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ABSTRACT 

In empirical finance, it is well-known that the volatility of asset returns is highly persistent. The persistence of the vola- 
tility process may be checked by testing for a unit root on stochastic volatility models. In this paper, a Bayesian test 
statistic based on decision theory is developed for testing a unit root on multivariate stochastic volatility models. At last, 
the developed approach is applied to investigate the persistent effect of financial crisis on the two main stock markets in 
China. 
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1. Introduction 

It has been well-documented in empirical literature that 
the volatility of asset returns is highly persistent with time, 
see Chou [1], Wright [2], Berger, Chaboud and Hjalmars- 
son [3] and Ewing and Malik [4], etc. If a persistence is 
observed in the log-volatility process, it means that shocks 
to volatility do not disappear rapidly and will remain 
persistent for long periods. Hence, a significant effect will 
be found in the security price which is caused by some 
changes in risk premium today. Chou [1] and Bollerslev 
and Engle [5] studied the volatility of the stock market and 
its relationship with market fluctuations. They showed that 
high persistence of shocks to volatility would increase the 
fluctuation in the volatility which caused the market to 
plunge. Thus, it is meaningful to develop some efficient 
methods to check the persistence of the shocks in the 
volatility process. 

In empirical finance, stochastic volatility (SV) models 
are among the most popular models for modeling time- 
varying volatility clustering, so that a comprehensive un- 
derstanding of the types of SV models available, and the 
potential applications of each, is a useful foundation for 
research in this field. Shephard [6] provided a review of 
SV models and applications that was an effective base of 
reference. 

The researchers may check the persistence of shocks in 
the volatility process by testing for a unit root in stochas- 
tic volatility models, see Wright [2]. As to the univariate 
SV models, So and Li [7] first developed a Bayesian unit 
root testing approach based on the Bayes factor (Kass and 

Raftery [8]). Under Bayesian framework, the unit root test 
problem was regarded as a model comparison problem 
where two nonnested models, formulated respectively 
under the null and alternative hypothesis, were compared. 
Then, the method developed by Chib [9] was used for 
calculating Bayes factor. However, this method required 
the marginal likelihood, a marginalization over the un- 
known parameters and latent volatility under each model. 
In SV models, the number of unknown parameters and 
latent volatilities was very large (exceeding the number of 
observations), hence, obviously, the computational bur- 
den of the marginal likely-hood was formidable. 

By introducing a weighting function rather than using 
Chib [9]’s method, Li and Yu [10] derived a novel form 
for the Bayes factor through considering the special struc- 
ture of the competing models. No marginalization was 
needed in their new form, with the result that it was more 
stable numerically. Further, Li, Ni and Zhang [11] pro- 
posed another simple numerical procedure for computing 
the Bayes factor to detect unit root on the basis of path 
sampling. This procedure was also free of complex mar- 
ginalization. 

In practice, however, the Bayes factor poses a number 
of theoretical and practical limitations. Kass and Rafety 
[8] pointed out that if standard noninformative priors were 
used, the Bayes factor suffered from Bartlett’s paradox. 
To the best of our knowledge, the problem has not yet 
been completely solved. In addition, the computations of 
the Bayes factor for unit root testing in SV models re- 
quired either the marginal likelihood or the likelihood 
ratio, though some effective approaches have been de- 
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veloped. This continued to pose a computational chal- 
lenge and numerical instability. More recent literature 
has addressed the point-null hypothesis testing problem, 
for which Li and Yu [12] has developed a decisional 
Bayesian hypothesis testing approach to replace the 
Bayes factor. It was shown that the developed Bayesian 
test statistic may be implemented under noninformative 
priors, and was only a log-likelihood ratio as a by-prod- 
uct of Bayesian estimation, hence computationally sim- 
ple and stable. 

As to unit root testing problem in the univariate SV 
models, Zhang, Li and Zhang [13] showed that the deci- 
sional Bayesian approach by Li and Yu [12] can achieve 
better finite-sample behaviors than Bayes factor. In this 
paper, we consider the asset return volatility persistence 
on multivariate SV models, which are a generalized ex- 
tension of univariate SV models. With the development 
of economic globalization, and as volatility moves to- 
gether across different markets, modeling volatility in a 
multivariate framework where the correlation structures 
are specified is important in many financial applications, 
such as international portfolio risk management, and asset 
allocation. The multivariate stochastic volatility setting is 
also important for different assets in the same financial 
market, because of the interwinding economic mecha- 
nism. More details of this issue were developed in the 
review paper about multivariate SV models by Asai, et al. 
[14]. Also, development of the Bayesian test statistic for 
testing a unit root is based on the work of Li and Yu [12]. 

