
Journal of Signal and Information Processing, 2012, 3, 30-34
http://dx.doi.org/10.4236/jsip.2012.31004 Published Online February 2012 (http://www.SciRP.org/journal/jsip)

Neural Network Based Order Statistic Processing Engines

Mehmet S. Unluturk1*, Jafar Saniie2

1Department of Software Engineering, Izmir University of Economics, Izmir, Turkey; 2Electrical and Computer Engineering De-
partment, Illinois Institute of Technology, Chicago, USA.
Email: *suleyman.unluturk@ieu.edu.tr

Received November 8th, 2011; revised December 16th, 2011; accepted December 30th, 2011

ABSTRACT

Order statistic filters are used often in the applications of science and engineering problems. This paper investigates the
design and training of a feed-forward neural network to approximate minimum, median and maximum operations. The
design of order statistic neural network filtering (OSNNF) is further refined by converting the input vectors with ele-
ments of real numbers to a set of inputs consisting of ones and zeros, and the neural network is trained to yield a rank
vector which can be used to obtain the exact ranked values of the input vector. As a case study, the OSNNF is used to
improve the visibility of target echoes masked by clutter in ultrasonic nondestructive testing applications.

Keywords: Neural Networks; Back-Propagation Algorithm; Order Statistic Filters; Target Echo Detection

1. Introduction

Order statistic (OS) processors have been widely used in
the field of signal and image processing [1-3]. OS results
can be obtained by sorting the elements of an input vec-
tor according to the rank of each element. Ranked out-
puts such as minimum, median and maximum have been
used for target detection with applications in radar, sonar
and ultrasonic nondestructive testing [4,5]. The problem
of sorting has already been solved by sequential and it-
erative methods such as the bubble sort, selection sort,
insertion sort, and quick sort with computational effi-
ciency ranging between O(NlogN) and O(N2) compari-
sons and swapping operations [6]. As an alternative to
conventional sorting techniques, a neural network design
resulting from the harmony theory has been proposed for
the sorting operation [7]. Neural network hardware can
be implemented with parallel architecture using VLSI
and FPGA technology, and this is highly desirable for
high-speed computation [8-11].

In this paper, feed-forward neural network models [12]
are introduced to find the minimum, the median, and the
maximum of the input vectors consisting of real numbers.
The back-propagation learning algorithm [13] is utilized
in the training phase of the order statistic neural network
filters (OSNNF). If the size of the input data is n, there is
n! different input vectors including the same real num-
bers which give the same sorted output. Furthermore, the
input vectors with real numbers demand an unlimited
number of input vectors for training. Therefore, it is im-
practical to train an OSNNF with that many input data.

Consequently, the trained OSNNF filter might not pro-
vide exact sorted results. In spite of this drawback, neural
network filters can be trained to provide good approxi-
mation for the sorted results, and perhaps this might be
sufficient for sorting the random processes in certain
applications [4,5].

In practice, it is desirable to develop an efficient neural
network model that can be used in finding the estimates
of minimum, median, and maximum of the input vectors.
To achieve this, simulation data is used in the training
phase. The training set of data consists of random num-
bers with uniform distribution scaled between zero and
one. Then, the neural network is trained to yield the
ranked output (e.g., the minimum, the median or the
maximum value of the input vector with real numbers).
In the next section we present the design techniques for
the neural network OS filters. Section 3 discusses an im-
proved neural network solution that finds the rank of
each input in order to reveal the exact sorted result. Sec-
tion 4 utilizes these neural network filters to enhance the
visibility of target echoes in high scattering clutter using
split-spectrum processing (SSP).

2. Neural Network OS Filters

Figure 1 displays the structure for the neural network OS
filter where the number of inputs is 8 (M = 8). This filter
is a fully connected feed-forward neural network. When
unordered uniformly distributed random numbers, x(i),
are presented as an input vector of real numbers to the
neural network, each output of the hidden neurons is the
weighted sum of the input nodes and bias node passes *Corresponding author.

