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ABSTRACT 

Cancer immunotherapy aims at enhancing immune system to defend against the tumor. However, it is associated with 
injecting small doses of tumor-bearing molecules or even using drugs. The problem is that how to schedule these injec-
tions effectively and/or how to apply drugs in a way to decrease toxic side effects of drugs such that the tumor growth 
to be stopped or at least to be limited. Here, the theory of optimal control has been applied to find the optimal schedule 
of injections of an immunotherapeutic agent against cancer. The numerical method employed works for any dynamic 
linear system and has almost precise solution. In this work, it was tested for a well known model of the tumor immune 
system interaction. 
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1. Introduction 

In the field of mathematical biology it is possible to de-
scribe certain phenomena by mathematical models and 
derive knowledge from them. Specifically, the human im- 
mune system consists of detection systems and required 
weapons. These systems play important roles in defending 
against most pathogens. Cancer immunotherapy is the use 
of the immune system to reject cancer. The main premise 
is stimulating the patient’s immune system to attack the 
malignant tumor cells that are responsible for the disease. 
This can be either through immunization of the patient 
(e.g., by administering a cancer vaccine, such as Den-
dreon’s Provenge), in which case the patient’s own im-
mune system is trained to recognize tumor cells as targets 
to be destroyed, or through the administration of thera-
peutic antibodies as drugs, in which case the patient’s im- 
mune system is recruited to destroy tumor cells by the 
therapeutic antibodies. Cell based immunotherapy is an-
other major entity of cancer immunotherapy. This in-
volves immune cells such as the Natural killer Cells (NK 
cells), Lymphokine Activated killer cell (LAK), Cytotoxic 
T Lymphocytes (CTLs), Dendritic Cells (DC), etc., which 
are either activated in vivo by administering certain cyto-
kines such as Interleukins or they are isolated, enriched 
and transfused to the patient to fight against cancer. 

Since the immune system responds to the environ-
mental factors it encounters on the basis of discrimination 
between self and non-self cells. Many kinds of tumor cells 
that arise as a result of the onset of cancer are more or less 

tolerated by the patient’s own immune system since the 
tumor cells are essentially the patient’s own cells that are 
growing, dividing and spreading without proper regula-
tory control. 

In spite of this fact, however, many kinds of tumor cells 
display unusual antigens that are either inappropriate for 
the cell type and/or its environment, or are only normally 
present during the organisms’ development (e.g. fetal 
antigens). Other kinds of tumor cells display cell surface 
receptors that are rare or absent on the surfaces of healthy 
cells, and which are responsible for activating cellular 
signal transduction pathways that cause the unregulated 
growth and division of the tumor cell. 

Immunotherapeutic treatment is a complex matter 
which depends on different aspects like tumor’s stage of 
growth and development and the health condition of the 
patient. Having a system of differential equations des- 
cribing the tumor-immune dynamics, the problem of 
choosing the right time to administer the substance to 
stimulate the immune system is a mathematical control 
problem (see [1,2]). 

In this work, by using one of the models describing 
this fact, a numerical method called Bezier control points 
method has been used to solve the model. By means of 
this method, it is possible to deal with a problem having 
an objective function or cost function with inequality 
constraints which the general case has been solved here. 
Although, it has to be mentioned that all constraints have 
to be linear according to the applied algorithm in this 
paper, it is possible to have nonlinear constraints. In Sec-
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tion 2, optimal control will be introduced. Bezier control 
points method will be discussed in Section 3. In Section 
4, the immunotherapy model will be presented and afo- 
rementioned method will be implemented on it. In Sec- 
tion 5, results will be stated. Finally, Section 6 will give a 
conclusion briefly. 

2. Optimal Control 

This paper aims at minimizing quadratic cost functional 
over solutions of time varying systems of the form 
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The fixed finite terminal time ft  is given, and 0x  is 
the vector of initial conditions. 

One of the methods to solve optimal control problem 
(1), is based on parameterizing the state/control variables, 
which convert the problem to a finite dimensional opti-
mization problem, i.e. a mathematical programming pro- 
blem (see [3-14]). 

