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ABSTRACT 

Superposition of signals in DNA molecule is a sufficiently general principle of information coding. The necessary re-
quirement for such superposition is the degeneracy of the code, which allows placing different messages on the same 
DNA fragment. Code words that are equivalent in the informational sense (i.e., synonyms) form synonymous group and 
the entire set of code words is partitioned into synonymous groups. This paper is dedicated to constructing and analyz-
ing the model of synonymous coding. We evaluate some characteristics of synonymous coding as applied to code words 
of length two although many definitions may be extended for words of arbitrary length. 
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1. Introduction 

The article discusses the peculiarities of degenerate codes 
with the emphasis on their use for creating “overlapping 
messages”. This study was motivated by the existence of 
such type of messages in DNA-protein coding. In what 
follows, we will describe some features of the DNA trip- 
let code which are relevant for our study. 

It is well known that the information contained in 
DNA is written using a 4-letter alphabet , , , .A T C G  
There exist a total of 64 3-letter words over this alphabet, 
encoding 20 amino acids. Consequently, the code is de- 
generate, i.e., the same amino acid can be encoded by 
several alternative words. A group that contains all pos- 
sible words encoding the same amino acid is referred to 
as a synonymous group. Any finite length succession of 
code words can be viewed as a message of DNA se- 
quence. Such message is decoded starting from the first 
letter (start position), each successive triplet being trans- 
formed into the corresponding amino-acid. Usually, there 
exists only one start position to make a sensible message. 
However, in some cases the choice of another start posi- 
tion (e.g., shifted by one letter) also results in a sensible 
message. This is the situation of overlapping messages, 
which is quite common in genes [1-3] and there exist 
hundreds of overlapping pairs of protein coding genes in 
vertebrate genomes [4]. In particular, the start position of 
overlapping genes may be shifted by 1 or 2 positions, 
which is the case, e.g., in virus genomes [5-7]. 

In this study, the simplest coding model is suggested 
for a degenerate code with overlapping messages. This 
model, despite its simplicity, gives the opportunity to  

investigate the described above biological mechanisms. 
In particular, we evaluate the effectiveness of creating 
overlapping messages depending on the type of synony- 
mous partitioning and assess the effectiveness using a 
specially constructed sequence. We obtain these charac- 
teristics for code words of length 2; however, some of the 
definitions given here can be extended also to words of 
arbitrary length [8].  

Assume that there exists alphabet sA  where ss  A . 
Let the code words be the words of length 2 over this 
alphabet and let them belong to set .K  Set K  does not 
necessarily coincide with the entire set of the words of 
length 2 over alphabet sA . Further, let  P K  be a 
certain partition of set  into non-empty subsets. As- 
sume that, being assigned to each subset, there exists 
only one message, which can be transmitted via any ele- 
ment of this subset. Thus, the elements of each subset are 
synonyms, and any partition  will be referred to 
as a synonymous partition. Let us consider a finite se- 
quence of letters over alphabet 

K

P K 

sA , which we define as 
message M. We assume that a hypothetical decoding 
“device” reads the message word by word (the length of 
the words is 2), starting from the first position. As a re- 
sult, an ordered sequence of separated words of length 2 
is obtained. This “construction” is equivalent to the trip- 
let coding and translation of protein. 

Extending this analogy, we can note that decoding 
with a shift of the reading frame by 1 also creates a cer- 
tain sequence of words of length 2. In the context of this 
model, we define both sequences as “functional” if the 
union of the words, constituting both sequences, contains 
just one word from each synonymous groups and does 
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not contain non-code words of length 2. The latter condi- 
tion is important in the situation where not all the words 
of length 2 over a given alphabet are code words. In oth-
er words, neither “functional” sequences contain sy- 
nonymous words nor do they have common synony- 
mous words.  

We will call message M, considered above, a dense 
sequence. Respectively, a closed dense sequence will be 
called a dense contour. The mathematical methods that 
we are going to use lead to practically the same results in 
the cases of dense sequence or dense contour, but here- 
after it will be more convenient to formulate propositions 
for a dense contour, rather than for a dense sequence. In 
this study, we investigate the existence criteria for a 
dense contour (dense sequence) for different synony- 
mous partitions. In Section 2 we present the simplest ex- 
amples of the connection between the composition of 
synonymous groups and the possibility to create a dense 
message. Cartesian synonymous partitions are introduced, 
which also may be used in the description of a standard 
triplet code [8]. These partitions comprise only a subset 
of all possible partitions, yet even in this simple case 
quite non-trivial properties are observed, which are the 
subject of the present study. 

In the case of Cartesian partitions a new alphabet can 
be defined, in which each synonymous group may be 
substituted by a single word (in our case, of length 2). 
This alphabet is not a standard one, in the sense that its 
different letters are allowed to be superposed when they 
are used for creating a sequence. The rules of superposi- 
tion are established by a special table of correspondence. 
Actually, each element of such an alphabet is a multi- 
valued function, whose values belong to the original al- 
phabet. The description of this alphabet, the main opera- 
tional rules and the concept of a dense sequence over this 
alphabet are presented in Section 3. In the same section 
the main theorems on the existence of dense sequences 
are evaluated in the terms of abstract alphabet.  

In Section 4, are specialized for the case of Cartesian 
synonymous partitions. 

