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ABSTRACT 

Reflecting properties of layered geological media are substantiated in the framework of phonon-phonon mechanism of 
elastic wave propagation in porous media. In this scope the reflection coefficient is calculated using not impedances but 
impulses of phonons in adjoining porous media. Assuming for the first approximation that rocks do fulfill an average 
time equation we got an expression for the reflection coefficient via porosity factors of that geological medium. For 
calculation of reflection coefficient the wavelength is chosen as averaging line scale. These coefficients are calculated at 
every depth point for a set of frequencies in seismic range. Resulting curves have special depth points. Being cross- 
plotted in time-frequency space such points do form coherent units. These units we call effective boundaries, because 
they cause all reflections for the given media in the framework of considered model. Effective boundaries are not 
wide-band as for two half spaces but have a cutoff at some low frequency. Geological medium at a whole is character-
ized by the system of such effective boundaries that are capable to form a reflection waves field. To construct this field 
an algorithm is developed that solves the direct problem of seismic in the framework of effective boundaries theory. 
This algorithm is illustrated with vibroseis survey modeling for a specific geological section. 
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1. Introduction 

We proposed a mechanism of elastic waves propagation 
in rocks [1] that justified an independence of logarithmic 
decrement on frequency or, equivalent, justified an ab-
sence of velocity dispersion when an attenuation does 
take place. The problem of decrement arose long time 
ago [2] but is still not solved and the proposed mecha-
nism as far as we know is unique. That is why we do not 
consider many models of elastic waves propagation in 
heterogeneous media among which the Biot model [3,4] 
is the most popular. This model describes the elastic 
waves propagation in the media with the solid matrix and 
many recent works attend to it [5-7]. But this model does 
not comply with the frequency independence of decre-
ment. 

Proposed mechanism supposes the elastic wave propa- 
gation in heterogeneous media to be the process that is 
attended and supported by phonon-phonon interactions 
of a special sort. At that the correspondence is proved of 
some phonon impulses and their combinations with elas-
tic wave parameters. Justification is based on a specific 
type of heterogeneous medium-porous fluid-saturated 
rocks with an average time equation fulfilled. These were 
the media where an experimental testing of a proposed 
mechanism was allowed. For that purposes laboratory 
data and acoustic logging material in carbonate forma-

tions were analyzed [1,8]. 
The aim of the paper is to substantiate the reflection 

properties of layered geological media in the framework 
of phonon-phonon mechanism and to create on that basis 
an algorithm for solving the direct seismic problem. 

2. The Reflection Coefficient Derivation 

For a special type of porous fluid-saturated media the 
longitudinal wave propagation is attended and supported 
by phonon interactions that are described by an impulse 
conservation law expression: 

Pm Pm fl P

h mh mh h

V V V V
  

   
           (1) 

In the expression above m denotes the porosity coeffi-
cient, VPm—velocity of longitudinal waves in solid ma-
trix, Vfl—velocity in the fluid, Vp—velocity in the porous 
medium, h is the Plank constant and v is the phonon fre-
quency. It is stated in mechanism that phonon’s veloci-
ties are equal to that of waves in the corresponding com-
ponents of the porous medium. 

Phonons with impulses Pmmh V  and flmh V  are 
responsible for wave energy dissipation because they are 
directly proportional to porosity m and frequency v and 
correspond to attenuation coefficient in porous fluid-sa- 
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turated media with the average time equation fulfilled. 
Such kind of media in turn has an attenuation coefficient 
direct proportional to wave porosity and frequency f [1]: 

f m  . 
We supposed that reflection properties of a layered 

geological medium could be gained in the framework of 
phonon-phonon mechanism. Let’s consider from this 
point of view the reflection coefficient for two-media 
boundary. In the common form it could be written as 

1 2

1 2

p p
R

p p






 p V 

                  (2) 

where p is the impulse, that turns a production of density 
and velocity for elastic waves  and is well- 
known as impedance. But this time p is the phonon im-
pulse: p h V  . 

Let’s consider two adjoined media with porosities m1 
and m2. Impulses in the reflection coefficient (2) we ex-
press from left part of (1) with porosities m1 and m2. And 
so we got 
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Simple transformations lead us to: 
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1
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R                (4) 

where  and V–1 is the average interval time 
for two media. 

So we have an expression for reflection coefficient for 

a boundary of two porous media based on the expression 
for phonon interaction. It should be marked that exactly 
the same result could be gained if the reflection coeffi-
cient (2) would be expressed via impulses   when 
neglecting density changes and assuming that in adjoined 
media velocities are calculated using the average time 
equation. But such a definition would be tautological 
because for porous media the average interval time ex-
pression used in this approach is the consequence of the 
phonon impulse conservation law. 

