
Journal of Intelligent Learning Systems and Applications, 2012, 4, 59-69
http://dx.doi.org/10.4236/jilsa.2012.41006 Published Online February 2012 (http://www.SciRP.org/journal/jilsa)

59

An Intelligent Assessment Tool for Students’ Java
Submissions in Introductory Programming Courses

Fatima Al Shamsi, Ashraf Elnagar

Computer Science Department, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.
Email: fmalshamsi@sharjah.ac.ae, ashraf@sharjah.ac.ae

Received June 7th, 2011; revised July 8th, 2011; accepted July 18th, 2011

ABSTRACT

This paper presents a graph-based grading system for Java introductory programming courses, eGrader. This system
grades submission both dynamically and statically to ensure a complete and through grading job. While dynamic analy-
sis is based on JUnit framework, the static analysis is based on the graph representation of the program and its quality
which is measured by software metrics. The graph representation is based on the Control Dependence Graphs (CDG)
and Method Call Dependencies (MCD). eGrader outperforms existing systems in two ways: the ability of grading sub-
mission with semantic-errors, effectively, and generating reports for students, as a feedback on their performance, and
instructors on the overall performance of the class. eGrader is well received by instructors not only for saving time and
effort but also for its high success rate that is measured by four performance indicators which are sensitivity (97.37%),
specificity (98.1%), precision (98.04%) and accuracy (97.07%).

Keywords: Java; Programming; Computer Aided Education; Computer Aided Assessment; Control Dependence

Graphs

1. Introduction

The idea of making the process of grading programming
assignments automatic started with teaching program-
ming. In 1960’s, Hollingsworth [1] introduced one of the
earliest systems which grade students programs written
in Assembly language. Since then, the development and
implementation of Automatic Programming Assignment
Grading (APAG) systems has been a subject of great
interest to many researchers. The need for decreasing the
load of the work on the grader, timely feedback for the
students and accuracy on the grading results are some of
the reasons that motivated the need for APAG systems.

eGrader has been developed to grade solutions in Java
programming courses. Java language is the most widely
used language in teaching programming in introductory
courses. Its popularity stems from the fact that it is a pro-
gramming language that can do almost anything a tradi-
tional programming language like Fortran, Basic or C++
can do. It is considerably easier to program and to learn
than those languages without giving up any of their pow-
er. Besides, developing the system using Java makes the
resulting software truly portable across multiple machine
architectures.

Although several automatic and semi-automatic pro-
gramming grading systems were proposed in the litera-
ture, few of them can handle semantic errors in code.

Besides, most of the existing systems are mainly con-
cerned with the students’ scores ignoring other aspects.

This paper presents a new system, eGrader, for grad-
ing Java students’ solutions, both dynamically and stati-
cally, in introductory programming courses. Reports ge-
nerated by eGrader make it a unique system not only to
grade students’ submissions and provide them with de-
tailed feedback but also to assist instructors in construct-
ing a database of all students work and produce proper
documents such as outcome analysis. In addition, eGrader
is one of the few systems that can handle Java source
code with the existence of semantic errors.

The remainder of the paper is organized as follows:
Section 2 summarizes the existing APAG systems. Sec-
tion 3 discusses the methodology adopted in eGrader.
Components of eGrader framework are described in Sec-
tion 4. In Section 5, we discuss the experimental results.
We conclude the work and present possible future direc-
tions in Section 6.

2. Related Work

Computer aided education (CAE) grows with a great
interest and is highly dependent on modern technology.
CAE tools can be categorized as: computer aided learn-
ing (CAL) and computer aided assessment (CAA). CAL
tools had proved to be effective in computer science

Copyright © 2012 SciRes. JILSA

An Intelligent Assessment Tool for Students’ Java Submissions in Introductory Programming Courses 60

education. For example, they had been used successfully
in teaching and learning graphic structure with its algo-
rithms [2], operating system courses [3], data structure
courses [4], and core programming courses [5,6]. CAL
tools also support distance learning through mobile learn-
ing (m-learning) technology [7,8]. CAA tools are intro-
duced to complement CAL. It includes electronic quizzes
and surveys [9,10], plagiarism and text reuse detection
systems, and APAG systems. For example, JPlag [11],
MOSS [12], YAP [13] and PDE4Java [14] are plagiarism
detection systems for students’ programming submis-
sions.

