assume k as 1k k    where pk k

k
 




 . Now, 

substituting u and v in the Equation (4.1) and changing 
the independent variable y to ry  , we have 
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with boundary conditions  

0, 1, , 0                (4.4) 

The Equation (4.3) can be rewritten as 
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From Equation (4.5), we note that the heat transfer 
takes place in two parts according to  and 0 0 . 
If 0 , then we have the main heat transfer due to con-
stant thermal conductivity i.e. 
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 0 1, 0 asm m            (4.7) 

and if 0 , then we get the first correction equation to 
main heat transfer as 
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The solution of the Equation (4.6) is 
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where 

  1

0

, dt xx e t t


      

is incomplete gamma function 
Equation (4.8) is a non linear differential equation of 

order two. Let the solution of this equation be of the form: 

 c
    

Putting this solution in Equation (4.8) we have 
22  0               (4.10)  

The roots of this equation are 0 and 1/2. Therefore 

  1c               (4.11) 

The solution (4.11) of the Equation (4.8) does not sat-
isfy the condition 0c   as   . This condition is 
met only for 1  . Therefore, the heat transfer in case 

0  takes place within the dynamic region 0 1  . 

4.2. Nusselt Number 

The coefficient of convective heat transfer is given by 
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Therefore the Nusselt number is (see Table 2): 
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4.3. Case B: Prescribed Power Law Surface Heat 
Flux (PHF Case) 

The power law heat flux on the surface of stretching 
plate is considered to be a quadratic power of x in the 
form 
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where D is a constant, k is the thermal conductivity. Now 
we define dimensionless temperature  g   by 
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Writing the Equation (4.2) in terms of  g  , we get 

the following differential equation 
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Table 2. Trend of Nusselt number. 

t 
Nu for  

Pr = 1.54 
Nu for  

Pr = 2.15 
Nu for  

Pr = 5.10 
Nu for  

Pr = 9.42 

0 
0.2 
0.4 
0.6 
0.8 
1.0 

26.356 
19.976 
15.332 
11.828 
9.212 
7.271 

95.389 
64.026 
43.062 
29.255 
20.043 
13.906 

4.574 × 104 
1.667 × 104 
6.012 × 103 
2.234 × 103 

834.364 
312.276 

0.343 × 109 
0.522 × 108 
0.795 × 107 

116.283 × 104 
185.922 × 103 
28.727 × 103 

Equating the terms independent of and the terms in-
volving from Equation (4.16), we get the following two 
boundary value problems: 
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and 
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where the nomenclature mg  is main heat transfer when 
thermal conductivity is constant and cg  is correction to 
the heat flow due to variation in thermal conductivity in 
PHF case. The solution of the Equation (4.18) together 
with the boundary conditions (4.18) is 
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The general solution of the Equation (4.19) is 
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where we again observe that the dynamic region for this 
temperature field is 0 1  . Hence, the boundary con-
ditions (4.17) have been modified as 

 0cg 1  , and  as 0cg  1       (4.22) 

Using boundary conditions (4.22), the solution (4.19) 
becomes 
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4.4. Nusselt Number (See Table 3) 

Recalling (*), we have 
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5. Discussion and Results  

The problem of unsteady boundary layer flow of viscous  
 

Table 3. Trend of Nusselt number. 

t 
Nu for 

Pr = 1.54
Nu for  

Pr = 2.15 
Nu for 

Pr = 5.10 
Nu for  

Pr = 9.42 

0 
0.2 
0.4 
0.6 
0.8 
1.0 

21.758 
16.856 
13.139 
10.323 
8.194 
6.597 

73.7 
50.536 
34.868 
24.248 
17.037 
12.141 

2.69 × 104 
1.023 × 104 
3.911 × 103 
1.508 × 103 

587.228 
231.962 

1.521 × 108 
2.473 × 107 
3.928 × 106 
6.382 × 105 
1.048 × 105 
1.744 × 104 
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incompressible fluid overstretching plate has been ana-
lyzed. The velocity field has been obtained by similarity 
transformation method. Later, the heat flow problem has 
been studied by considering PST and PHF cases. We 
summarize the results as in Figure 1 to Figure 6. 

Figure 1 shows that horizontal component of velocity 
u. It increases as time progresses within the dynamical 
region [0, 1]. We also see that u is maximum in the im-
mediate neighborhood of stretching plate and it starts 
decreasing as . In fully developed flow, as time 
goes on progressing, the velocity progresses too. 

1y 

Figure 2 is a graph of v versus y for different instant of 
time. The vertical component v is almost constant within 
[0, 1] and later it starts increasing. v progresses as we 
march away from the slit and it also increases as time 
progresses. 

Figure 3 is to study the variation of mean temperature 
field m  with respect to Prandtl number Pr. We see that 
as Pr increases, m  decreases within dynamical region  

[0,1] in PST case. As r

ul
P

v
  decreases, i.e. kinematic  

viscosity   increases in turn viscosity of fluid increases. 
In case of more viscosity, generally flow of heat becomes 
slow. It is supported by our study. 

Figure 4 is expressing the trend of temperature field 

c  due to variable thermal conductivity. We see that the 
contribution of this temperature is more near the moving 
plate than as we go away from the plate in PST case. c  
 

 

Figure 1. Velocity field at different instant of time. 
 

 

Figure 2. Velocity component v at different instant of time. 

 

Figure 3. Mean temperature field for different values of 
Prandtl number Pr in PST case. 
 

 

Figure 4. Temperature distribution due to variation in ther-
mal conductivity. 
 

 

Figure 5. Skin friction with respect to time t. 
 

 

Figure 6. Temperature field for different values of Prandtl 
number in PHF case. 
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is independent of Prandtl number Pr. 
Figure 5 is the graph of ReCf versus time. We see that 

as time progresses the skin friction increases .We mean 
that as time progresses the velocity increases, in turn skin 
friction increases. 

Figure 6 is temperature field in PHF case. We see that 
it approaches to zero asymptotically. 

We see the gm for Pr = 5.10 of liquid oxygen at 56˚K, 
Pr = 2.15 of para-hydrogen at 14˚K and Pr = 1.54 of liq-
uid ammonia at 10˚C. It has been observed that gm in-
creases absolutely as Pr increases, but for Pr = 9.42 of 
water at 10˚C, gm behaves in a different way due to its 
density. 

Nusselt number in PST case is given by the Equation 
(4.12) where we observe referring Table 2 that it de-
pends on Prandtl number and time t as well. From Table 
1 we find that as Prandtl number increases the Nusselt 
number also increases but Nusselt number decreases as 
time increases. 

Referring Table 3 for PHF case, we see the same pat-
tern as in PST case from Table 2. 

We have not got Prandtl number from the temperature 
field due to variation in thermal conductivity. 
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