2. The Simplest Properties of Synonymous 
Partitions. Cartesian Synonymous 
Partitions 

2.1. Example of a Synonymous Partition 

Let us examine the simplest example of a synonymous 
partition. Let   2 2  ,

length 3. It is obvious that the word AAB  is the desired 
sequence, since it contains the two-letter word AA  
from the first synonymous set  AA  and the word AB  
from the second set  , ,AB B

A
A BB . There is one addi-

tional sequence  with the same properties:  
belongs to the second synonymous set and 

BA BA
AA  to the 

first one. Thus, there are two dense sequences for this 
synonymous partition (moreover, the synonym BB  is 
not used), and packing by a contour is impossible at all. 
Indeed, such a contour would have to consist of two let- 
ters, which necessarily belonged to AA  the only word 
from a synonymous group. But, obviously, this contour 
contains no words from the second synonymous group. 

Let us examine now all possible synonymous parti- 
tions into two groups in this example. There are 7 such 
combinations: 5 partitions: 

       
       
   

,  ,  ,  ;  ,  ,  ,  ;

,  ,  ,  ;  ,  ,  ,  ;

,  ,  ,  ;

AA AB BA BB AB AA BA BB

AA BA AB BB AA AB BA BB

AA BB AB BA

  (2.1) 

plus those obtained from (2.1) by transposition of sym- 
bols A  and B  (The last three partitions are preserved 
under this transposition of letters.) It is sufficient to solve 
our problem only for partitions in (2.1). In the partition 
   ,  ,  ,  AB A A BB

,
A B

,
 there are four complete dense 

sequences: AAB ABA ABB  and . In this case all 
synonyms of both groups are used. There is also a con- 
tour AB, which includes two words AB and BA from dif- 
ferent synonymous partitions. We can say that this syn- 
onymous partition is more effective than the first one in 
terms of quantity of possible versions of the dense pack- 
ing. Further, for the partition 

BAB

 , ,  , AA BA
,

AB BB
, ,

 there 
are four dense sequences: AAB B BBAAB ABA  and one 
contour AB . For the partition  , , , AA BB AB BA

,
 there 

are words , ,AAB BAA ABB BBA , and no contour. For 
the partition     ,, ,AA AB

, ,
BB BA we have words BAA, 

ABB A BAB AB  and a contour AB . 
Our analysis of this example is now complete. We can 

see that for any synonymous partition into two sets there 
exist dense sequences, and the number of such sequences 
depends on the partition and varies from 2 to 4. 

Statement 2.1. Let the set of code words  include 
all possible words of length 2 for any alphabet 

K

sA  
where . Then for any partition into three non- 
empty synonymous groups there exists at least one dense 
sequence. 

2s 

s A B A
, , ,

. There are four two- 
letter words 

Proof. Let us prove that for  it is possible to se- 
lect such four symbols of the alphabet 

5s 
sA  that the in- 

tersection of the set of the words over these symbols with 
each of three synonymous sets is not empty. In other 
words, the contraction of synonymous partition into this 
alphabet, reduced to the 4 symbols, also has three non- 
empty synonymous groups. Let us place the symbols of 

AA AB BA BB



. Let us break this set 
arbitrarily into two non-empty synonymous classes, for 
example, AA , , and  AB BA BB . Our task is to de- 
termine if a dense sequence or contour exist for this par- 
tition. Since there are only two classes, the sequence 
must contain two words with the shift of 1, i.e. have  
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the alphabet sA  at the integral points of the X  and 
 axes of rectangular system of coordinates (Let us call 

such points symbolic). Then the words of length two are 
the corresponding points of Cartesian plane. Let us con-
sider the following cases: 

Y

 Case 1: For any sA A  all words BA  are syno- 
nyms. Then for any sB A  there exist 

1 2 3, , sA A A  A  such that 1 2 3, ,  belong to 
different synonymous groups. Four symbols: 

, , ,  (see Figure 1). 

BA BA BA

1 2 3

 Case 2: There exists 
B A A A

sA A  such that BA  and 
CA  are not synonyms, and DA  is synonymous ei- 
ther to BA  or to CA  for any sD A . Let 1 2A A  
be not synonymous to BA  and CA . Then 1 2A A  is 
not synonymous to 1A A  which is not synonymous to 
either BA  or CA . Four symbols: 1, , ,2A A A  (or 
C ) (see Figure 2). 

B

 Case 3: There exists sA A  such that BA ,  
and DA  are not synonymous, and EA  is synony-
mous to one of them for any 

CA

sE A . Four symbols: 
, , ,B C D A  (see Figure 3). 

 Thus, it remains to prove Statement 2.1 for cases 
where  2, 3, 4s  . This task was solved by sorting 
out all the possibilities on the computer. It is shown 
that set S  is not empty in all cases for all nontrivial 
partitions into three synonymous groups. □ 

Further analysis of the number of synonymous parti- 
tions only in terms of s is ineffective. Indeed, let 

3   3  , ,s A B C A . There exist 9 two-letter words. 
Let us examine the partition     ,  ,  AA BB CC

a ,

 and 
{everything else}. Here we have 4 synonymous groups. 
Three groups consist of one word each and cannot be 
connected directly. It means that for their connection it is 
necessary to use at least two words from the fourth group, 
so that the obtained word will have not less than two 
synonyms. Therefore, there is no dense sequence for this 
partition.  