Copyright © 2012 SciRes. JSIP

Neural Network Based Order Statistic Processing Engines 31

Figure 1. A three-layer model of an order statistic neural
network filter.

through an activation function. The hidden neuron’s out-
put of this neural network, is given as , 1jy j L  ,

1

()
M

h h
j ji j

i

y x i w 


 
 
   (1)

where the activation function for the hidden and output
layer, , is a tangent hyperbolic function defined as  

 
y y

y

e e
y

e e









 y
 (2)

The term x(i) is an element of the input vector consist-
ing of random numbers between 0 and 1, h

jiw is the
weight from ith input neuron to the jth hidden neuron, and

h
j is the bias for the jth hidden neuron. Then, the ranked

output, , of the neural network is the weighted sum of
all the hidden neurons and the bias node, given as



1 1
1

L
o o

j j
j

y w 


 
  

 
  (3)

The training matrix is prepared using uniform random
numbers between 0 and 1. Each column in the training
matrix represents one set of these random numbers with a
length of 8. Note that the size of the training set can be
any number. The bigger the size of the training set, the
better the estimation of the ranked output by the neural
network is.

Training statistics of the neural network filters are
given in Table 1. A total of 4000 sample vectors were
applied to estimate the minimum (MinNNet), the median
(MedNNet), and the maximum (MaxNNet). This training
was reiterated for 2000 times (i.e., epochs) in order to
find the best solution for the neural network. Training
results show that the MinNNet, MedNNet and MaxNNet
reach a lower training sum squared error that is 0.04. In

Table 1. Training statistics for MinNNet, MedNNet, and
MaxNNet.

Neural
Network

of Sample
Vectors

Input
Nodes

Output
Node

Hidden
Nodes

Epochs
Error

Bound

MinNNet 4000 8 1 65 2000 0.04

MedNNet 4000 8 1 65 2000 0.04

MaxNNet 4000 8 1 65 2000 0.04

this study, Hinton diagrams [14] were utilized to examine
the effectiveness of the neural network weights.

Testing results are shown in Figure 2. In this figure
“+” shows the estimates for MaxNNet , “×” displays the
estimates for MedNNet, and “o” depicts the estimates for
MinNNet. In addition, solid lines indicate the desired
values and estimates of order statistic neural network
filters are superimposed over these desired values. Fur-
thermore, as expected, Figure 2 shows that the Min-
NNET estimates the minimum values around 0, the Med-
NNET estimates the median values around 0.5 and the
MaxNNET estimates the maximum values around 1. To
obtain a better performance evaluation, the probability
density functions of error for each neural network are
estimated using the Parzen method [15]:

  1
, Min, Med or Maxji

j
ij j

r r
f r j

n 

   
     

 


(4)

where  1, 2, , jir i n   is the difference between the
neural network output and the actual output for MinNNet,
MedNNet or MaxNNet,   is the Gaussian density
function and constant 2

j is the variance.
Figure 3 shows the probability density functions of

estimation error for each neural network. This figure illu-
strates how the neural network output values are affected
by each neural network type to emphasize specific re-
gions of the uniform random number distribution. Over-
all, the neural network is particularly efficient in obtain-
ing the actual sorted result. For example, as can be seen
in Figure 3, the maximum is 1, the median is 0.5 and the
minimum is 0 with a high probability compared to other
estimated values. The next section discusses an improved
and precise neural network architecture for obtaing the
actual ranked value.

3. Neural Network for Precise Order
Statistic Filtering

The OSNNF becomes better when we add more random
numbers into the training set. However, increasing the
size of the random numbers to infinite in order to cover
all possible combinations for input vectors, is impractical
and unachievable. As a result, a trained neural network
filter with a finite set of input vectors used for training

Copyright © 2012 SciRes. JSIP

Neural Network Based Order Statistic Processing Engines

Copyright © 2012 SciRes. JSIP

32

Figure 2. Testing results for MinNNet, MedNNet and MaxNNet. “+” shows the estimates for MaxNNet, “×” displays the es-
timates for MedNNet, and “o” depicts the estimates for MinNNet. These estimates are superimposed over the actual values
shown by solid lines.

Figure 3. The probability density functions of errors for MinNNet, MedNNet and MaxNNet.




0.9501 0.2311 0.6068 0.4860

0.8913 0.7621 0.4565 0.0185

X 

can only approximate the sorted outputs. Hence, to im-
prove this design where the neural network output yields
the exact ranked value, the input vectors are converted to
a finite set of input vectors consisting of ones and zeroes
elements.