Different approaches have been adopted to develop
APAG systems. Approaches can be categorized to three
basic categories; dynamic or test based, semantic-simi-
larity based, and graph based.

The dynamic-based is the most well known approach
that has been used by many existing systems. Douce et al.
reviewed automatic programming assessments which are
dynamic-based in [15]. Using this approach, the mark
assigned to a programming assignment depends on the
output results from testing it against a predefined set of
data. However, this approach is not applicable if a pro-
gramming assignment does not compile and run to pro-
duce an output. In this case, no matter how the assign-
ment is good it will receive a zero mark. Moreover, using
dynamic-based approach does not ensure that the assign-
ment producing correct output is following the required
criteria. Examples of dynamic-based systems are Kas-
sandra [16] and RoboProf [17,18].

The semantic similarity-based (SS-APAG) approach
overcomes the drawbacks of the dynamic-based appro-
ach. Using this approach the grading of a student’s pro-
gram is achieved by calculating semantic similarities be-
tween the student’s program and each correct model pro-
gram after they are standardized. This approach evaluates
how close a student’s source code to a correct solution?
However, this approach can become expensive in terms
of time and memory requirements if the program size and
problem complexity increase. ELP [19] and SSBG [20]
are two examples of this approach.

The graph based approach is a promising one which
overcomes the drawbacks of other approaches. This ap-
proach represents source code as a graph with edges rep-
resenting dependencies between different components of
the program. Graph representation provides abstract in-
formation that is not only supports comparing source
codes with lower cost (than semantic similarity approach)
but also enables assessing source code quality through
analyzing software metrics. Comparing graph representa-
tions for two programs is done on the structure level of
the program. This approach has been applied in two dif-
ferent ways: graph transformation such as in [21] and
graph similarity such as in [22].

3. Methodology

eGrader can efficiently and accurately grade a Java source
code using both dynamic and static analysis. The dy-
namic analysis process is carried out using the JUnit
framework [23] which has been proved to be effective,
complete and precise. It provides features that do not
only ease the dynamic analysis process but also makes it
flexible to generate dynamic tests for different types of
problems in several ways.

The static analysis process consists of two parts: the
structural-similarity which is based on the graph repre-
sentation of the program and the quality which is meas-
ured by software metrics. The graph representation is
based on the Control Dependence Graphs (CDG) and
Method Call Dependencies (MCD) which are constructed
from the abstract syntax tree of the source code. From the
graph representation, structure and software metrics are
specified along with control structures’ positions and
represented as a code which we call Identification Pat-
tern. The identification patterns for models’ solutions are
generated in Phase I (creating grading session) as de-
picted in Figure 1(a). The identification patterns for stu-
dents’ submissions are produced in Phase II (grading
students’ submissions phase) as depicted in Figure 1(b).
The result of the static analysis is the outcome of the
matching process between students’ identification pat-
terns and models’ identification patterns as shown in
Phase III of Figure 1(a).

3.1. Identification Pattern

The identification pattern is a representation of the struc-
ture and software engineering metrics of a program. The
structure is presented in the identification pattern based
on the code tracing (without executing it) starting from
the main() method. The structure and software engineer-
ing metrics are two major components of any identifica-
tion pattern. Example of identification pattern is shown
in Figure 2.

3.1.1. The Structure Component
The structure component consists of several sub compo-
nents represented with a mask of digits. Each sub-com-
ponent represents a control structure or a method call in
the program structure. Each sub-component is composed
of three types of coding: basic category, control and po-
sition.