2.2. Two-Dimensional Cartesian Synonymous 
Partitions 

Assume that there is given a finite alphabet 1 s . 
We will use a Cartesian plane to represent all possible 
two-letter words over this alphabet. Let us arrange the 
letters of the alphabet 

, as A

sA  on the axes of the rectangular 
two-dimensional coordinate system, say, in the ascending 
order of numbers. Then the set of all possible two-letter 
words  can be identified with the set of points 

 on the plane. 
K

  ,  1 i j , si j
Example 2.2.1. Let 1 r  be a partition of 

the set 
= a , ,a 

sA  into the pairs of disjoint sets (classes) 

r i ja (1 ; a a  r s  , if  and i j ai s A  for 
 1, , )i r  . Let us define a new alphabet. We will call 

the set ar a quotient letter, the set  the alphabet, and  

 

Figure 1. Geometrical illustration of proof of Statement 2.1, 
Case 1. 
 

 

Figure 2. Geometrical illustration of proof of Statement 2.1, 
Case 2. 
 

 

Figure 3. Geometrical illustration of proof of Statement 2.1, 
Case 3. 
 
the set sA  in this context, the basic alphabet. The 
above partition induces the partition  of all code 
words into the groups. All words obtained by the direct 
product of ia by ja belong to one group. We will as-
sume that each such group is synonymous, i.e. all code 
words included into this group contain the same message. 
It is convenient to denote synonymous group as a pair 

 P K

  

 i ja , a  (see Figure 4). Let us call this pair of classes a 
quotient word. Let us define now the rules of the forma-
tion of the sequences of quotient words.  

Namely, word  i ja , a  follows the word  u va ,a , if 
class v  is equal to class . Let us write down this 
chain as 

a ia

u v v j(a , a )(a , a )              (2.2) 

Clearly, such definition is coherent with the standard 
one for the sequence of letters. Let x be any element of 
the class v . Then (2.2) can be understood as any triplet, 
where and are any elements of the corresponding sets 

a

 u ja , a . Let us call such set of sequences of letters 
matched with the chain of quotient words the projection 
of the chain of quotient words. Further, by analogy for  
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Figure 4. Partition of the set sA  into the pairs of disjoint 

sets ar; a pair (ai, aj) is a synonymous group. 
 
the quotient words  and  v ja ,a   p qa ,a  sets ja  and 

pa  coincide and thus we can write down sequence of 
three words of the classes 

  u v v j j qa , a a , a a , a  .        (2.3) 

Obviously, the projection of this chain consists of all 
possible words of the form, where y is any element from 
the set aj, selected independently of x . 

In the standard situation the alphabet  coincides 
withthe initial alphabet  1 sa , , as  A


, when the parti- 

tion is trivial i i . Thus, in this situation we can 
use a Cartesian plane too.  

a a

Example 2.2.2. Let  and  1 1 r= a , ,a 
2 1 hb , , b    be two partitions of the set sA . The 

pair  induces the partition of all code words into 
the groups as in the previous Example 2.1: all words ob- 
tained by the direct product of the set i  by the set j

 1 2 

a b  
belong to the same group. We will also assume that each 
such group is synonymous and will denote it as the quo-
tient word  i j . Let us define now the rules of the 
formation of the sequences in the set of classes. Namely, 
word 

a , b

 i ja , b  follows word  u va , b  if the intersection 
of the second element of the latter word (class vb ) with 
the first element of the former word (class ) is not 
empty. Let us write down this chain as 

ia

  u v i j v ia , b a , b , b a           (2.4) 

It is easy to see that such definition is coherent with 
the standard one for the sequence of letters. Namely, let x 
be any element from the intersection of sets vb  and i . 
Then (2.4) can be understood as any triplet, where 

i . Further, by analogy for the 
quotient words   and 

a

u j va , b , b ax    
i ja , b


 p qa , b  we can write 

down a sequence of three quotient words  

  u v i j p qa , b a , b a , b

if the intersection of sets jb  and pa

j

 is non-empty. It is 
obvious that the projection of this chain consists of all 
possible words of the form, where  can be any ele-
ment from the intersection of sets 

y
b  and pa  selected 

independently of x . 
By definition, for any basic alphabet sA , a Cartesian 

synonymous partition is a partition of s sA A  into pairs 
of type i j  where i j  are some subsets of the let-
ters of the basic alphabet. We call such partitions regular 
Cartesian synonymous partitions, if as in the previous 
examples sets 

a b a ,b

 ia  and  ib  form the partition of the 
letters of the basic alphabet sA . 

Example 2.2.3. Let a set of the code words over the 
alphabet sA  be divided into “rectangles”, which do not 
intersect and cover the entire Cartesian square s sA A . The 
projections of the sides of these rectangles on X and Y 
axes form on these axes, generally speaking, two sys- 
tems of intersecting intervals such that their union on each 
axis, obviously, is equal to sA . Let us denote both these 
systems as earlier  1 1 ra ,  , a  and  2 1 hb , , b  . 
In this case, however, sets i j  can intersect and the 
amount of sets r and h in each system can be greater than 
the length of the initial alphabet 

a , b

s . For example, let us 
examine a partition containing pairs  with   i 1a , b 
i  1, , s   and square  a ,a 2 3 2 3  (see Figure 5). 
There exist already 

b
1

,b
s   intervals on the X-axis. Never- 

theless, it is possible to describe each “rectangle” (a sy- 
nonymous set), as earlier, by an appropriate pair  i jba ,  
or by a single quotient word. The definition of a sequence 
of quotient words is transferred from Example 2.2.2. It is 
obvious that this is an irregular Cartesian synonymous 
partition. 