The next step is to use the coefficient R to determine 
the reflection properties of a layered geological media. 
We suppose from the beginning that rocks could be clas-
sified as reference medium-porous fluid-saturated with 
average time equation fulfilled. Let’s calculate the ex-
pression (4) for a moving window along the medium 
cross-section. At the boundary of two spaces this func-
tion will have an extremum corresponded to the real re-
flection coefficient for that media boundary (Figure 
1(a)). For a single layer calculated function has a shape 
similar to that shown in Figure 1(b). Two kink points 
mark the layer boundaries and the corresponding reflec-
tion coefficients. As a size of moving window it is natu-
rally to take a wavelength because the phonon-phonon 
interaction is corresponded to the specific elastic wave 
frequency. And then an algorithm of calculations would 
be as follows. 

The log-curve of an interval time (reversal velocity) is 
transformed from depth-scale into time-scale. The value 
of frequency fn is set. Along the geological section with a 
special step moves the interval of a wavelength size with 
the reference point at the center. Above and below the 
reference point the function (4) is calculated with m be-
ing equal to difference of porosity factors for upper and 

 

     
(a)                                                              (b) 

Figure 1. The view of reflection coefficient curves near two half-space boundary (a) and near thin layer (b); dT: interval time 
of wave, R: reflection coefficient. 
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lower half-interval and V–1—an average interval time for 
all wavelength interval. Such a way the reflection func-
tion R(fn,t) is calculated. For a general randomly layered 
geological medium the corresponding curve have ex-
treme-points and kink-points. Such curves are calculated 
for a count of frequencies within a selected seismic range. 
For every curve all special points are registered: frequen-
cies, times and coefficient values. Being plotted in the 
(fn;t) plane these points make separate boundaries. Let’s 
call these boundaries effective ones. These boundaries 
accumulate seismic reflections of a layered stratum of 
rocks for a selected frequency band and this fact clears a 
distinctly new approach to reflected waves field calcula-
tion. 

3. Direct Seismic Problem Solving Using 
Effective Boundaries Approach 

Let’s demonstrate the process of signal calculation using 
effective boundaries approach with the specific example 
of vibroseis method. Geological section is presented by 
carbonate rocks with an embedded unit of terrigenous 
sediments (Figure 2). Vertical scale is time in ms and the 
start time is taken by convention. Information about ve-
locity is given as log curve of longitudinal waves inverse 
velocities. Using this curve and assuming that consider-
ing rocks do fulfill an average time equation parameters 
for R(fn,t) calculation are determined. These functions are 
calculated for series fn of frequencies within seismic band, 
and one for f = 50 Hz is presented as an example in the 
corresponding column (see Figure 2). 

All curves R(fn,t) are examined for extremes and kinks. 
These points being plotted in frequency-time coordinates 
with mark-size depending on the reflection coefficient 
value make coherent units as can be seen in the next co- 
lumn in Figure 2. These coherent units were defined above 
as effective boundaries. Such kind of boundaries in gen-
eral are not wide-band like in the case of two half spaces 
but are limited in frequency especially in low-frequency 
range. Every boundary has its own frequency dependence 
of reflection. 

Representation of cross-section model as a chain of 
effective boundaries allows the calculation of reflections 
from the given geological section to be simply enough: 
the result would be the composition of reflections from 
every one of effective boundaries. Due to the special 
properties of these new objects—variations of reflection 
coefficient with depth (or time) and frequency—it is 
convenient to calculate the reflection function not for 
every boundary but for the section at once. For that pur-
pose for every frequency fn within the selected seismic 
band the geometrical sum of all reflected signals allowed 
for that frequency is calculated. The differences in the 
registration times of reflected wavelets are accounted in 
the phase part of the complex coefficient while the real 
part is responsible for the amplitude of signal regarding 
its sign. As a result, the medium under consideration is 
characterized by the spectral function:  

( ) exp( )n i i
i

R f a j           (5) 

where i accounts for all effective boundaries of the stra-
tum at the frequency fn. 

 

 

Figure 2. Calculation of cross-correlation function (CCF) of reflected signal for vibroseis method; Lith: lithological section, 
dT_p: inverse velocity of longitudinal waves, R50: reflection coefficient for a frequency 50 Hz, Ef_Brd: selected extremes of 
reflection function, CCF: cross-correlation function of source sweep and reflected signal, CCF_F: processed field seismic trace. 
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This function accumulates reflection properties of all this gives us not resonant but more stable interference

ef

ple in the Figure 2 the source signal is 
sw

4. Conclusions and Discussion 

s the conse-
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