Table 1 shows the code representation for basic cate-
gories and controls of the structure components. For ex-
ample, a for loop control is of the Loops basic category
and for_loop control which is represented with the code
21. The code 1* is a representation for the Conditions
basic category and General_statement control structure,
which means any of the Conditions statements is accept-

Copyright © 2012 SciRes. JILSA

An Intelligent Assessment Tool for Students’ Java Submissions in Introductory Programming Courses

Copyright © 2012 SciRes. JILSA

61

Figure 1. (a) The 3 phases of block diagram of eGrader; (b) Phase II of eGrader’s block diagram.

Table 1. The basic Categories and Controls of the structure
component of the identification pattern.

Basic Category Code Control structure Code

if_statement 1

elseif_statement 2

else_statement 3

switch_statement 4

case_statement 5

Conditions 1

General_statement *

for_loop 1

while_loop 2

dowhile_loop 3
Loops 2

General_loop *

Recursive method call 1

Non recursive method call 2 Method calls 3

General_method_call *

try_block 1

catch_block 2

finally_block 3
Exceptions 4

General_block *

Figure 2. Example of an identification pattern.

able. This type of coding (wild character) is used in the
model solution’s programs only.

The position code consists of one or more digits rep-
resenting the position of a control structure or a method
call in the whole program structure. It also represents the
position relative to other control structures and method
calls in the program structure.

Figure 3 depicts an example of the structure compo-
nent for the identification pattern Compute Factorial.
Class Compute Factorial calls the method factorial to
compute the factorial value after checking its validity
(number ≥ 0). To trace Compute Factorial, we start with
the control structure at line 24 (if (number ≥ 0)). Since
this control structure is a condition control of type
if_statement, the basic category is set to 1 and the control
is set to 1 too if_statement. The position of this control
structure is 1 as it is the first control structure to trace.
The second control structure to trace is the method call at
line 26 (fact = factorial (number)) which is a call to a non

An Intelligent Assessment Tool for Students’ Java Submissions in Introductory Programming Courses 62

Figure 3. Compute Factorial class.

recursive method. Based on Table 1, the basic category
for the method call is 3 and a non recursive method has
the control code 2. Since fact = factorial(number) is con-
trol dependent on the first control structure to trace,
which is if (number ≥ 0), the number of digits in the po-
sition code will increase by one and will be 11. The at
line 38 inside the method factorial has the code 11111,
where the first 1 is for the basic category (conditions),
the second 1 is for the control (if_statement) and the re-
maining 111 is for the position because it is dependent on
statement in line 15. The control structure while (number
> 0) at line 41 is traced after the control structure at line
38, so while (number > 0) has a position value greater
than the position value of if (number ≥ 0) by one which
is 112. The else_statement at line 29 is the last control
structure to trace and it is control dependent on if (num-
ber ≥ 0). The code for the else part is 1311, where 1 is for
the basic category, 3 for the control, and 11 is for the
position. The whole ordered structure component of Com-
puteFactorial’s identification pattern is shown in Figure
4.

3.1.2. Software Engineering Metrics (SEM)
Component

Software Engineering Metrics (SEM) consist of 3 sub-
components: number of variables, number of classes and
number of built-in method calls. Each sub component
consists of two or three parts depending on whether the
SEM component is for a student’s program or a model
program.

For a student’s program, each sub-component consists
of two parts: Basic category and Number. The basic cat-
egory codes are 5 for Variables, 6 for Classes, and 7 for
Library method calls. The Number represents the number

of each SEM component in the student’s program.
For the model program, each sub-component consists

of three parts: The Basic category, MinNumber and Max-
Number. The basic category coding follows the same
strategy as for the student’s program. Parameters Min-
Number and MaxNumber consist of two digits each rep-
resenting the minimum and the maximum number of
SEM sub-component allowed, respectively.