3. Abstract Dense Sequences 

The quotient letters introduced above (Example 2.2.1) 
may be viewed as letters belonging to some alphabet and 
possessing a definite inner structure. As a counter exam- 
ple, we will also consider the abstract alphabet, i.e. an 
alphabet without any assumptions about the nature of 
origins of its letters. In this chapter we investigate the 
problem of constructing a dense sequence in terms of the 
abstract alphabet. This problem is close to standard for 
combination theory of words (see, for example, [9]), 
however differs in some details. This more generalized 
approach allows us to include into consideration not only 
Cartesian synonymous partition with the known mecha-
nism of projecting abstract (quotient) letters onto the 
letters of the initial alphabet, but also other potential 
methods of mapping a correspondence between the sig- 
nals as they overlap. 

Analysis of Cartesian synonymous partition demon- 
strates that it is natural to consider two abstract alphabets. 
Indeed, different alphabets already appeared in examples            (2.5) 
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Figure 5. Pairs (ai, b1) with  and a square (a2, a3) 
(b2, b3). 

1, ,i   s



 
of Cartesian synonymous groups. For example, the col- 
lections of sets and  1 1 ra , ,a   2 1 hb , , b    
in Example 2.2 can be considered as two different al-
phabets for constructing the quotient words. Letters of 
the first alphabet can stand only at the beginning of code 
word, and letters of the second alphabet can stand only at 
the end of the word. The rules of the construction of se-
quences of code words in these examples were connected 
with the origin of letters of the both alphabets, while 
these alphabets were the subsets of a certain initial set.  

In line with this example, let us immediately define two 
different alphabets  and  1 1 ra , , a    2 1 hb , ,b  


. 

That is, code word will be any pair  of letters such 
that its first element (letter) belongs to the alphabet 1

ab
  

and the second one belongs to the alphabet 2 . To con-
struct a sequence of such words it is necessary to define a 
table of correspondence of the letters of different alpha-
bets. We define this correspondence using a many-valued 
mapping 



 : set  consists of the letters of the 
alphabet 2 , which are compatible with the symbol i . 
Let us call this mapping a table of correspondence of 
symbols. Note that in the case of Cartesian synonymous 
partitions, when the quotient letters are subsets of a cer- 
tain set, the table of correspondence of symbols is de- 
fined by the relationship (2.4), i.e. by the non-empty in- 
tersection of the corresponding subsets. In our abstract 
case the table of correspondence of symbols makes pos- 
sible to form sequences of words of the form 

 ia
 a

  i j s ta , b a ,b             (3.1) 

If s jb a . Recall that in the case of the abstract 
alphabet the sequence is composed of the words fo- 
llowing one another whereas the letters standing next to 
each other must satisfy the table of correspondence. In 
this case, a dense sequence is a sequence of words of the 
form (3.1), where each word is encountered exactly once. 
A dense contour is defined in a similar fashion. 

Let us analyze sequences of words over the alphabets 

ph G . he sets of vertices 

1  and  with the help of the following bipartite 

gra  T

2

   and    of this 
graph c espond to the letters of th lphabe 1orr e a ts   and 

2 , respectively. Arcs, leaving the vertices of e set  th
   and entering the vertices of the set   , correspond 

e code words. An arc connecting the v ex of the set to th ert
   associated with a letter 1a  with the vertex of 

set the    associated with a l 2b , corresponds 
to the word (ab) . We call these arc of words. Let 
us denote the s of all arcs of words by V . Arcs of an-
other kind connect the vertices of the se

etter 
s arcs 

t 
et 

   with the 
vertices of the set   . These arcs are de d by the 
table of corresponden  of symbols. Namely, if  

fine
ce

 b a  then there is an arc leaving the vertex of the 
set   , 

rt
associated with a letter 2b  and entering 

the v ex of the set e    associated  letter 1a with a  . 
Let us call these arcs s of recovery. We denote  
of the arcs of recovery by .U  Several arcs of recovery 
can leave each vertex, inclu g none, depending on the 
table of correspondence. 

Example 3.1. There ar

 arc  th

pha

e set

bets 

d

e gi

in

ven two different al
 1 1 2 3 4a ,a ,a ,a  and  2 1 2 3 4 5 b ,b , b , b ,b   and a 

nce (T that the 
code words are 1 1 2 1 3 3 3 4 3 5a b ,a b ,  a b ,a b ,a b  and 4 2a b . 
Therefore, not all wn 
corresponding bipartite graph. Figure 6 illustrates the 
corresponding bipartite graph G , where thin arrows 
depict arcs of words, and thick arrows depict arcs of re- 
covery. 

There

table of co

 e

rrespon

ists a p

d

a

e

rcs

ath in

able

gra

 1)

words s

ph 

. Let 

hould 

G  th
a

us assu

be 

at trav

me

dra

 

erses all 

 of in the 

of x  
the arcs of words only once. It m y be written as a se- 
quence of arcs  

     
     

2 1

3 5

a , b b

a ,b

1

a

1 1 3 3 3 2

4 2 2

a b b ,a

b b ,a , b b ,

e the symbol “

3

4 4

a ,

a

1 3,a

3 4, 3a

a , b b ,
  (3.2) 

wher   ” denotes arc of word and “ ” 
—arc of recovery. N  that in construction of the ab e 
sequence the arc of recovery 1 3

ote ov
b a  was traversed twice.  