Based on the transformation shown in Equation (5),
the following matrix can be generated

1 0 0 0 0 0 0 0

1 0 1 1 1 1 1 0

1 0 1 0 1 1 0 0

1 0 0 0 1 1 0 0

1 0 0 0 1 0 0 0

1 0 1 1 1 1 0 0

1 1 1 1 1 1 1 0

R

 
 
 
 
   
 
 
 
  

Consider sorting N random numbers xi where i = 1,
2, ..., N. To generate ones and zeros as inputs to the neu-
ral network, each xi is compared with xj, where j = 1… N
and j ≠ i:

0,

1,i

i

x i j
i j

jx x
r x x

x x

    
 (5)

For example, consider the following input vector:

Neural Network Based Order Statistic Processing Engines 33

where the elements of the first column are calculated by
comparing the first number, 0.9501, with the rest of the
numbers within the input vector, the elements of the
second column are calculated by comparing the second
number, 0.2311, with the rest of the numbers and so on.
Then, the output of the OSNNF becomes the actual rank
vector,  corresponding to each element within the in-
put vector:  8 2 5 4 7 6 3 1  .

Examination of the rank vector reveals that the mini-
mum element of x is 0.0185, because the corresponding
neural network output for this element is 1; the maximum
element in x is 0.9501, because the corresponding neural
network output for this element is 8 and so on. The ad-
vantage of this input conversion is that the infinite input
vectors of random numbers is converted to a finite set of
input vectors with elements consisting of ones and zeros.
And, for example, the size of the input space for an input
vector with 8 elements will be 128. Consequently for an
input vector of size N, the input space for the neural
network is 2N-1.

For sorting 8 random numbers, the number of input
elements to OSNNF is 7 and the output number repre-
sents the rank of ix . During training 10 hidden neurons
were sufficient for detecting the rank of ix with a sum
squared error of 0.0001 within 140 epochs. The OSNNF
training took less iterations because of the finite size of
the input space. In the next section we make use of
OSNNF in ultrasonic target detection when the signal is
corrupted by high scattering clutter [5].

4. OSNNF for Target Detection

Applying split-spectrum processing (SSP) to ultrasonic
signals combined with order statistic filters improves the
signal-to-noise ratio and the target visibility [5]. The or-
der statistic detection filters perform better when signal
and clutter have good statistical separation associated
with a particular ranked output, such as minimum, me-
dian or maximum [4]. Our objective in this section is to
replace the conventional order statistic filters with the
OSNNF.

The block diagram of SSP coupled with the OSNNF is
shown in Figure 4. The received broadband signal is
partitioned into several subband channels [5] and the out-
put of these channels are normalized using scaling fac-
tors , 1, ,i i 8  

 
1

Max
i

i

 


 (6)

where i is the output of i-th bandpass (BP) filter at
center frequency i


f . There are three important issues in

implementing SSP. These are the number of subbands
(i.e., bandpass filters), the correlation among subbands
due to spectral overlap, and the target information in
each subband. There is an upper limit on the number of

Figure 4. The block diagram of SSP based neural network
order statistic target detector. In this figure αi, i = 1 ··· 8 are
the scaling factors.

subbands that can be chosen without a large amount of
overlap among the subbands. Correlation among sub-
bands is not as critical to the performance of SSP as se-
lecting the frequency range which contains information
pertaining to the target echo.

The OSNNF is tested using experimental data to detect
the target in presence of high scattering noise where the
signal-to-noise ratio is less than zero dB (Figure 5(a)).
The frequencies of the 8-channel bandpass filters reside
within the frequency range of zero to 5 MHz and the
bandwidth of each channel is 2.44 MHz. Figure 5 shows
the outputs of OSNNF where it finds the exact values for
the minimum, the median and the maximum of the 8
bandpass filters. The ranked output of OSNNF improves
the SNR significantly and enhances the target echo visi-
bility.

5. Conclusions

In this study neural network OS filters have been de-
signed to replace the conventional sorting algorithms. Di-
rect design of neural networks can only approximate the
expected sorted output since; in general, the size of the
input field is infinite. An improved design can be ob-
tained by converting the input vector to a finite set of
inputs consisting of ones and zeros. These data conversa-

Copyright © 2012 SciRes. JSIP

Neural Network Based Order Statistic Processing Engines

Copyright © 2012 SciRes. JSIP

34

Figure 5. Performance of OSNNF for target detection. The target echo is representing the ultrasonic backscattered echo of a
hole within a steel block. (a) Original experimental measurement with SNR less than zero dB; (b) OSNNF minimum output;
(c) OSNNF medium output; (d) OSNNF maximum output.