Figure 5 shows examples of SEM component for
identification patterns. An example of a SEM component
for Compute Factorial (Figure 3) as a student’s program
is shown in Figure 5(a). The basic category of type Va-
riables has a number set to 07 which means the student
use 7 variables in his/her program. The code 601 means
there is one class in the file. The number of built-in me-
thod calls in the student’s program is 04 which is repre-
sented in the code 704, where 7 indicates the basic cate-
gory (type library method calls). An example of a SEM
component for Compute Factorial of Figure 3 as a model
program is shown in Figure 5(b). The basic category of
type Variables has a MinNumber equals to 04 and Max-
Number equals to 07 meaning that students are allowed
to use a minimum of 4 variables and a maximum of 7
variables. Students should not use more than one class
which is represented by the code 60101. The code 70410
indicates that students are allowed to use a minimum of 4
library method calls and no more than 10, where 7 re-
presents the basic category of type library method calls.

3.1.3. Structure and SEM Analysis
The main idea behind the identification pattern is to ana-
lyze both the structure and the SEM of students’ pro-
grams. Therefore, an efficient strategy to compare identi-
fication patterns is required. Certain criteria need to be
met to develop an efficient strategy to compare identifi-
cation patterns. The criteria are as follows:

1) Identification pattern matching is based on the dis-
tance between them. The distance measure is defined as
the number of missing control structures and SEM com-
ponents from the model program in addition to the num-

Figure 4. Structure component of the Compute Factorial
class.

(a)

(b)

Figure 5. (a) A student’s SEM component of Figure 3; (b) A
model’s SEM component of Figure 3.

Copyright © 2012 SciRes. JILSA

An Intelligent Assessment Tool for Students’ Java Submissions in Introductory Programming Courses 63

ber of extra control structures and SEM component in the
student’s identification pattern. Formally, it is:

Missing ExtraD N N (1)

where D is the distance, NMissing is the number of missing
control structures, and NExtra is the number of extra con-
trol structures.

2) If there exists a model identification pattern that
matches exactly a student’s identification pattern, the
distance between both is set to zero.

3) If no exact match found, the best match is the mod-
el’s identification pattern which has the minimum dis-
tance D from the student’s identification pattern.

4) If two models’ identification patterns have the same
distance from the student’s identification pattern, the best
match is the one that maximizes the scored mark.

To illustrate our comparison process, an example for
calculating factorial is presented. This example consists
of two models’ solutions and one student’s solution. The
first model solution calculates factorial using a recursive
method (Figure 6(a)). The second one is a nonrecursive
solution. An example of a student’s solution is shown in
Figure 6(b).

The student’s identification pattern is compared with
the first model identification pattern in Figure 7. The
basic category and control of each control structure in the
student’s identification pattern is compared with the
basic category and control of each control structure in the
model’s identification pattern until a match is found. The
distance D in this example is equal to 2, as two control
structures are missing; if_statement and elseif_state-
ment.

The student’s identification pattern is compared also
with the model’s identification pattern for a nonrecursive
solution. The result of this comparison is as follows: 2
extra control structures, 2 missing control structures and
1 missing SEM. Therefore, the distance D is equal to 5.

As a result, the first model’s identification pattern bet-
ter matches student’s identification pattern. The mark is
to be assigned based on the first model program.

4. eGrader Framework

The framework of eGrader consists of three components:
Grading Session Generator, Source code Grader, and Re-
ports Generator. eGrader basic screen is shown in Figure
8.

4.1. Grading Session Generator

eGrader supports both generating and saving grading
sessions. Generating a grading session is easy, flexible
and quick. A grading session is generated through three
steps: creating model list, creating assessment criteria,
and creating new grading session.

(a)

(b)

Figure 6. (a) Recursive solution-model answer; (b) A stu-
dent’s solution.

4.1.1. Creating Model List
This is done simply by adding model solutions, where
identification patterns are generated automatically. Each
identification pattern represents the structure of its model
solution. Once an identification pattern is generated, a

Copyright © 2012 SciRes. JILSA

An Intelligent Assessment Tool for Students’ Java Submissions in Introductory Programming Courses

Copyright © 2012 SciRes. JILSA

64

5) Variables, classes, and library method calls.