Thus, the sequence of arcs ) constitutes an Euler  (3.2
path conditional on the arc of recovery 1 3b ,a  being of 
degree two. Furthermore, the arc of rec  overy 1 3b ,a  
means that the words  1 1a , b  and  3 3a , b  may  
sequence 

 form a
  3

 all t
1 1 3a , b a ,b ording inition (3.1). 

The same is tru he other arcs of recovery in the 
sequence of arcs (3.2). Hence, the sequence of words  

 acc  to def
e for

      1 1 3 3 2 1 3 4 4 2 3 5a , b a ,b a ,b a , b a ,b a ,b   (3.3) 

 the se  of arcfollows from quence s (3.2). The sequence 
(3.3) contains all the code words only once and does not 
contain any other words. This is a dense sequence by 
definition. Note that in contrast to the standard De Bruijn 
graph, arcs of recovery do not correspond to words, and 
they, in some sense, are intermediate steps, which are 
represented neither by letters nor by words in the formed  
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       

 

Figure 6. The bipartite graph G in Example. 
 

quence. Therefore, it is possible either to traverse the 

 o

0], Section 9) that 
fo

se
arc of recovery several times or not to traverse it at all, 
i.e., these arcs (multi-arcs) can have an arbitrary non- 
negative multiplicity. The Table of correspondence (Ta- 
ble 1) of symbols defines the set U  of the arcs of re- 
covery; however, the multiplicities f these arcs can be 
assigned in several possible ways.  

It follows from Good’s Theorem ([1
r the existence of Euler cycle it is necessary and suffi- 

cient that the sum of the multiplicities of the entering 
arcs is equal to the sum of the multiplicities of the leav- 
ing arcs for all vertices of the graph G . Suppose that 
now the conditions of this theorem are violated in only 
two vertices of the graph. Specifically, the number of 
arcs with the first vertex as their initial vertex exceed by 
1 than the number of arcs with the first vertex as their 
terminal vertex, and the reverse is true for the second 
vertex. It is easy to show that in this case there exists an 
Euler path which begins and ends with these two vertices. 
This fact reduces the problem of construction of a dense 
sequence to the problem of definition of the multiplicities 
of arcs of recovery with the given sets V  and U , so 
that the graph G  satisfies the Eulerian condition (see 
[10], Section 9). aturally, only arcs of recovery may be 
assigned different multiplicities, because multiplicity of 
an arc of word always equals 1. In the Example 3.1, mul- 
tiplicity of the arc 

 
N

1 3b ,a  should be set to 2, and multi- 
plicities of all the o cs of recovery should be set to 
1. In this case, the number of incoming and outgoing arcs 
is the same (taking multiplicity into account). The num- 
ber of arcs with the vertex 1a  as their initial vertex is 
greater than the number of arcs with 1a  as their terminal 
vertex by 1, and the reverse is true f the vertex 5

ther ar

or b . 
Hence, the conditions for the existence of an Euler path 
in this graph are fulfilled. 

Let us investigate the problem of construction of a 
dense sequence that contains all possible words over the 
alphabets 1  and 2  exactly once using graph G . 
Let the alphabets 1 nd 2  have the same cardinal- 
ity  r h . In th ase d rcs leave each vertex of 
the 

 a
s ci  a

set   . Let W   Let us denote the set of verti- 

Tab . Table respondence between the letters of 

.  

le 1  of cor

i 1 a   

alphabets 1 and 2. 

a   

a1 - 

a2 b3 

a3 b  1, b2

a4 b4 

 
es inc      adjacent to via arcs of recovery by W  
 S W . 
Theorem d 3.1. Let     . For the existence 

of f words inclu a cyclic sequence o ding each word ex-
actly once it is necessary and sufficient that for any set 
W    the following inequality holds: 

 S W W  

Proof. Necessity. Since all arcs  words are drawn in 
th

of
is graph, each vertex of the set    has the out-degree 

equal to d . For the same reason, each vertex of the set 
   has t  in-degree also equal to d . Let us examine 

arbitrary set W
he

an   . In order that the out-degrees 
and the in-degree  vertices of this set would be 
equal, it is necessary that the sum of multiplicities of the 
arcs of recovery of the set  S W  incident to W  
would be equal 

s of all

W d . Howeve ertices of the set r, the v
   also must h qual out-degrees and in-degrees, 

efore the multiplicity of the arc of recovery is limited 
by value d . (Multiplicity of the arc of recovery can be 
less than , if there is more than one arc of recovery 
leaving that vertex.) Therefore, the sum of multiplicities 
of the arcs of recovery does not exceed the value of 

ave e
ther

d

W d , hence it is necessary that    S W d W d . 
ficiency. Conditions of thi ideSuf s theorem coinc

th

re
of 

Th

 with 
e conditions of the Hall’s theorem [10] of existence of 

perfect matching in the set of arcs U , i.e. matching, 
containing all vertices of graph. Let P  be such a mat- 
ching. Let us assume that the multiplic es of all arcs not 
in P  equal zero, and the multiplicities of arcs in P  
equ d . It is obvious that in this case the out-degrees 
and the -degrees of all vertices in G  are equal. There- 
fore, an Euler cycle exists. The Theo m is proven. □ 

Note that the matching mentioned in the proof 

iti

al 
 in

eorem 3.1 defines a one-to-one correspondence be- 
tween letters of both alphabets. In this case it is possible 
to return to the initial situation when the first and the 
second letters of each word belong to the same alphabet. 
In particular, it is possible to identify the corresponding 
vertices of the graph G  from    and    and thus to 
obtain the standard De Bruijn grap . 