[7] T. Tambouratzis, “A Novel Artificial Neural Network for
Sorting,” IEEE Transactıons on Systems, Man, and Cyb-
ernetıcs—Part B: Cybernetıcs, Vol. 29, No. 2, 1999, pp.
271-275. doi:10.1109/3477.752799

tions offer three major advantages: 1) the size of the in-
put space for the neural network becomes a finite number,
2) the zeros and ones simplify computation, and 3) the
output of the neural network is a rank vector which can
be used to obtain the exact ranked values. The design of
the neural network order statistic filters was tested for
ultrasonic target detection. Based on experimental obser-
vations, OSNNF can be efficiently used in split-spectrum
processing in order to detect target signals in noisy envi-
ronments.

[8] P. W. Hollis and J. J. Paulos, “A Neural Network Learn-
ing Algorithm Tailored for VLSI Implementation,” IEEE
Transactions on Neural Networks, Vol. 5, No. 5, 1994, pp.
784-791. doi:10.1109/72.317729

[9] B. M. Wilamowski and R. C. Jaeger, “Neuro-Fuzzy Ar-
chitecture for CMOS Implementation,” IEEE Transaction
on Industrial Electronics, Vol. 46, No. 6, 1999, pp. 1132-
1136. doi:10.1109/41.808001

[10] X. Zhu, L. Yuan, D. Wang and Y. Chen, “FPGA Imple-
mentation of a Probabilistic Neural Network for Spike
Sorting,” 2010 2nd International Conference on Infor-
mation Engineering and Computer Science, Wuhan, 25-
26 December 2010, pp. 1-4.

REFERENCES
[1] J. Serra, “Image Analysis and Mathematical Morphol-

ogy,” Academic Press, New York, 1988.

[2] I. Pitas and A. N. Venetsanopoulos, “Nonlinear Digital
Filters, Principles and Applications,” Kluwer Academic
Publishers, Boston, 1990.

[11] J. Misra and I. Saha, “Artificial Neural Networks in
Hardware: A Survey of Two Decades of Progress,” Neu-
rocomputing, Vol. 74, No. 1-3, 2010, pp. 239-255.

[3] J. Astola and P. Kuosmanen, “Fundamentals of Nonlinear
Digital Filtering,” CRC Press, Boca Raton, 1997.

[12] K. Hornik, “Multilayer Feedforward Networks as Uni-
versal Approximators,” Neural Networks, Vol. 2, No. 5,
1989, pp. 359-366. doi:10.1016/0893-6080(89)90020-8 [4] J. Saniie, K. D. Donohue and N. M. Bilgutay, “Order

Statistic Filters as Postdetection Processor,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, Vol.
38, No. 10, 1990, pp. 1722-1732.

[13] T. Masters, “Practical Neural Network Recipes in C++,”
Academic Press Inc., New York, 1993.

[14] F. J. Bremner, S. J. Gotts and D. L. Denham, “Hinton
Diagrams: Viewing Connection Strengths in Neural Net-
works,” Behavior Research Methods, Vol. 26, No. 2,
1994, pp. 215-218.

[5] J. Saniie, D. T. Nagle and K. D. Donohue, “Analysis of
Order Statistic Filters Applied to Ultrasonic Flaw Detection
Using Split-Spectrum Processing,” IEEE Transactions on
Ultrasonics, Ferrorelectrics, and Frequency Control, Vol.
38, No. 2, 1999, pp. 133-140. doi:10.1109/58.68470

[15] E. Parzen, “On Estimation of a Probability Density Func-
tion and Mode,” Annals of Mathematical Statistics, Vol.
33, No. 3, 1962, pp. 1065-1076.
doi:10.1214/aoms/1177704472

[6] M. A. Weiss, “Data Structures and Algorithm Analysis in
C++,” Addison Wesley, Reading, 2006.

http://dx.doi.org/10.1109/58.68470
http://dx.doi.org/10.1109/3477.752799
http://dx.doi.org/10.1109/72.317729
http://dx.doi.org/10.1109/41.808001
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1214/aoms/1177704472