Figure 11 shows the Assessment Criteria frame. Each
category provides input fields for measuring category
weight and penalty (except for category E) for extra con-
trols. A category is added to grading process if it has a
weight greater than zero. If the penalty value for a cate-
gory is greater than zero, a student who uses extra con-
trols (more than what is required in the program) of that
category will be penalized. Weights and penalty values
are normalized. Options in each category’s check list
covers all the controls in an introductory Java course.
Assessment criteria may be saved for future use.

4.1.3. Creating New Grading Session
A grading session is created through New grading ses-
sion dialog. In this dialog three files need to be added
which are the solutions set file, the assessment criteria
file and the JUnit test file with an option for specifying
the weight (which has to be in the range of [0,1]) for dy-
namic analysis phase as shown in Figure 12. Other files
can be included such as data files to run or test students’
submissions. Once the grading session for a problem is
generated, the grading process can take place.

Figure 7. Comparison process between the student’s solu-
tion in Figure 6(b) and the model solution in Figure 6(a).

dialog box appears showing the identification pattern and
providing a possibility to modify it (Figure 9). The mo-
dification options are: to choose another form of Java
control structures or a general form. For example, if the
identification pattern contains a for-loop structure which
is represented in Figure 9 by 211, the available options
are: to keep it, choose while-loop or do-while-loop in-
stead, or choose the wild character (*) which represents
any loop control. Software metrics are optional. Such
metrics include number of variables, number of library
methods and number of classes used. Adding each of the
software metrics along with their values to the identifica-
tion pattern is optional as shown in Figure 10. The mod-
el identification code is then added to the list. Model so-
lution list can be saved and modified in future.

4.2. Source Code Grader

As most of the existing systems do, the submitted source
code need to be a zipped file named with the student’s
identification number. This naming and submitting strat-
egy is chosen in order not to burden the instructor with
both searching for required files in different folders and
keeping track of which submissions belong to which
student. The grading process steps are as follows:

1) Loading grading session. List of solutions, folders
and identification patterns are loaded into in a table form
in the main eGrader’s frame. 4.1.2. Assessment Criteria

2) Loading the submitted zipped files by specifying
their folder.

In order to create and assessment scheme, assessment
criteria are categorized into five categories:

3) Submissions will be graded and their output will be
inserted into another table.

1) Condition statements.
2) Loop statements.

At this stage, the grading process is completed. The
list of students’ names along with their details is in Excel

3) Recursive & Nonrecursive method calls.
4) Exceptions.

Figure 8. eGrader basic initial screen.

An Intelligent Assessment Tool for Students’ Java Submissions in Introductory Programming Courses 65

Figure 9. Identification code options in the Model solutions dialog box.

Figure 10. Software metrics in the Model solutions dialog box.

Figure 11. Assessment Criteria dialog box.

Copyright © 2012 SciRes. JILSA

An Intelligent Assessment Tool for Students’ Java Submissions in Introductory Programming Courses

Copyright © 2012 SciRes. JILSA

66

Figure 12. A new grading session.

4) Original code: shows students’ solution. A match-
ing between the structure of the model solution and the
structure of the student’s submission is displayed using
color matching between corresponding control structures.
Example is shown in Figure 14(b).

file that is to be loaded to eGrader.
Marking starts by running the source code using the

JUnit class (dynamic test). If the dynamic test is suc-
cessful, the system proceeds to the static test. Otherwise,
a report is generated indicating that this submission needs
to be checked by the instructor. A report for a student’s submission that contains syn-

tax errors consists of one part only, which indicates that
the submission has syntax errors and to be checked by a
grader. The total mark for this submission is zero.

4.3. Reports Generator

eGrader not only grades Java code effectively but also
provides the instructor with detailed information about
the grading process. It helps to analyze students’ under-
standing of basic programming concepts. There are two
types of reports that are produced by eGrader: students’
assessment reports and class reports.

4.3.2. Class Reports
A class report is a summary report on the whole class
performance on a specific assignment. This report con-
sists of three parts (three excel sheets) which are: statis-
tics, dynamic test details and static test details.