Consider now the general case, whe
h

n the alphabets 

1  and 2  are of different cardinality  r h  and 
et of t  code words M does not necessa ncide 

with the set of all possible words. It means that the sets 
the s he rily coi
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of left and right vertices have different size,    ,  
and not all arcs of words are drawn in the grap s h G. In thi
case let us denote the out-degree of vertex i    by is  
and the in-degree of vertex i    by it . It is obviou  
that 

s

i is t                (3.4) 

Let us define the generalized ou
as

t-degree of the vertex 
 the number of arcs leaving it, each taken with its mul- 

tiplicity and the generalized in-degree of the vertex as 
the number of arcs entering it, each taken with its multi- 
plicity. Let us denote an arbitrary subset of vertices of 
graph G by X and the sum of generalized out-degrees of 
these vertices by  P X . Let us denote, as earlier, the set 
of vertices in    and the set of vertices in  by W    
that are adjace  W  a arcs of recovery, by nt to vi   . 

nce o
S W

Theorem 3.2. Fo e existence of a cyclic seq f r th ue
words including each word from the set M  exactly once 
it is necessary and sufficient that the graph G  is con-
nected, and for any set W    the following inequality 
holds:  

    P S W P W            (3.5) 

Proof. Necessity. Indeed, some of t
le

he arcs of recovery 
aving the set S(W), possibly all of them, enter the ver- 

tices of the set W, but no other arc of recovery enters this 
set according to the definition of the set S(W). If graph 
G  is a generalized Euler graph, i.e. each vertex has 

al generalized out-degree and generalized in-degree, 
then the following inequality holds:   
equ

 P S W P W . 
Sufficiency. It is necessary to sho s w that if (3.5) hold

then there exist non-negative integral values on the arcs 
of recovery (multiplicities) such that the generalized out- 
degree and the generalized in-degree at each vertex of the 
graph G  are equal. We apply the theory of flows in 
networ  Let us assume that for every i the capacity of 
vertex i from the set 

ks.
   is equal to is  (out-degree) 

and the capacity of vert i  from the seex t    is equal 
to it  (in-degree). For convenience, let us d to the 
gra  G  two new vertices in the following way. Let us 
join all ertices of the set 

 ad
ph

 v    to a new vertex K  by 
arcs directed to vertex K . Let us join a new verte to 
all vertices of the set 

x L 
   
rk f

by arcs directed from vertex L. 
In the theory of netwo lows these vertices are conven- 
tionally called a sink and a source respectively. We will 
further examine only the arcs of recovery (set U ) on the 
graph G  discarding the arcs of words from e graph 
G , and denote the graph obtained in this way by G

 th
 . 

 construction, graph G  is oriented from the verte , 
the source, to the vertex , the sink (see Figure 7). 

In the network flow p blem it is required to fin

By x L
 K

ro d a 
non-negative function on the arcs of the graph (called the 
maximum flow), possessing specific properties. By defi- 
nition, the sum of the values of the flow function on all  

 

G ,Figure 7. Graph  oriented from the vertex L, th ource, 
e s

rcs incident to the sink is called the flow value. It is re- 

how that if there is a flow of value 

e s
to the vertex K, th ink. 
 
a
quired that: 1) for each vertex, except for the sink and the 
source, the total value of the flow on all arcs entering the 
vertex and the total value on all arcs leaving the vertex 
must be equal to each other and must not exceed the ca-
pacity of the vertex, 2) it is not possible to increase the 
flow value without destroying condition (1). A vertex of 
graph is saturated, if the total value of the flow on enter-
ing (and, consequently, on leaving) arcs is equal to its 
capacity. 

Let us s iQ s   
in the graph G , then all vertices of the sets    and 
   are saturated. Indeed, according to the definition of 

flow value, Q  is equal to the sum of flows on all 
the arcs going fro  each vertex i
the 

m    to the vertex K . 
However, the flow for each such es not exceed  
capacity i

 arc do the
s  of the corresponding vertex according to the 

property  of the flow. Consequently, the sum of all 
such flows does not exceed Q  and is equal to Q  only 
when the flow on arc is equa o the capacity of the ver-
tex. When the flow value is Q , all the vertices of the set 

1)

l t

   are saturated. Further, f r any vertex io    we 
 denote the sum of the flows on all arcs ent such 

a vertex by iS . According to the property (1) of the flow, 

iS  is equal to the sum of the flows on all leaving arcs, 
. i iS s

will

i.e

ering 

 . Let us denote now the sum of flows on all 
arcs le g any vertex iavin    by iT . According to the 
definition of the flow, it  i.e i i  T t Q    
(see 3.4). On the other hand lear th

i iT S Q

iT 
 it i

. 
s c, at  

   , since both sums are taken
 this follows that i iT t  for any vertex 

i

 on the same 
set of arcs. From

  . Therefore, when the flow v s Q , all verti-
the set 

alue i
ces of    are also saturated. It rema s to assign 
flow it  to eac rc leaving vertex L and entering vertex 
i

in
h a

  of graph G  . In this case all the conditions of 
w are mainta ed. 