The remainder of this paper is organized as follows. In 
Section 2, we describe the multivariate stochastic volatil- 
ity models. The problem of the unit root test is discussed 
in Section 3. Section 4 considers an empirical application 
on time series data covering the subprime crisis. This 
paper is concluded in Section 5. 

2. Multivariate Stochastic Volatility Models 

The standard Multivariate SV model proposed by Harvery, 
et al. [15] is given by: 
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where  is the return times series,   1ty p

 1 2, , ,
T

t t t pth h h h   is an p-dimensional unknown log  

volatility, the operator ◦ denotes the element-element 
product. and  tu  t  are both p-dimensional iid nor- 

mal error for all t. Generally, for 1, 2,i p , , ,ii  i
set a

s 
s 1.0 and   is set as a diagnoal matrix. 

Because the observable log-likelihood function is in- 
volved in intractable high-dimensional integrals, analysis 
of multivariate SV models is challenging. A variety of 
estimation methods, including simulated method of mo-
ments and simulated maximum likelihood methods, have 
been proposed for analyzing these models. According to 
Yu and Meyer [16], the Bayesian method using Markov 
chain Monte Carlo (MCMC) techniques ranks as one of 
the most efficient estimation approaches. From this stand- 
point, we analyze the multivariate SV models of this pa- 
per by using MCMC techniques. 

Let  , T1 2, ,y y y y  , and 1 2 . Un- 
der Bayesian framework, the statistical inference is based 
on the posterior distribution of the parameters given the 
data, i.e., 

 Th, ,h h h ,

 p y . However, owing to the complexity 
induced by latent volatility h, it is almost impossible to 
evaluate the expectation of this posterior density directly. 
To alleviate this difficulty in the posterior analysis, we 
used the data-augmentation strategy (Tanner and Wong 
[17]) to augment the observed variable y with the latent 
volatility h. Hence, instead of simulating the observations 
from  p y , we generated some random observations 
from the joint posterior distributions, i.e.,  y,p h . 
The simulations can be realized via a MCMC technique 
named Gibbs-sampler. More concretely, we start with an  

initial value    0 0,h 
  , and then simulates one by one; 

at the jth iteration, with current values :    ,j h j 
 

1) Initial parameter   and latent volatility h. 

2) Generate  1jh   from   ,j yp h . 

3) Generate  1j   from   1 ,jp h y . 

Observations obtained from the posterior simulation 
can be used for statistical inference. After the burning-in 
phase, that is, sufficiently many iterations of this iteration 
procedure, the simulated random samples can be regarded 
as efficient random observations from the joint posterior 
distribution  ,p h y . 

Let   , , 1, 2, ,j jh j J    be the simulated efficient  

random observations. Then, Bayesian estimates of   and 
latent volatility h as well as their standard errors can be 
easily obtained via the corresponding sampling mean and 
sample covariance matrix. The concrete forms are given 
as follows: 
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3. Unit Root Testing under Decision Theory 

In this paper, the persistency of volatility is equivalent to 
testing a root for the autoregressive coefficient   on log- 
volatility given by: 

 
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: 1

: 1
i
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H
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              (2) 

As to the problem, it is known that  
is the interest parameter vector, the other parameters are 
the nuisance parameters denoted by 

 1 2, , ,
T

p    

 ,    . 

3.1. Unit Root Testing as a Decision Problem 

Generally, the observable data  in term of parameter y
   and parameter    is fitted by some model 

 , yM p   . The model  

  0 0 , ,y    



M p    denotes a model which pro-  

vides a description of the probabilistic behavior of ob- 
servable data when the null hypothesis H0 is true. Ac- 
cording to the work of Li and Yu [12], the unit root test- 
ing problem can be regarded as a decision problem where 
the action space has only two elements, namely to accept 
(a0) or to reject (a1) model M0 as a convenient proxy for 
model M. 

With regard to this decision problem, a loss function 
measuring the loss as a result of accepting or rejecting H0 
is required to be specified. Here, we denoted this loss  

function as . Then, the difference 

loss function denoted by 

  , , , 0,1iL a i    
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as follows: 
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which measures the advantage of rejecting H0 as a func- 
tion of  ,  . Hence, as the optimal decision, rejecting 
H0 will be made based on the following rule given by 

   0 , , , d d 0L H p y     
 

       

3.2. Continuous Loss Function and Bayes Test  
Statistic 

With regard to the hypothesis testing problem, an obvious 
choice is to use the Kullback-Leibler (KL) divergence func- 
tion as the difference loss function. However, for 
multivariate SV models considered in this paper, the 
likelihood function don’t have closed-form solution so that 
K-L loss function also don’t have closed-form, hence, 
can not be applied. Following Li and Yu [12], the 
continuous divergence function based on  Q    mainly 
used in EM algorithm is developed to replace K-L 
divergence function. 