Useful information such as the assignment’s difficulty
level, the number of students who managed to submit a
solution, and the most and least common solutions, are
summarized in the statistics part. As presented in Figure
15, the statistics part contains the following data:

4.3.1. Students Assessment Reports
After the grading process is completed and the student
data file (an excel file includes student names and identi-
fication numbers) is loaded, students’ reports are gener-
ated. Such reports consist of four different sections: Number of students’ submissions for a given assign-

ment based on the number of graded submissions; 1) Identification: contains student information such as
name, identification number, the result of grading his/her
submission. Figure 13 shows an example for Compute
Factorial assignment.

 Number of model solutions;
 Most popular model solution;
 Least popular model solution;

2) Marking: shows the details of the marking scheme
after conducting both the dynamic and static tests. The
dynamic test result includes the total number of tests and
the number of tests that failed. The static part shows the
5 general categories and the mark for each one, if re-
quired. In the case of encountering errors, a message will
be inserted to indicate the source of the error. Marks are
deducted based on the original marking scheme set by
the instructor/grader. Example is shown in Figure 13.

 Number of unit tests used to test each submission;
 Number of submissions failed all unit tests. This

number indicates the submissions that failed all the
tests in the JUnit test class;

 Number of failed submissions because of syntax er-
rors.

The dynamic test details part provides a general over-
view of the performance of the class. This part is shown
in Figure 16. It displays the following data:
 Tests failed to run by a student’s submission along

with the number of students who failed each test;
3) Model solution: points to the model solution that

best matches student’s submission. Example is shown in
Figure 14(a). List of runtime errors. Such information is useful for

An Intelligent Assessment Tool for Students’ Java Submissions in Introductory Programming Courses 67

Figure 13. Result (part one) of a student’s report for the Compute Factorial assignment.

(a)

(b)

Figure 14. (a) Model solution (part two) of a student’s as-
sessment report; (b) The student’s solution (part three) of a
student’s assessment report.

the instructor to identify common problems and as a
result provide necessary clarification of some con-
cepts in class;

 Other useful statistics such as average, maximum and
minimum marks.

Static test details part provides information on the
performance of the class in the general five categories.
This part consists of the following data:
 Assignment Requirements which contains five cate-

gories, where each has three measures: average mark,
highest mark and lowest mark, if the category is re-
quired. Otherwise, the category will be reported as
not required. Group A. Condition statements; for ex-
ample, is represented by, the average mark which is
the average of all submissions marks for this group,
the highest mark which is the highest submission’s
mark for this group and the lowest mark which is the
lowest submission’s mark for this group. The same
applies for all the other categories;

 Other useful statistics such as average, maximum and
minimum marks.

5. Experimental Results

eGrader has been evaluated by a representative data set
of students’ solution in Java introductory programming
courses at the University of Sharjah. This data set con-
sists of students’ submissions for two semesters with a
total of 191 submissions with an average of 24 students
in each class. The assignment set covers 9 different
problems.

Four types of programming assignments were used,
which are:
 Assignment 1: tests the ability to use variables, input

statements, Java expressions and mathematical com-

Copyright © 2012 SciRes. JILSA

An Intelligent Assessment Tool for Students’ Java Submissions in Introductory Programming Courses 68

Figure 15. Statistics part of the Compute Factorial assignment report.

Figure 16. Dynamic test details part of the Compute Facto-
rial assignment report.

putations and output statements;
 Assignment 2: tests the ability to use condition con-

trol structures such as if/else-if/else and switch state-
ment. It also tests students’ abilities to use loop struc-
tures such as for, while and do-while statements;

 Assignment 3: tests the ability to use recursive and
non recursive methods;

 Assignment 4: tests the ability to use arrays.
We are using four performance measures to evaluate

eGrader performance. Namely, sensitivity, specificity, pre-
cision and accuracy.

Sensitivity measures how many of the correct submis-
sions are in fact rewarded. Whereas the specificity is a
measure of how many of the wrong submissions are pe-
nalized? Precision is a measure how many of the re-
warded submissions are correct? Finally, accuracy is a
measure of the number of correctly classified submis-
sions.