Analytical techniques developed in [9] are of benefit 
also in studying the convergence properties of related 
algorithms for solving optimal control problems, involv-
ing Chebyshev type functional constraints where, owing 
to the use of a variable step size in integration or high 
order integration procedures, it is not either possible or 
inconvenient to base the analysis on a priori discretiza-
tion of the dynamic. The method used slack variables to 
convert the inequality constraints into equality con-
straints. 

In this paper, we show a novel strategy by using the 
Bezier curves to find the approximate solution for (1). In 
this method, we divided the time interval, into 2K subin-
tervals and approximate the trajectory and control func-
tions in each subinterval by Bezier curves. We have cho-
sen the Bezier curves as piecewise polynomials of degree 
n, and determine Bezier curves on any subinterval by n + 
1 control points. By involving a least square optimization 

problem, one can found the control points, then the Bezi-
er curves that approximate the action of control and tra-
jectory, as well. 

To show the effectiveness of this method the computa-
tional results of an example is presented and compared 
with the results obtained in [15]. 

3. Bezier Control Points Method 

Consider dynamical system (1). Divide the interval  
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 into a set of grid points such that 
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following suboptimal control problems: 
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and  jx t  and  ju t  are respectively the state and 
control functions in 2 2 2,j j jS t t    . Our strategy is to 
divide the interval jS  into two subintervals and then 
using a Bezier curve to approximate  jx t  and  ju t  
by  jv t  and  jw t  respectively, where  j  and v t

 tj  are given below. Individual Bezier curves that are 
defined over the subintervals are joined together to form 
the Bezier spline curves. For  define the 
Bezier polynomials of degree n that approximate the ac-
tions of 

w

1, 2, , ,j  k

 jx t  and  tju  over the interval 

2 2 2 1,j l j l   t t    as follows 

 

 

2 22 1
2 1 ,

0

2 22 1
2 1 ,

0

, 0,1,

, 0,1

n
j lj l

j l r r n
r

n
j lj l

j l r r n
r

t t
v t a B l

h

t t
w t b B l

h

  
 



  
 



 
  

 
 

  
 



 ,

   (3) 

where 

  2 2
, 2 1

1
,

n r rj l
r n j l j ln

t t n
B t t t

rh h

 
   

   
     
  

2 2t  

are the Bernstein polynomials of degree n over the interval  

2 2 2 1,j l j lt t      , 2 1 lj
ra    and  are respectively p  2 1 lj

rb  

and m ordered vectors from the control points. By sub-
stituting (3) into the Equation (2), one may define 
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1,2 1j lR    for 2 2 2 1,j l j lt t     
T

 and , as 0,1l 

     
     

       

1,2 1 2 1 2 1

2 1 2 1

2 1 2 1

vj l j l j l

T
wj l j l

j l j l

R v t P t t

w t Q t t

K t v t R t w t

     

   

   





 

 

     1

2 1 2 11 0

k
t j l j lj l

v t     
   v t  and 

   1

2 1 2 11 0

k

j l j lj l
w t w t     

  where  2 1j l t    is cha- 

racteristic function for 2 2 2 1,j l jt  l  t t   . 

Beside the boundary conditions, there are also conti-
nuity constraints imposed on each successive pair of 
Bezier segments. Since the differential equation is of first 
order, the continuity of the first derivative of x (or v) is 
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where .  is 2  norm and M is an enough big number. 
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Note 2: In problem (1), if  fx t
0kC 

 be unknown, then 
we set . 

In next section, the immunotherapy model will be in-
troduced on which the proposed method will be imple-
mented. 

4. Immunotherapy Model 

The model of Kirschner and Panetta [16] is a well known 
mathematical description of the tumor–immune system 
interaction. Despite of its simplicity, it exhibits rich dy-
namics that are in qualitative agreement with experimen-
tal findings. The following model was originally devel-
oped by Kirschner and Panetta [16] and modified by 
Burden et al. [17]. This model represents the reciprocal 

interactions between the effector cells;  x t , the tumor 
cells;  y t , and the concentration of Interleukin-2; 
 z t . It consists of the following differential equations 
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2 3 10.03, 10, 1 10 , 500b s       (see [16]). 
In brief, the rate of change for the effector cell popula-

tion is expressed in Equation (6); the effectors decay at 
rate 2  and are stimulated by the interaction with the 
tumor as well as by the presence of Interleukin-2, where 
c models the antigenicity of the tumor. The tumor growth 
is logistic and is reduced by the effectors shown in the 
seventh equation. The eighth equation gives the rate of 
change for the concentration of IL-2. Interleukin-2 is 
produced when the effectors interact with the tumor and 
decays at rate 3 . The parameter 1s  is the main factor 
in determining the stability properties of the effector and 
cancer cells appearing in (6) incorporates the therapeutic 
factor. The parameters units are in , except for 