As to the unit root testing problem, again basing analy- 
sis on the work of Li and Yu [12], the continuous loss 
difference function can be defined as follows: 
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where for any 1  and 2 , the  Q    is given by 
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In this situation, the Bayesian test statistic can be ex- 
pressed as the posterior mean of the loss function, namely, 

      
          

0 0

0 0 0

, , ,

, , , ,

y

y

T y E L H

E Q Q Q Q





  

0       

    

   
 

where 0 1p  . As shown in Li and Yu [12],  0,T y   
has an equivalent form which is given by 
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This test statistic is composed of two posterior expec- 
tations. The first expectation is only a by-product of a 
Bayesian estimation under alternative hypothesis, and is 
thus easily approximated using MCMC outputs. The sec- 
ond expectation is difficult to evaluate because it involves 
two simultaneous expectations, which requires tedious and 
time-consuming computation. Li and Yu [12] developed a 
convenient method for approximating this posterior inte- 
gration. Following their approach for the unit root testing 
considered here, the details of this numerical approxima- 
tion are simply summarized as follows: 
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2) As to the function  f  , the second Taylor expan- 
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sion is taken at ( 0 ), so that we find 
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3) The second posterior integration is given by 
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where ̂  is the Bayesian estimation under alternative 
hypothesis H1. 

Remark 1: From Equation (3), it can be found that the 
test statistic is the posterior expectation on the log-like- 
lihood ratio. Compared with the Bayes factor, which is a 
likelihood ratio, it is more numerically stable on compu- 
tation. 

Remark 2: It can be proved that this test statistic can be 
implemented under noninformative prior (Li and Yu [12]). 
Furthermore, the estimation of this test statistic is only 
the by-product of Bayesian estimation under null and 
alternative hypothesis; no additional computational ef- 
forts are required. This is in sharp contrast to Bayes factor. 

Remark 3: In this unit root testing, a threshold value is 
necessary to be used for deciding whether H0 is rejected 
or not. Following the approach of Li and Yu [12], the 
following decision rule is used: 

Accept H0 if ; Reject H0 if   0 C ,T y  0,T y C 

where C is the threshold value. Li and Yu [12] tabulated 
some threshold values with different probability level. In 
this paper, we chose the critical value 3.22 as the refer- 
ence threshold value to express that the unit root hy- 
pothesis is rejected or accepted with 99% confidence. More 
details, one can refer to Li and Yu [12]. 

4. A Real Study 

China stock markets are the emerging stock markets. Since 
their inception in 1991, they have experienced rapid de- 
velopments in terms of market size, trading volume, 
number of listed companies. For shares currently listed in 
China, the two stock markets—the Shanghai stock market 
and the Shenzhen stock market, with more than 1500 
listings-conduct all trades in Chinese Yuan, The Shang- 
hai market accommodates the largest issuers in terms of 

market capitalization and, by and large, the Shenzhen 
caters to small- and medium-sized concerns. In the cur- 
rent stage of Chinese economic development, the capital 
value of the Chinese stock markets positions them as one of 
the largest stock markets in the world, surpassed only by 
the stock market in the United States. Because of its 
growing importance, foreign investors show significant 
interests in the Chinese stock markets. 

On year 2007, there was a serious financial crisis. In 
the empirical study, we are mainly concerned whether or 
not the crisis had a persistent effect in Chinese stock mar- 
kets because of the economic globalization. The dataset 
of the Shanghai Composite Index (SHCI) and Shenzhen 
Composite Index (SZCI) over the period that covers the 
2007-2008 subprime crisis was sampled. Daily closing 
prices for this index was collected from Yahoo.finance for 
the period of January 4, 2007 to April 22, 2011. The re- 
turn series has 1046 observations which were plotted in 
Figure 1. It can be seen that the market was more vola- 
tile during the period of the financial crisis. 

In the case of this study, we used only the bivariate sto- 
chastic volatility models to fit the return series, specifi- 
cally, p = 2. Regarding the interest parameter  , the 
mixture prior is specified as follows: 

         
 

1 1 1 1

~ Bernoulli(π),π ~ Uniform 0,1

Cf w w f

w

            ,
 (4) 

here, to investigate the sensitivity of the prior specifica- 
tion, we consider three different prior distributions for 

 Cf  , namely, Uniform(0,1) which is used to represent 
prior ignorance, two informative prior distributions, Beta 
(10,1), Beta(20,2). As to the other nuisance parameters, 
some vague prior distributions are specified as follows: 

  
 

1 2

2
1

~ 0.0,10 , ~ 0.0,10

~ 0.001,0.001

N N 

  

 ,
     (5) 

Following Yu and Meyer [16], we used the WinBUGS 
[18] software to draw 50,000 random samples, and dis- 
carded the first 30,000 as burn-in samples. The conver- 
gence of the Gibbs sampler was diagnosed using the 
Raftery-Lewis diagnostic test statistic. 