Evaluation shows a high success rate represented by
the performance measures which are sensitivity (97.37%),
specificity (98.1%), precision (98.04%) and accuracy
(97.07%) as depicted in Figure 17.

6. Conclusion and Future Work

eGrader is a graph based grading system for Java intro-
ductory programming courses. It grades submissions
both statically and dynamically to ensure a complete and

Figure 17. eGrader performance evaluation.

through testing. Dynamic analysis in our approach is
based on the JUnit framework which has been proved to
be effective, complete and precise. This makes it a suit-
able tool for the problem of dynamic analysis for stu-
dents’ programs. The static analysis process consists of
two parts: the structure-similarity which is based on the
graph representation of the program and the quality
which is measured by software metrics. The graph rep-
resentation is based on the Control Dependence Graphs
(CDG) and Method Call Dependencies (MCD) which are
constructed from the abstract syntax tree of the source
code. From the graph representation, structure and soft-
ware metrics are specified along with control structures'
positions and represented as a code which we call it
Identification Pattern.

eGrader outperformed other systems in two ways. It
can efficiently and accurately grade submissions with
semantic error. It also generates a detailed feedback for
each student and a report for the overall performance for
each assignment. This makes eGrader not only an effi-
cient grading system but also a data mining tool to ana-
lyze students’ performance.

eGrader was appraised by instructors and teaching as-
sistants for its overall performance (97.6%) and the great
reduction in time needed for grading submissions when
using it. Their comments provided useful feedback for
improvement.

eGrader can be extended to incorporate other features
such as: Support GUI-based programs, grade assignments

Copyright © 2012 SciRes. JILSA

An Intelligent Assessment Tool for Students’ Java Submissions in Introductory Programming Courses 69

in other programming languages and offer the eGrader
online.

REFERENCES
[1] J. Hollingsworth, “Automatic Graders for Programming

Classes,” Communications of the ACM, Vol. 3, No. 10,
1960, pp. 528-529. doi:10.1145/367415.367422

[2] A. Elnagar and L. Lulu, “A Visual Tool for Computer
Supported Learning: The Robot Motion Planning Exam-
ple,” International Journal of Computers & Education,
Vol. 49, No. 2, 2007, pp. 269-283.

[3] M. W. Goldberg, “Calos: An Experiment with Computer-
Aided Learning for Operating Systems,” ACM SIGCSE
Bulletin, Vol. 28, No. 1, 1996, pp. 175-179.
doi:10.1145/236462.236534

[4] S. Harous and A. Benmerzouga, “A Computer Aided
Learning Tool,” Journal of Computer Science, Vol. 4, No.
1, 2008, pp. 10-14. doi:10.3844/jcssp.2008.10.14

[5] B. W. Becker, “Teaching CS1 with Karel the Robot in
JAVA,” ACM SIGCSE Bulletin, Vol. 33, No. 1, 2001, pp.
50-54. doi:10.1145/366413.364536

[6] C. Kelleher, “Alice: Using 3d Gaming Technology to
Draw Students into Computer Science,” Proceedings of
the 4th Game Design and Technology Workshop and Con-
ference, Liverpool, 2006, pp. 16-20.

[7] C. Evans, “The Effectiveness of m-Learning in the Form
of Podcast Revision Lectures in Higher Education,” In-
ternational Journal of Computers & Education, Vol. 50,
No. 2, 2008, pp. 491-498.

[8] L. F. Motiwalla, “Mobile Learning: A Framework and
Evaluation,” International Journal of Computers & Edu-
cation, Vol. 49, No. 3, 2007, pp. 581-596.

[9] C. Vibet, “Handling Quiz-Based Tests with TEX Macros,”
Education and Information Technologies, Vol. 2, No. 3,
1997, pp. 235-246. doi:10.1023/A:1018669415152

[10] D. Andrews, B. Nonnecke and J. Preece, “Electronic
Survey Methodology: A Case Study in Reaching Hard-to-
Involve Internet Users,” International Journal of Human-
Computer Interaction, Vol. 16, No. 2, 2003, pp. 185-210.
doi:10.1207/S15327590IJHC1602_04

[11] L. Prechelt, G. Malpohl and M. Philippsen, “Finding
plagiarism Among a Set of Programs with JPlag,” Jour-
nal of Universal Computer Science, Vol. 8, No. 11, 2002,
pp. 1016-1038.