3

1days

1 2, ,g g g  and b whose units are volume. The function 
( )t  is the control describing the percentage of adoptive 

cellular immunotherapy given. 
Using the model described above, the purpose is to de-

sign a drug schedule that eradicates the tumor level at the 
end of treatment as well as infusing the least dosage of 
drug and maintaining low tumor levels throughout the 
course of treatment. The problem can be formulated as 
an optimal control problem with the set of dynamic equ-
ations. Generally, it may be stated as: 
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where  tx  is a (3 1)  state variables vector and 
 u t  is a control variable bounded by  u t   . 

The performance index I which has to be maximized is 
normally given by 
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where ft  is the specified final time,  is the ob-
jective value of each stage and  is the performance 
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index at the end of the process. Typical optimal controls 
for these type of problems are bang-bang with periodical 
switching from  to u . 0u  m

To define an optimal input controller, the performance 
index must be selected in order that the effector and the 
Interleukin-2 cells are maintained in an acceptable range. 
Also, the amount of cancerous cells is to be at minimum 
level during and at the end of the therapy. For this pur-
pose, different performance indexes were studied with 
trial and error method. At last, in order to have minimum 
quantity of cancerous cells during the therapy term 

u

 y t  is taken into consideration and at the end of ther- 
apy a linear penalty  – fy t  is considered. A constant 
coefficient   is approximated to be 1000 by trial and  

error. A quadratic term in the form of   21

2
B u t  is 

added to the performance index to consider the effect of 
inputs. In addition,  x t  and  are added to keep 
the number of effector and Interleukin-2 cells at high 
level. Applying all aforementioned terms, performance 
index is obtained as below 
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where   is a constant and is selected to be equal to 
1000,  is the control variable bounded by  

 and B is the weight factor that represents a 
patient’s level of acceptance of the treatment. Burden et 
al. [17] did not consider any terms for minimization of 
cancerous cells at the end of therapy, because of that, 
cancerous cells started growing up at the end of therapy. 

u t
 


u t 0  1

In brief, we are minimizing the amount of tumor cells 
both during and at the end of the treatment. Also we are 
maximizing the amount of effector and Interleukin-2 
cells. The existence of an optimal control has been stud-
ied in [17]. 

5. Results of the Immunotherapy Model 

This algorithm has been executed on this problem with 
considering some different coefficients such as 

1 500, 5,s B  0.25c  . 
Numerical solution results of equations for our per-

formance index are shown in Figure 1, and control vari-
able is shown in Figure 2. In this figure state variables 
including tumor cells, the effector cells and concentration 
of Interleukin-2 for a therapy period (350 days) are ob-
tained. The equilibrium point in this case is unstable be-
cause the value of 1s  is smaller than critical value (540), 
but optimal solution of equations pushes the system to 
the area with smaller cancerous cells. In this work in 
comparison with the works done in [16-18] (see Figures 

3 and 4). 

6. Conclusion 

In this paper, a Bezier control points method for solving 
optimal control problems governed by time varying dy-
namical systems with constraints on the states and con-
trol has been suggested. The method replaces the con-
strained optimal control problem by a quadratic pro-
gramming one. The control point structure provides a 
bound on the residual function. Results show that the  
 

 

Figure 1. Obtained results for this method. 
 

 
Time (days) 

Figure 2. Obtained result for this method. 
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Figure 3. Obtained results for the I performance index: (a) 
in Ref. [18]; (b) in Ref. [17]; (c) in Ref. [16]. 
 

 

Figure 4. Obtained control variable for the I performance 
index: (a) in Ref. [18]; (b) in Ref. [17]; (c) in Ref. [16]. 
 
proposed method is efficient and easily applicable. 
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