In Table 1, the Bayesian estimation and standard error 
of   and the value of the Bayes test statistic under three 
different prior distributions are reported. We can find that 
the Bayesian estimates of   are all so very close to 
unity and doesn’t have significant difference under the 
different prior specification. As to the estimation of the 
Bayes test statistic, under different prior specification, some 
minor difference is observed, and, all values provided the 
little evidence to reject unit root hypothesis in the volatil-
ity of this return series. Not surprisingly, all the results for 
the unit root test remain nearly the same which show      

Copyright © 2012 SciRes.                                                                                 JMF 



Y. LI  ET  AL. 

Copyright © 2012 SciRes.                                                                                 JMF 

87

 

 

Figure 1. Time series plot for SHCI and SZCI returns over the period from January 4, 2007 to April 22, 2011. 
 

Prior 

Table 1. Empirical results from SHCI and SZCI index for the period covering the subprime crisis. 

Statistics 1  2  1  2  2

1  2

2    Test 

EST −6.937 −6.955 0.9999 66 0.999 0.0038 0.0040 0.9235 0.  9 994 0022
Uniform 
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Beat1 
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Beta2 

SE 0.2394 0.2041 0.0001 0.0002 0.0015 0.0010 0.0038 N/A 

EST −6.884 −6.945 .999976 .999855 0.0036 0.0040 0.9246 0059

SE 0.2150 0.2583 0.0003 0.0012 0.0015 0.0016 0.0041 N/A 

EST −6.829 −6.907 .999995 .999988 0.0056 0.0062 0.9249 .0023

SE 0.3078 0.2591 0.0002 0.0003 0.0020 0.0021 0.0043 N/A 
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had a long-lasting persistent effect in the main Chinese 
stock markets. 

5. Conclusion and Discussions 

Based on the multivariate stochastic vol
paper provides a Bayesian approach to checking persis- 
tence of asset return volatility. In sharp contrast to the well- 
known Bayes factor, the developed test statistic enjoys at 
least three advantages: 1) It is well-defined in noninfor- 
mative prior; 2) Instead of computing the likelihood ratio, 
it computed the logarithm likelihood ratio, so that the 
result is generally more stable numerically; 3) It is only a 
by-product of Bayesian estimation, and does not require 
more efforts, making its implementation simple. The ap- 
proach that we developed has been applied to the sub- 

SZCI index return series. The empirical study confirmed 
that the financial crisis that happened in 2007 had some 
long-lasting effects in the Chinese stock markets. Noting 
that our test was based on the basic multivariate SV 
models proposed by Harvey, et al. [15], we suggest that 
our technique is, itself, quite general, and can be applied 
in many alternative multivariate SV models (for example, 
factor SV models). Other possible models are discussed 
in Asai, et al. [14]. 
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Appendix: Calculation of  0,T y   for  
Multivariate Stochastic Volatility Model 

As to the multivariate stochastic volatility model con-  

sidered in this paper, the joint density function for the 
observable data and latent volatility is given by: 
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where C is a known constant. The observable likelihood 
function can be expressed as: 

   , dp y p y h h    

Here, it can be seen that owing to the latent volatility, the  

observable likelihood function is a high-dimensional mul- 
tiple integral which does not the closed-from expression. 

According to Section 3, to approximate the Bayesian 
test statistic,  0,T y  , several components are derived 
as follows: 
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As to the bivariate multivariate SV model in this empirical study, we may derive the concrete form given by: 
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Moreover, 

 
   

      

 
     

0

0

1 0
1

1 1 1 1, 1 1 1, 1 1, , ,
1,11

2

1 02 , , ,
,111

log , , , ,
, , , , d d d d

1
          ,

log , , , , 1
, , , , d d d d

T

t t th y
t

h

p y h
f p h y h

E h h h

p y h
f p h y h E

 

 

 
   




 
     



 
   



   

 
   



  


 

  
    



           

  
      











  

 

 

h

   

     

 
 
0

2

1, 1 1
1

1

2 0
2

2 2 2 2, 1 2 2, 1 2, , ,
1,22

2

2 2
2

,

0.

log , , , ,
, , , , d d d d

1
         ,

log , , , ,
, , , ,

T

t
t

T

t t th y
t

f

p y h
f p h y h

E h h h

p y h
f p h y

 

 
   




 
 





 
   



   

 
  






  


   
  



  
    



           

  
  













      

 

0

2

0 2, , ,
1,22

2

1
d d d ,

0.

T

th
t

h d E h

f

    


 



 


, 1 2

         





 

Copyright © 2012 SciRes.                                                                                 JMF 