We assume now that 
the flo in

the value of flow  not only  Q
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ex heists, but also is integral, i.e. the values of t  functions 
on the arcs of the graph are integral non-negative num-
bers. In this case for every arc of recovery its multiplicity 
must be defined as the value of flow on this arc. Since all 
vertices of the set    in graph G  are saturated, every 
vertex of the set    

re
in the initial graph G  has equal 

generalized out-deg e and in-degree (numb r of arcs of 
words). The same is true for vertices of the set 

e
   in 

the initial graph G . As it was proven earlier, the ues 
of multiplicities are equal to the capacities of vertices, i.e. 
to the out-degrees for vertices of the set 

val

   and to the 
in-degrees for vertices of the set   .  

With such multiplicities of the  of  arcs

rtex-

r ry i-
tia

t vertices a ve cut st a ) of 
th

e

(or

cove

 ju

 the in

cut

l graph G  is an Euler graph. It remains to prove that 
with the th rem condition the flow value Q  exists and 
it is integral.  

We call a se

eo

of 
e graph G  if it does not contain the sink and the 

source, and y path from L into K contains at least one 
vertex of this set. Let us call the sum of the capacities of 
the cut’s vertices the weight of the cut. The cut is called 
minimal if it has the smallest weight. According to the 
Ford-Fulkerson theory [11], the value of the maximum 
flow is equal to the value of the minimal cut. Now we 
determine the value of the minimal cut in graph G

an

 . In 
graph G  there are two obvious cuts: the entire set of 
vertices    and the entire set of vertices   . Both 
these cut ave an equal weight  s h  P P Q     
(see Equality (3.4)). Let us demonstr


ts ate that the cu    

and    are minimal. That is, the weight of any o  
cut is eater than or equal to Q. Consider a cut 

ther
 gr  ,D H , 

where ,D H     respectively; its weight l 

to  \P D D  is a set of vertices in 

 is equa  

  P H  S        

that ices of \ D   via arcs of  are adjace vertnt to the 

 be an a
recovery and    \ \S D H    deed, other-
wise there wo
 \

 n
 the vertex of the set 

. I
ul rc fromd

H  , not included in the cut, into the vertex of the 
, also not included in the cut. This contradicts 

the d n of the cut. In other words,  \S D H   . 
Hence, taking into account the condition   

    3

P   , the following inequality holds:  

set \ D 

efinitio
 

\

Q

P H
value 

of th

 D



   
o

llows fro

e theorem



is no

m th

\S D D\

Thus, the wei he cut t less 
th

e 
st

 3.1. Assume that in the graph all arcs of 
w

P

g

 

P H

P

ht of t

 
 th

   
    \

P D P D

P D D

 



 

 
 




P

P 



 P D
, the


re  an the value of Q . Therefo f the maxi-

mum flow on graph G  is equal to Q . 
The integrality of is flow easily fo

andard algorithm of the construction of the maximum 
flow [11], which results in integral flow if the capacities 
of the vertices are integral numbers. The Theorem is 

proven. □ 
Corollary G  

ords are drawn, and  r h . Then for the istence of a 
cyclic sequence of wor  includes each word exactly 
once it is necessary and sufficient that for any set  
W

ex
ds that

   the following inequality holds:  

 S W W               (3.6) 

Proof. Indeed, the in-degree of every vertex of the set 
   is equal to   , and the out-degree of every vertex 

he set of t   is l to equa   . Therefore, inequality (3.5) 
can be re-written as  

 S W W    

From there follows (3.6). □ 

4. Cartesian Synonymous Partitions 

ous parti- Let us consider the case of Cartesian synonym
tions and words of length two. Two different partitions of 
the basic alphabet sA  produce two quotient alphabets 

 1 1 ra , ,a    an  2 1 hd b , , b   . We have de- 
he cor uctions of words 

and sequences in this case in Example 2.2.2 Let us ex- 
amine the problem of construction of a dense sequence 
that includes all possible words of length two over the 
given alphabets. Let us use for this purpose the bipartite 
graph G  with the sets of vertices 

scribed in detail t responding constr

   and    intro- 
duced Section 3; in ,r h    he set  T    cor- 
responds to the alphabet 1  and con

 +
tains the fir etters 

of the words, and the set  corresponds to the alphabet 

2

st l

  and contains the second letters of the words. All 
ible arcs of words are drawn in this graph. The arcs of 

recovery are determined by the table of correspondence of 
symbols, which in this case is not a free parameter. Spe- 
cifically, we assume that the arc of recovery occurs from 
vertex j

poss

b  into vertex ia  if the intersection of the cor- 
respond g sets is not empty: i ja b   . This defini- 
tion is reasonable, since the seq he terms of a 
Cartesian synonymous partition must correspond to the 
sequences of letters of the basic alphabet in the sense of 
Section 2. Thus, the possibility of construction of a dense 
sequence is determined by the conditions given in Section 
3. Some of the 1

in
uences in t

  and 2  partitions of the basic al- 
phabet satisfy the condit s, and some of them do not.  