[12] A. Aiken, “Moss: A System for Detecting Software Pla-
giarism. http://www.cs.stanford.edu/aiken/moss.html

[13] M. J. Wise, “YAP3: Improved Detection of Similarities in
Computer Program and Other Texts,” ACM SIGCSE, Vol.
28, No. 1, 1996, pp. 130-134.
doi:10.1145/236462.236525

[14] J. Jadalla and A. Elnagar, “PDE4Java: Plagiarism Detec-
tion Engine for Java Source Code: A Clustering Ap-
proach,” International Journal of Business Intelligence
and Data Mining, Vol. 3, No. 2, 2008, pp. 121-135.
doi:10.1504/IJBIDM.2008.020514

[15] C. Douce, D. Livingstone and J. Orwell, “Automatic Test-
Based Assessment of Programming: A Review,” Journal
on Educational Resources in Computing, Vol. 5, No. 3,
2005, p. 4. doi:10.1145/1163405.1163409

[16] U. Von Matt, “Kassandra: The Automatic Grading Sys-
tem,” SIGCUE Outlook, Vol. 22, No. 1, 1994, pp. 26-40.
doi:10.1145/182107.182101

[17] C. Daly, “RoboProf and an Introductory Computer Pro-
gramming Course,” ACM SIGCSE Bulletin, Vol. 31, No.
3, 1999, pp. 155-158. doi:10.1145/384267.305904

[18] C. Daly and J. Waldron, “Assessing the Assessment of
Programming Ability,” Proceedings of the 35th SIGCSE
technical Symposium on Computer Science Education,
Norfolk, 3-7 March 2004, pp. 210-213.

[19] N. Truong, P. Bancroft and P. Roe, “ELP-A Web Envi-
ronment for Learning to Program,” Proceeding of the 19th
Annual Conference of the Australasian Society for Com-
puters in Learning in Tertiary Education, Vol. 19, Auck-
land, 8-11 December 2002, pp. 661-670.

[20] T. Wang, X. Su, Y. Wang and P. Ma,” Semantic Similar-
ity-Based Grading of Student Programs,” Information and
Software Technology, Vol. 49, No. 2, 2007, pp. 99-107.
doi:10.1016/j.infsof.2006.03.001

[21] N. Truong, P. Roe and P. Bancroft, “Static Analysis of
Students’ Java Programs,” Proceedings of the 6th Con-
ference on Australasian Computing Education, Vol. 30,
2004, p. 325.

[22] K. A. Naude, J. H. Greyling and D. Vogts, “Marking
Student Programs Using Graph Similarity,” Computers &
Education, Vol. 54, No. 2, 2010, pp. 545-561.
doi:10.1016/j.compedu.2009.09.005

[23] V. Massol and T. Husted, “JUnit in Action,” Manning Pub-
lications Co., Greenwich, 2003.

Copyright © 2012 SciRes. JILSA

http://dx.doi.org/10.1145/367415.367422
http://dx.doi.org/10.1145/236462.236534
http://dx.doi.org/10.3844/jcssp.2008.10.14
http://dx.doi.org/10.1145/366413.364536
http://dx.doi.org/10.1023/A:1018669415152
http://dx.doi.org/10.1207/S15327590IJHC1602_04
http://dx.doi.org/10.1145/236462.236525
http://dx.doi.org/10.1504/IJBIDM.2008.020514
http://dx.doi.org/10.1145/1163405.1163409
http://dx.doi.org/10.1145/182107.182101
http://dx.doi.org/10.1145/384267.305904
http://dx.doi.org/10.1016/j.infsof.2006.03.001
http://dx.doi.org/10.1016/j.compedu.2009.09.005