Example 4.1. Let the alphabet 1  consist only of two 
se ion

sets of elements   1 s 1 sa ,..., a ,  a and let the alphabet 

2

 , 
  coincide with  2s s A A . In this case 2    

 the out-degree of f the set and  each vertex o    is l 
to s ; also 

equa
s    and the in-degree of each vertex of 

the set    is equal to 2. If  sW a    , then 
  1S W  , s

vert  
ince only one arc of rs the  recovery ente

ex  sa
y: on

 according to the definition of the arcs of 
recover ly vertex  sa    has a non-empty inter- 
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section with the vertex  sa   . Thus, inequality 
 


2 S W s W  is true only 1,2 . According to 

is indicates an absenc  Euler cycle in 
the graph with 2s  . Consider now the same construc- 
tion with the tra ition of the alphabet: 1 s 

 when s
e Corollary 3.1 th of an

nspos A  and 

2  consists only of two sets of elements    1 s sa ,.. a . 
his case 

1., a ,

In t s    and the out-degree  
the set 

 of each vertex of
   l to 2; also is equa 2    and the in-degree 

of each tex of the set ver    is o  equal t s . Let  

 1 s 1a ,  ..., a , 1W W    . All arcs f recovs  o

struction, are drawn from t


he 
ery, by 

con sole vertex  
 1 s 1a , ,a   of the set    that has a non-e

 each of the rtices ia , i 1, , 1
mpty inter-

section with  ve s    . 
Therefore,   1S W  . According  
Euler cycle  

to Corollary 3.1 an
exists if |

3
S W W 

and

et  suppose that positive intege

 . In our case this 
inequality yields s  nly fulfilled with 

1, 2s  . 
us

 2 1s    it is o

rs L 1  and 2  are 
such that 1s   and 2s   are integers. 

Statemen .1. Let set 1 1a ,  t 4 the r  and th,a e set 
 2 1 hb , , b   be the part alphabet  itions of the basic 

sA , where the set 1  consists of subsets of size 1  and 
set 2  consists of subsets of size 2the  . There e ts a 

cyclic dense sequence in the set of all po ible words over 
these alphabets. 

Proof. Let us

xis

ding bipa

ss

rtite  examine the correspon
graph G . The set of vertices    corresponds to the 
quotien etters of the set 1  and e set of vertices t l  th    

corresponds to the quoti t letters of the set en 2 . 

1s    and 2s    by construction. Consider an 
et Warbitrary s   n  S W. The   , by definition, 

is a set of all v from wh of recovery are 
drawn into the vertices of the set W

ertices ic e arcs h th
  . Further, the 

number of different letters of the bas bet ic alpha sA  in all 
words of the set W  is equal to 1 W ; the sam etters, 
by the definition o he arcs of re , can be found in 
all words of the set  S W . Thus,  

e l
f t covery

1 2S W W  . 
Therefore the followin uality hol

 
g ineq ds: 

 1  s WS W s W  1 2 1 2s   

Since an Eulerian conditions, according to rollary 
3.

 

Co
1, take in this case the form   1 2sS W W s  , the 

Statement is proven. □ 
Above we analyzed the case when the quotient letters 

of each alphabet consisted of the same number of letters 
of the basic alphabet. Now let us consider the case when 
the number of letters of the basic alphabet in the quotient 
letters is not fixed. For two partitions  1 1 ra , , a    
and  2 1 hb , , b    of the basic alphabet sA  with an 
equa sets  r hl number of sub  , the in- ree and 
out-degree of each vertex a al. According to the 
Theorem 3.1, in this case the existence of an Euler cycle 
depends only on Cartesian partitions that produce alpha- 

determined by the composition of the sets. It is possible 
to ref ulate t  criterion of the existence of the dense 
cycle obtained in Theorem 3.1. Let us examine the set of 
words 1W   . Partition 2  in an obvious manner 
induces the partition of the set of all the letters over the 
basic a ncluded in th words from the set W . 
Let us denote this partition by  

deg

correspondence is 

re equ

he table bets nce t of 

orm he

 1  and 2 , si

lphabet i e 

 2 1 2b , b , , bW W W W      h

and let us denote the num f non-empty subset  ber o s of

2W   by 2W  . By defi on, the arc of reco  niti very
occurs from vertex ib  into vertex of the set W  if 

ib W   fore, the following inequality always 
holds: 

. There
  2S W W  . 

t 4.2. Let the sets Statemen

   2 1 hb , , b   1 1 ra , , a   , 

be the partitions of the ba abet sic alph sA  in  an  
quantity of subsets 

to  equal
 r h ). Let for each subset W   1

the inequality 2W W   be fulfille Then there is 

1W    a dense cy uence in the set of all possible 
words over thes

oof is obvious in a view of the observations made 
above. Specifically, from the

d. 
clic seq

e alphabets. 
The pr

 inequalities 

  2W W   and S 2W W   we obtain the fol- 

lowing inequality:  S W W , and apply Theorem 3.1. 

5. Conclusions 

Unlike the tradition
theory [12], coding in

al setting up a problem in the cod
 DNA is not aimed at the co

let code. The quality of th  
w

nces of more general types, where  
ea

ing 
rrection 

e code

, for

of possible mistakes made during transferring informa- 
tion. In the case of DNA the crucial point is the way of 
recording information. We have chosen a particular im- 
portant case of overlapping messages together with the 
degeneracy of the code. This scheme is interesting also 
regardless of how common this phenomenon is in bio- 
logical objects.  

We suggest a simple model of such coding on the ba- 
sis of the standard trip

as tested on a sequence, which contained one word from 
each synonymous group. A full analysis of the model is 
carried out and the criterion for the possibility of building 
the test sequence is obtained in relation to different Car- 
tesian partitions. 

The methods developed in this article may be applied 
to building seque

ch synonymous group, the number of the words that 
are contained in the sequence is preset. The same meth- 
ods are applicable for analysis in the case of the standard 
triplet code [8]. Noteworthy also is the concept of “ab- 
stract alphabet” and the sequences built over it. This al- 
phabet allows for superposing not only the same letters, 
but also different ones, as determined by the table of 
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